
Tackling Molecule Assembly with Graph Diffusion

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 A common starting point for drug design is to find small chemical groups or “frag-
2 ments” that form interactions with distinct subregions in a protein binding pocket.
3 However, once suitable fragments are identified, assembling these fragments into
4 a high affinity drug with desirable pharmacological properties is difficult. This
5 “molecule assembly” task is particularly challenging because, initially, fragment
6 positions are known only approximately, and the combinatorial space of potential
7 connectivities is extremely large. Even if the individual fragments form favorable
8 interactions with regions of the pocket, a poor assembly of these fragments can
9 drastically compromise the molecule’s druglikeness and hinder its binding affinity.
10 In this paper, we present EdGr, a new graph diffusion framework tailored for the
11 molecule assembly task. EdGr can handle both fragments and atoms, and predicted
12 candidate edge likelihoods influence node position updates during the diffusion
13 denoising process, allowing connectivity cues to guide spatial movements, and
14 vice versa. EdGr outperforms previous methods on the molecule assembly task
15 and stays robust even as confidence in fragment placement decreases.

16 1 Introduction

17 Most small molecule drugs work by binding to a specific protein in the body and changing its activity
18 so that symptoms improve. In order to design a small molecule drug that targets a given protein, one
19 must find molecules that bind tightly and specifically to this protein while maintaining properties
20 such as synthesizability, solubility, and permeability. Knowing the 3D structure of the target protein
21 is useful: it reveals the shape of the binding pocket, which in principle allows us to design molecules
22 that fit in and interact with the pocket. Yet even for proteins whose structures have been known for
23 decades, finding molecules that meet all these requirements remains difficult.

24 A common approach is to first find small chemical groups, known as “fragments,” that interact
25 favorably with various parts of a target protein binding pocket—we refer to this step as “fragment
26 generation.” Multiple solutions exist for fragment generation, including experimental screening,
27 intuitive design by medicinal chemists, and generative AI techniques [Shim and MacKerell Jr, 2011,
28 Sheng and Zhang, 2013, Lamoree and Hubbard, 2017, Carloni et al., 2025, Powers et al., 2023, 2025,
29 Neeser et al., 2025]. Given a set of fragments and an atom-level representation of a binding pocket,
30 the subsequent challenge is to assemble the fragments into a larger molecule by adding chemical
31 (covalent) bonds. One can predict the inter-fragment covalent bonds between fragments, and then use
32 them to connect the fragments into a complete molecule.

33 We refer to this task as **molecule assembly**. Broadly speaking, the overarching goal of molecule
34 assembly is to use chemical functional groups or fragments to build a high affinity, druglike ligand
35 for a specific target protein receptor. A druglike ligand is broadly defined as being synthesizable,
36 permeable, metabolically stable, and nontoxic (among many other properties). Molecule assembly
37 is difficult in practice because the fragment positions are known only approximately (or not at
38 all), yielding a large combinatorial space of potential connectivities, each with vastly different

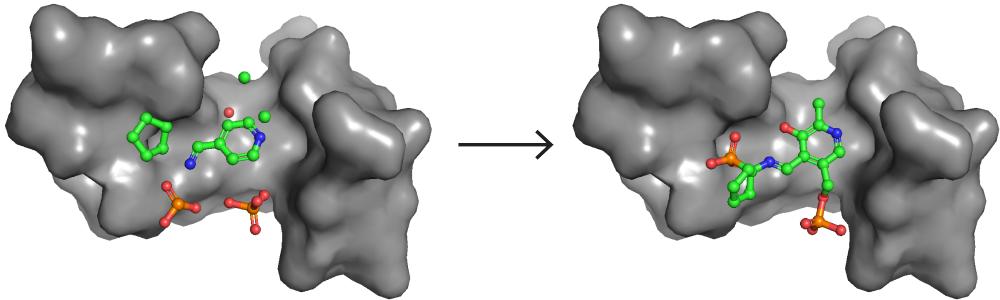


Figure 1: Molecule Assembly Problem Definition. Given fragments (small chemical groups) scattered in a protein binding pocket (left), we wish to predict inter-fragment chemical bonds that will connect them into larger molecule that binds tightly to the pocket (right). The fragments positions and orientations in the larger molecule differ from those provided initially.

39 pharmacological properties and binding affinities. In machine learning terms, molecule assembly is a
 40 traditional graph completion problem, where the nodes are atoms, and the edges are bonds. More
 41 specifically, molecule assembly is an example of *spatial graph completion*, where one must predict
 42 links between nodes in a spatial graph, where nodes have coordinate noise.

43 No methods directly address spatial graph completion, so we turned to two related tasks: traditional
 44 graph completion and all-atom molecule generation. We adapt methods used for the two aforemen-
 45 tioned tasks for molecule assembly. For traditional graph completion, methods such as GCN and
 46 GraphAttention predict edges with the assumption that spatial coordinates do not change (we refer to
 47 these as “Traditional graph completion” methods). For all-atom molecule generation, methods such
 48 as EDM and Equiformer utilize spatial information to generate atoms and bonds in 3D space (we
 49 refer to these as “Geometric deep learning” methods). A full description of these tasks and methods
 50 can be found in the Appendix section.

51 In this manuscript, we find that these methods are ill-suited to the task of molecule assembly.
 52 Specifically, traditional graph completion methods do not handle spatial information, and gemoetry-
 53 prediction methods do not handle the different classes of edges well—molecule assembly requires
 54 learning across fragments, atoms, unknown inter-fragment edges, and known intra-fragment edges.
 55 We thus developed EdGr, a spatial graph diffusion framework to address the molecule assembly
 56 problem. EdGr explicitly handles atoms and fragments together in the diffusion pipeline, and ensures
 57 all atoms within a fragment are moved according to the same roto-translations. We show that EdGr
 58 stays robust despite high amounts of noise in fragment placement.

59 2 Methods

60 2.1 Dataset and Setup

61 We follow the dataset preparation steps outlined in Powers et al. [2023] and Powers et al. [2025].
 62 Our dataset comprises approximately 35,000 protein-ligand complexes from the Protein Data Bank
 63 (PDB). When benchmarking methods on molecule assembly, we measure their ability to reconstruct
 64 PDB ligands perfectly, as these ligands are known to be druglike and strong binders. We choose this
 65 metric instead of calculating *in silico* druglike metrics because metrics such as QED [Bickerton et al.,
 66 2012] have been shown to be unreliable estimators of the aforementioned properties [Beker et al.,
 67 2020, Lee et al., 2022, Cai et al., 2022, Li et al., 2024].

68 To define the molecule assembly task on this dataset, we take each ligand (i.e., each small molecule)
 69 and decompose it into fragments (removing covalent bonds that connect the fragments), following
 70 the procedure and fragment library described in Powers et al. [2023] and Powers et al. [2025]. This
 71 fragment library contains fragments such that double, triple, and aromatic bonds always occur within a
 72 fragment rather than between fragments. Our library comprises fragments that are small enough to be

73 treated as inflexible, such as phenyl, methyl, ethyl groups, and benzene rings. Using small fragments
 74 allows biologists a greater level of control and precision in fragment selection, as opposed to using
 75 large fragments with some sub-groups that are undesirable. The aforementioned bond types are rigid
 76 (they cannot be rotated around), so this is consistent with using inflexible fragments. However, one
 77 could easily extend this framework to predict double and triple bonds as well. In addition, using
 78 small, inflexible fragments makes molecule assembly much more difficult than using large fragments:
 79 small fragments mean more fragments in a pocket, yielding a much larger combinatorial search space
 80 for bonds compared to using fewer, larger fragments.

81 **2.2 Forward Noising Process**

82 We note some key differences between EdGr’s forward noising process and that used in standard
 83 spatial graph diffusion model. Unlike the standard case, where every point is noised following a
 84 closed form multivariate Gaussian distribution, our model treats fragments as inflexible; every atom
 85 in a fragment is noised according to the same translation and rotation vector. We add noise to the
 86 fragment positions as this reflects the uncertainty in fragment placements outputted by fragment
 87 generation methods.

88 Fragment translational noise is sampled the same way as a standard spatial graph diffusion model
 89 samples atom coordinate noise. For noising a fragment’s orientation, we follow the isotropic Gaussian
 90 distribution on $SO(3)$ $g \sim \mathcal{IG}_{SO(3)}(\mu = 0, \epsilon^2)$ [Leach et al., 2022, Savjolova, 1985], which has the
 91 density function $f(\omega) = \frac{1-\cos \omega}{\pi} \sum_{l=0}^{\infty} (2l+1)e^{-l(l+1)\epsilon^2} \frac{\sin((l+\frac{1}{2})\omega)}{\sin(\frac{\omega}{2})}$. To noise the bonds, we apply
 92 discrete diffusion.

93 **2.3 Model and Training Details**

94 **Preliminaries** We define the following: h^l are node embeddings at layer l ; x^l are node coordinate
 95 embeddings at layer l ; s is an indicator variable representing self conditioning; a are predefined edge
 96 features; ϕ are neural networks; m are known edge embeddings; and n are missing edge embeddings.
 97 We include pocket atoms in our graph representation, but treat these atoms as static.

98 A diagram of the EdGr model can be seen in Figure 2. We have two parallel multi-layer perceptrons
 99 (MLPs) to learn edge features, one for known edges and one for missing edges. The known and
 100 missing edge features then get aggregated per node and get passed to node MLPs that update node
 101 embeddings and positions.

$$m_{ij} = \phi_e(h_i^l, h_j^l, \|x_i^l - x_j^l\|^2, a_{ij}) \quad (1)$$

$$n_{ij;t} = \phi_f(h_i^l, h_j^l, \|x_i^l - x_j^l\|^2, a_{ij}, n_{ij;t-1}) \quad (2)$$

$$x_i^{l+1} = x_i^l + \frac{1}{M-1} \sum_{j \neq i} (x_i^l - x_j^l) (\phi_x(m_{ij}) + \phi_y(n_{ij})) \quad (3)$$

$$m_i = \sum_{j \in \mathcal{N}(i)} m_{ij}; n_i = \sum_{j \in \mathcal{N}(i)} n_{ij} \quad (4)$$

$$h_i^{l+1} = \phi_h(h_i^l, m_i, n_i) \quad (5)$$

102 Equations 1 and 4 are the message passing and aggregation over known intra-fragment edges [Satorras
 103 et al., 2022]. We add additional candidate inter-fragment edge features n_{ij} , which are updated in a
 104 similar fashion with a different neural network ϕ_f and receive the previous timestep’s missing edge
 105 embeddings if self conditioning is applied (Equation 2). Node positions are updated using a sum over
 106 all relative distances $(x_i^l - x_j^l)$ [Satorras et al., 2022] multiplied by the sum of the outputs of ϕ_x and
 107 ϕ_y , which take in the known edge embeddings m and missing edge embeddings n , respectively, and
 108 output scalar values (Equation 3). Both edge features are then aggregated across all neighbors of
 109 each node $\mathcal{N}(i)$ (Equation 4) and passed to a node MLP that updates node features (Equation 5). We
 110 compute an MSE loss on x and a Binary Cross Entropy Loss on n_{ij} .

111 **2.4 Inference**

112 During inference, we ensure that fragments stay rigid during each step of denoising using the Kabsch
113 algorithm (Equation 6) [Lawrence et al., 2019] to calculate the optimal rigid body transformation:

$$\min_{T_t^*, R_t^*} \mathcal{L}(T_t, R_t) = \frac{1}{2} \sum_{i \in \mathcal{F}} \|\hat{x}_{i,t+1} - R(\hat{x}_{i,t} + T)\|^2, x_{t+1} = T_t^* + R_t^* \hat{x}_t \quad (6)$$

114 \hat{x}_t is the predicted locations of atoms in a fragment \mathcal{F} at timestep t . R^* and T^* are the optimal
115 rotational and translation vectors, respectively.

116 After denoising, we obtain our final atom positions and weights for every potential inter-fragment
117 bond within N Ångstroms (N is a cutoff specified as a hyperparameter). To obtain our final list of
118 bonds, we sequentially pop off the bond with the highest weight, check if the bond is chemically
119 plausible and the associated fragments are not connected, and connect the atoms. Full details can be
120 found in Algorithm 1 in the Appendix.

121 **3 Results**

122 **3.1 Metrics**

123 To evaluate model performance, we report the following five metrics. The first four metrics quantify
124 a model’s effectiveness at predicting bonds between fragments—the main goal of molecule assembly.
125 The fifth metric quantifies the extent to which atom positions generated by a model match those in
126 the experimentally determined structure.

127 **Precision & Recall** We define precision and recall as follows:

$$\text{Precision} = \frac{[\text{Predicted Bonds}] \cap [\text{True Bonds}]}{\text{Predicted Bonds}}, \text{Recall} = \frac{[\text{Predicted Bonds}] \cap [\text{True Bonds}]}{\text{True Bonds}} \quad (7)$$

128 **Full Molecule Recovery (FMR)** We define “Full Molecule Recovery” as a binary value for each
129 molecule: 0 if the recall is less than 1, and 1 otherwise.

130 **Tanimoto Similarity** We calculate the Tanimoto coefficient of our recapitulated molecule and
131 the true molecule by first constructing a Morgan fingerprint [Rogers and Hahn, 2010] of both the
132 predicted and original molecule. We use RDKit [Landrum, 2013] to generate the Morgan fingerprint,
133 and use RDKit’s builtin Tanimoto Similarity function to calculate the Tanimoto coefficient.

134 **Root Mean Square Deviation (RMSD)** We also calculate Root Mean Square Deviation (RMSD)—
135 the L2 error between the predicted atom positions and atom positions in the experimentally determined
136 structure. For the molecule assembly task, predicted atom positions are much less important than
137 predicted bonds, but we include this metric because the results may still be instructive.

138 **3.2 Experimental Setup**

139 We split our comparisons table into three types of methods: EdGr, geometric deep learning methods
140 (EDM [Hoogeboom et al., 2022] and Equiformer [Liao and Smidt, 2022]), and traditional graph
141 completion methods (Graph Convolutions [Kipf and Welling, 2016], Graph Attention [Veličković
142 et al., 2017], Minimum Distance heuristic, and Common Neighbors heuristic [Newman, 2001]). We
143 train the geometric deep learning methods to denoise the 3D coordinates in an attempt to recover
144 original atom positions, and then connect the two closest atoms belonging to distinct fragments. For
145 the traditional graph completion methods models, we pass in the molecular graph, treating relative
146 positions between the atom coordinates as edge features, and run standard edge prediction. We do
147 not report RMSD for traditional graph completion methods methods, as they do not change spatial
148 coordinates.

149 In addition, we benchmark the mixed atom and bond diffusion architectures used by many molecule
 150 generation methods [Vignac et al., 2023, Morehead and Cheng, 2024, Guan et al., 2024, Schneuing
 151 et al., 2025] (we report these results as “Mixed Diffusion”). These methods denoise atom types,
 152 coordinates, and bond types simultaneously via separate diffusion branches. We train these models in
 153 a similar fashion to the geometric deep learning methods, except instead of simply connecting closest
 154 atoms, we directly use the predicted bonds from these methods.

155 **3.3 Comparisons**

156 To evaluate model robustness, we report model performance on different amounts of noise added to
 157 the fragments. We report differing amounts of *translational* noise $\mathcal{N}(\mu, \sigma^2)$, where we test $\sigma = 1\text{\AA}$
 158 (Table 1), $\sigma = 2\text{\AA}$ (Table 2, Appendix), and $\sigma = 3\text{\AA}$ (Table 3, Appendix). A fragment’s *rotational*
 159 noise is always sampled uniformly from $SO(3)$, meaning that all rotations are equally likely.

160 EdGr outperforms all other models tested according to every metric at every level of translational
 161 noise. EdGr outperforms Mixed Diffusion, where atoms and bonds are generated simultaneously
 162 but with separate, uncoupled MLPs. After Mixed Diffusion is EDM, which makes uses diffusion
 163 to iteratively refine atom positions over N diffusion timesteps. Equiformer attempts to predict the
 164 final denoised position in a one-shot fashion, and does poorly. The traditional graph completion
 165 methods performed poorly across the board, likely due to their inability to refine coordinate positions,
 166 leading to incorrect bond predictions. Overall, these results justify the need to develop an architecture
 167 specifically tailored to molecule assembly—adapting methods from related tasks underperform.
 168 Therefore, a framework for molecule assembly that can handle fragments, atoms, and different edge
 169 modalities is necessary for addressing this task.

Table 1: Comparison of EdGr to other molecule assembly methods, with translational noise of 1\AA standard deviation. Here and in the subsequent tables below, rotational noise is distributed uniformly on $SO(3)$, and error bars show 95 percent confidence intervals determined using bootstrapping. RMSD values are not listed for traditional graph completion methods because those methods do not adjust atom positions.

Model	Topology				Geometry RMSD \downarrow
	Precision \uparrow	Recall \uparrow	FMR \uparrow	Tanimoto \uparrow	
EdGr	$85 \pm 1\%$	$86 \pm 1\%$	$64 \pm 2\%$	$88 \pm 1\%$	$1.09 \pm 0.02\text{\AA}$
EDM	$70 \pm 1\%$	$70 \pm 1\%$	$38 \pm 2\%$	$71 \pm 1\%$	$1.20 \pm 0.02\text{\AA}$
Mixed Diffusion	$79 \pm 1\%$	$79 \pm 1\%$	$53 \pm 1\%$	$83 \pm 1\%$	$1.24 \pm 0.02\text{\AA}$
Equiformer	$10 \pm 1\%$	$11 \pm 1\%$	$1 \pm 0\%$	$22 \pm 0\%$	$4.46 \pm 0.03\text{\AA}$
GCN	$23 \pm 1\%$	$21 \pm 1\%$	$2 \pm 0\%$	$29 \pm 0\%$	—
Graph Attention	$7 \pm 1\%$	$7 \pm 1\%$	$1 \pm 0\%$	$21 \pm 0\%$	—
Minimum Distance	$27 \pm 1\%$	$27 \pm 1\%$	$2 \pm 1\%$	$31 \pm 0\%$	—
Common Neighbors	$10 \pm 1\%$	$10 \pm 1\%$	$1 \pm 0\%$	$22 \pm 0\%$	—

170 **4 Conclusion**

171 We present EdGr, a graph diffusion-based edge prediction method for molecule assembly that couples
 172 prediction of additional bonds with adjustment of atom positions. EdGr substantially and consistently
 173 outperforms previous methods for this task, which is important in drug design.

174 The innovations underlying EdGr—explicit supervision of edge likelihoods and coupled diffusion
 175 over coordinates and connectivity—offer a general framework for spatial graph completion. For
 176 example, in neural connectomics, one wishes to infer fully connected neural circuits from microscopy
 177 data in which many connections between neurons are not visible and precise geometries of neurons
 178 are uncertain [Ding et al., 2025, Marc et al., 2013]. When designing a wireless sensor network, one
 179 must determine both spatial positions of sensors and connectivity between sensors [Khojasteh et al.,
 180 2022, Dogan and Brown, 2017]. Our results may thus have implications well beyond molecular
 181 design.

182 **A Technical Appendices and Supplementary Material**

Table 2: Comparison of EdGr to to other molecule assembly methods, with translational noise of 2 \AA standard deviation.

Model	Topology				Geometry RMSD \downarrow
	Precision \uparrow	Recall \uparrow	FMR \uparrow	Tanimoto \uparrow	
EdGr	76 \pm 1%	77 \pm 1%	44 \pm 2%	74 \pm 1%	1.58 \pm 0.02\AA
EDM	59 \pm 1%	60 \pm 1%	24 \pm 1%	61 \pm 1%	1.65 \pm 0.03 \AA
Mixed Diffusion	69 \pm 1%	69 \pm 1%	34 \pm 2%	70 \pm 1%	1.72 \pm 0.02 \AA
Equiformer	10 \pm 1%	10 \pm 1%	1 \pm 0%	22 \pm 0%	5.25 \pm 0.04 \AA
GCN	11 \pm 1%	11 \pm 1%	1 \pm 0%	22 \pm 0%	—
Graph Attention	7 \pm 1%	7 \pm 0%	1 \pm 0%	21 \pm 0%	—
Minimum Distance	19 \pm 1%	19 \pm 1%	1 \pm 0%	26 \pm 0%	—
Common Neighbors	8 \pm 1%	8 \pm 1%	1 \pm 0%	21 \pm 0%	—

Table 3: Comparison of EdGr to to other molecule assembly methods, with translational noise of 3 \AA standard deviation.

Model	Topology				Geometry RMSD \downarrow
	Precision \uparrow	Recall \uparrow	FMR \uparrow	Tanimoto \uparrow	
EdGr	71 \pm 1%	70 \pm 1%	34 \pm 2%	72 \pm 1%	1.96 \pm 0.03\AA
EDM	52 \pm 1%	52 \pm 2%	15 \pm 1%	51 \pm 1%	2.00 \pm 0.03 \AA
Equiformer	10 \pm 1%	11 \pm 1%	1 \pm 0%	22 \pm 0%	6.43 \pm 0.04 \AA
GCN	10 \pm 1%	10 \pm 1%	1 \pm 0%	21 \pm 0%	—
Graph Attention	8 \pm 1%	7 \pm 1%	1 \pm 0%	23 \pm 0%	—
Minimum Distance	15 \pm 1%	15 \pm 1%	1 \pm 0%	24 \pm 0%	—
Common Neighbors	8 \pm 1%	8 \pm 1%	1 \pm 0%	21 \pm 0%	—

183 **A.1 Differences from all-atom molecule generation and fragment linking**

184 We highlight differences between molecule assembly and two equally important drug design tasks
185 that have previously attracted more attention in the machine learning community: all-atom molecule
186 generation and fragment linking.

187 **All-atom molecule generation** All-atom molecule generation is defined as follows: given a protein
188 pocket, generate a high-affinity ligand, atom by atom. A variety of diffusion and flow-based models
189 address this task by sampling atom positions, atom identities (element types) [Schneuing et al.,
190 2024, Guan et al., 2023], and bond types [Guan et al., 2024, Morehead and Cheng, 2024, Schneuing
191 et al., 2025, Vignac et al., 2023, Dunn and Koes, 2024]. Whereas all-atom molecule generation
192 focuses on creating molecules from scratch, molecule assembly focuses on connecting a known set of
193 approximately placed fragments in a binding pocket. Moreover, all-atom generation does not handle
194 fragments and treats each atom individually.

195 **Fragment Linking** The fragment linking problem is defined as follows: given two fragments
196 positioned precisely in a protein pocket, create a chain of atoms to link the fragments together. Multi-
197 ple computational approaches have been developed for fragment linking, including database search
198 [Sheng and Zhang, 2013], autoregressive modeling [Imrie et al., 2020], variational autoencoders
199 [Huang et al., 2022], and diffusion models [Igashov et al., 2024]. Fragment linking involves adding
200 linking atoms between immovable fragments, whereas molecule assembly involves adding bonds
201 between noisily placed fragments. This means that fragment linking methods are not applicable to
202 molecule assembly, as each problem requires generating different modalities (bonds for molecule
203 assembly, and atoms for fragment linking).

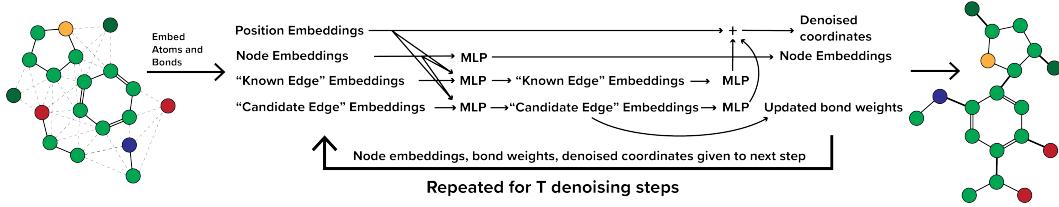


Figure 2: EdGr Architecture Schematic. Node information and edge information are learned through MLPs, and the model outputs updated positions and edge weights (middle). After repeating for T denoising steps, the full molecule with final positions and connectivity is produced (right).

204 **A.2 Existing Spatial Graph Completion Approaches**

205 Two classes of previous developed methods have been applied to knowledge graph completion and
 206 all-atom generation: traditional graph completion methods and geometric deep learning methods.

207 **Traditional graph completion methods** These methods predict missing edges in a graph, treating
 208 spatial coordinates as fixed. These methods can be further subdivided into two subclasses: heuristic
 209 methods and ML-based link prediction methods.

210 Heuristic methods predict edges without any learnable parameters, simply relying on properties of
 211 the graph to make predictions. For example, the Common Neighbors [Newman, 2001] heuristic
 212 computes the similarity of pairs of nodes and links nodes with the highest similarities, and the
 213 Minimum Distance heuristic connects nodes that are the closest in physical space.

214 ML-based link prediction methods [Kipf and Welling, 2016, Veličković et al., 2017] are commonly
 215 used for graph completion in the context of knowledge graphs [Zamini et al., 2022, Chaudhri et al.,
 216 2021]. These methods typically use graph neural networks to learn to impute missing edges in
 217 incomplete graphs.

218 Both subclasses of methods predict new edges in a graph, which fits the bill for molecule assembly.
 219 However, graphs in traditional graph completion do not have spatial information. As a result, these
 220 methods are not well-suited to molecule assembly, where nodes exist in 3D space.

221 **Geometric deep learning methods** These methods explicitly predict spatial coordinates of nodes;
 222 edges can then be inferred based on methods such as Minimum Distance. Geometric deep learning
 223 methods such as EDM [Hoogeboom et al., 2022] and Equiformer [Liao and Smidt, 2022] are explicitly
 224 designed for tasks in n-dimensional space, and are popular for molecular applications. The goal of
 225 these methods is to predict point positions and attributes, and they are able to do so by treating points
 226 in space as nodes in a graph, with edges inferred via a distance cutoff.

227 Recent work on molecular design has included the development of denoising diffusion and flow
 228 models for generating coordinates and edges simultaneously [Dunn and Koes, 2024, Morehead
 229 and Cheng, 2024, Guan et al., 2024, Schneuing et al., 2025]. Although these methods generate
 230 coordinates, elements, and edges simultaneously, they do so via separate diffusion branches, leading
 231 to a weak coupling between the atom positions and bond predictions. In contrast, our method’s direct
 232 coupling approach where bond logits feed directly into the updated coordinates outperforms standard
 233 mixed diffusion on molecules (see Results and Tables 1, 2, 3).

234 **A.3 Additional Background**

235 **Diffusion Models** Denoising Diffusion Probabilistic Models (Diffusion Models, or DDPMs) [Sohl-
 236 Dickstein et al., 2015, Ho et al., 2020], are generative machine learning models inspired by non-
 237 equilibrium thermodynamics. They are characterized by two processes: a *forward noising* process
 238 which gradually adds Gaussian noise to the original data x via a Markov chain; and a *denoising*
 239 process which is parametrized by a neural network ϕ that learns to remove the noise.

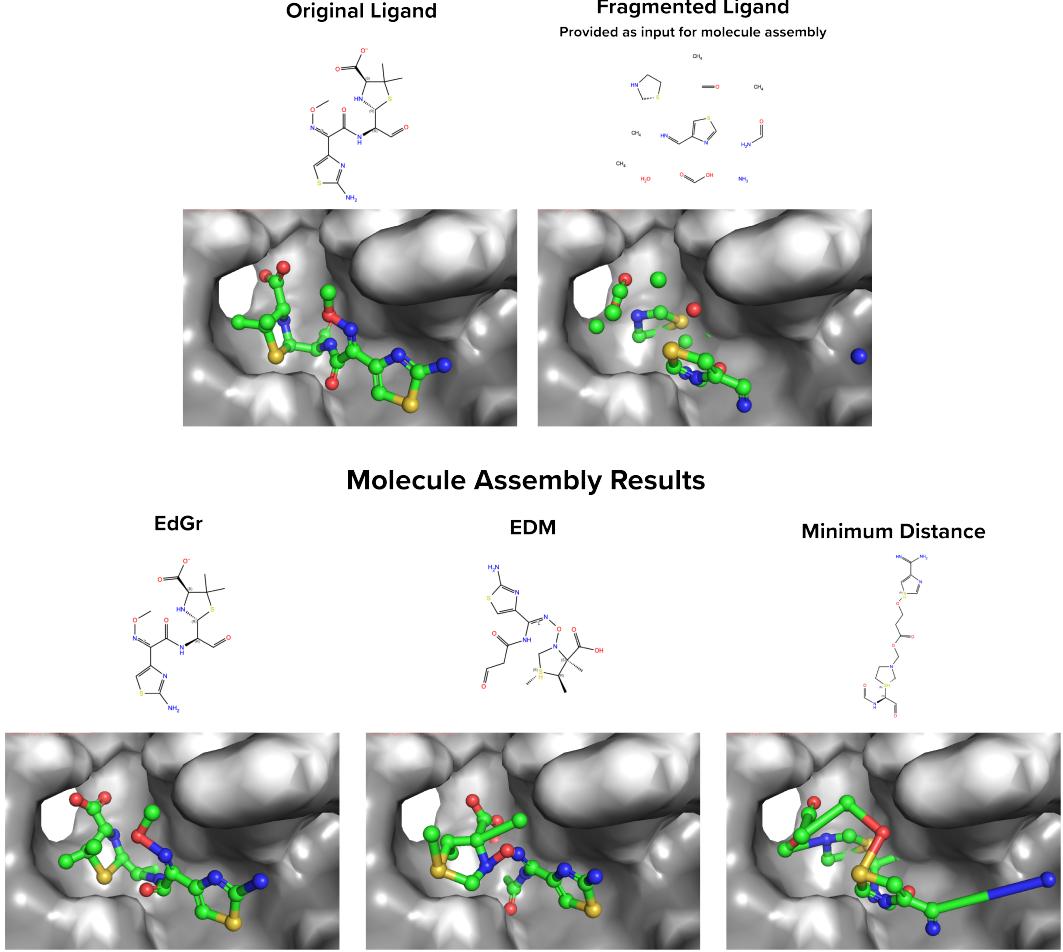


Figure 3: Examples of molecule assembly results from different methods, showing both a 2D graph depiction and a 3D rendering of each molecule. From top to bottom, left to right: the original ligand (a modified version of penicillin, from PDB entry 1LLB); the ligand decomposed into fragments, with rotational and translational noise added to each fragment; molecule assembly results from EdGr, EDM, and the Minimum Distance heuristic.

240 **Self Conditioning** In diffusion, ϕ learns to either remove the noise ϵ or directly predict x_0 in the
 241 chain of denoising steps. However, any intermediate predictions \tilde{x}_0 are discarded in the subsequent
 242 diffusion steps; self conditioning addresses this deficiency [Chen et al., 2023]. Instead of ignoring
 243 these intermediate predictions, self conditioning takes these predictions and concatenates them to
 244 the noise at timestep t to provide additional context for the model, yielding much better downstream
 245 performance [Chen et al., 2023]. To prevent the model from becoming too reliant on the intermediate
 246 \tilde{x} s, we introduce stochasticity with a random variable $s \sim U(0, 1)$; if s is greater than or equal to a
 247 preset threshold p , self conditioning is not applied.

248 **A.4 Final Bond Selection Algorithm**

249 **A.5 Training & Reproducibility Details for EdGr**

250 We train our models on a single Nvidia GPU for up to 300 epochs (approximately 1 week on an
 251 Nvidia A40), using the checkpoint with the lowest validation loss for benchmarking. We train all our
 252 diffusion models with the AdamW Optimizer, with a learning rate of 3×10^{-4} , with 100 diffusion
 253 steps, batch normalization, using ReLU activations, with 4 hidden layers, each comprising 128

Algorithm 1 Final Bond Selection

Require: List of bonds and model weights for each, ordered from lowest to highest: bonds

```
1: Initialize QuickFind datatype: q(n=num_fragments)
2: while !q.is_fully_connected() do
3:   atom1, atom2 = bonds.pop()
4:   f1, f2 = get_fragment(atom1), get_fragment(atom2)
5:   if atom1 and atom2 are bonded to hydrogen atoms and !q.is_connected(f1,f2) then
6:     Add atom1 and atom2 to final list of bonds
7:     q.connect(f1,f2)
8:   else
9:     continue
10:  end if
11: end while
12: return final list of bonds
```

254 neurons. EdGr receives atom coordinates, element types encoded as one-hot vectors, and fragment
255 membership encoded as a binary vector as input features.

256 **A.6 Training & Reproducibility Details for Geometric deep learning methods**

257 EDM and Equiformer receive the same input features as EdGr.

258 **EDM** We use the EDM architecture from the DiffLinker [Igashov et al., 2024] codebase. We use
259 the same hyperparameters as EdGr (3×10^{-4} learning rate, 4 EGCL layers, each comprising 128
260 neurons, AdamW optimizer, ReLU activations, 100 diffusion steps, batch normalization). We treat
261 pocket atoms as static and all ligand atoms as flexible. We trained EDM for 300 epochs, saving the
262 checkpoint with the lowest validation loss and using that for benchmarking. To generate the final
263 inter-fragment bonds, we use Algorithm 1, but instead of using the bonds list ordered by model
264 weight, the bonds list is ordered by Euclidean distance.

265 **Equiformer** We use the implementation of Equiformer [Liao and Smidt, 2022] at this GitHub
266 repository: <https://github.com/lucidrains/equiformer-pytorch>. Due to compute constraints—training
267 an Equiformer model on a single A100 GPU took over a week, with 1 epoch completing every 2
268 hours—we could not train Equiformer for the full 300 epochs and instead trained it for a week on an
269 A100 (roughly 80 epochs). We saved the model with the lowest validation loss and used that check-
270 point for benchmarking. We used the default hyperparameters from the repository, but modified the
271 following: `num_edge_tokens = 2, edge_dim = 4, single_headed_kv = True, heads = 4, dim_head = 8`. We generate inter-fragment bonds in the same manner as described in the
272 paragraph describing running EDM.

274 **A.7 Training & Reproducibility Details for Traditional graph completion methods**

275 As additional baselines, we also tested standard implementations of the Graph Convolution Network
276 (GCN) [Kipf and Welling, 2016] and Graph Attention Networks [Veličković et al., 2017] from
277 PyTorch Geometric Version 2.7 (<https://pytorch-geometric.readthedocs.io/en/latest/index.html>). For
278 both architectures we create a node embedding model that learned node embeddings based on the
279 molecular graphs of all of the provided fragments and a separate link prediction network that took
280 pairs of node embeddings and predicted whether they formed an inter-fragment bond. Each model had
281 nodes that represented atoms, with node features including a one-hot representation of element type,
282 a numerical representation of the fragment identity, the atom’s current valence, the maximum number
283 of bonds the atom could form, and a binary flag of whether the atom could form any additional
284 bonds. Learning rates of 1×10^{-2} , 1×10^{-3} , and 1×10^{-4} were tested for both models. Both
285 methods were trained for 3 epochs on a single GPU with the default settings for the AdamW optimizer
286 (<https://arxiv.org/abs/1711.05101>), with the model checkpoints at the end of each epoch featuring the
287 lowest validation loss across all hyperparameters being used to report metrics. During development,
288 additional hyperparameter settings beyond those listed below and longer training times including
289 up to 20 epochs were tested, but did not result in significant changes in validation loss or validation

Table 4: Ablation study of EdGr, with translational noise of 1Å standard deviation.

Model	Topology				Geometry RMSD ↓
	Precision ↑	Recall ↑	FMR ↑	Tanimoto ↑	
EdGr base model	85 ± 1%	86 ± 1%	64 ± 2%	88 ± 1%	1.09 ± 0.02Å
Remove candidate edge→node update	63 ± 1%	64 ± 1%	26 ± 1%	63 ± 1%	1.33 ± 0.02Å
VAE	80 ± 1%	79 ± 1%	51 ± 2%	85 ± 1%	2.29 ± 0.02Å
No self conditioning	80 ± 1%	79 ± 1%	52 ± 2%	83 ± 1%	1.28 ± 0.02Å

290 performance. The results reported correspond to the best results obtained from the combination of
 291 hyperparameters investigated for these models.

292 **Running GCN** The GCN node embedding network featured 3 GCN layers, with a hidden dimension
 293 size of 128, and a node embedding output dimension of size 64. The inverted pairwise distances
 294 between all atoms based on the noised 3D coordinates were used as edge weights for message passing
 295 in the GCN. The ReLU function was used as the non-linear activation function, and dropout layers
 296 were placed after the ReLU activation for the first two GCN layers with a dropout rate of 10%. The
 297 link prediction network featured 3 MLP layers, with ReLU as the activation function and dropout
 298 layers after the first two MLP layers with a dropout rate of 10%. The input dimension for the link
 299 prediction network was 128, equal to a pair of node embeddings concatenated together, and the
 300 hidden dimension was size 64. The output dimension was size 1, for the binary classification task of
 301 whether a given pair of node embeddings should have an inter-fragment bond.

302 **Running Graph Attention** The Graph Attention node embedding network featured 3 Graph
 303 Attention layers, with a hidden dimension size of 128, a node embedding output dimension of size 64,
 304 and 4 attention heads. The pairwise distances between all atoms based on the noised 3D coordinates
 305 were provided as edge attributes to each node, along with a one-hot encoding representing whether
 306 a given edge was a known intra-fragment bond or a potential inter-fragment bond. The ReLU
 307 function was used as the non-linear activation function, and dropout layers were placed after the
 308 ReLU activation for the first two GCN layers with a dropout rate of 30%. The link prediction network
 309 featured 3 MLP layers, with ReLU as the activation function and dropout layers after the first two
 310 MLP layers with a dropout rate of 30%. The input dimension for the link prediction network was 128,
 311 equal to a pair of node embeddings concatenated together. The output dimension was size 1, for the
 312 binary classification task of whether a given pair of node embeddings should have an inter-fragment
 313 bond.

314 A.8 Ablation Studies

315 In Table 4, we report ablations. Removing self conditioning yielded a drop in performance. This
 316 was expected, as knowing the model’s confidence in the predicted bonds at the previous timestep
 317 of denoising should yield an improvement in the following denoising timestep’s predictions. In
 318 addition, we replace the diffusion trunk of the model with a VAE instead and find that performance
 319 on Topology tasks is nearly as good as that of diffusion, but the RMSD is much worse.

320 Finally, we have previously mentioned the importance of direct edge prediction and the usage of
 321 these weights to influence node positions. We investigate the importance of the latter in the following
 322 ablation study. We continue to output logits n_{ij} for every candidate edge, but remove these terms
 323 from the node coordinate and feature updates. To be precise, we remove the $\phi_y(n_{ij})$ from Equation
 324 3 and n_i from Equation 5. We call this ablation “Remove candidate edge→node update.” We find
 325 that removing this update while maintaining direct edge prediction results in significantly reduced
 326 performance, highlighting the importance of using the candidate edge weights n_{ij} in the updates to
 327 the node features h_i^l and coordinates x_i^l .

328 **References**

- 329 Wiktor Beker, Agnieszka Wołos, Sara Szymkuć, and Bartosz A Grzybowski. Minimal-uncertainty pre-
330 diction of general drug-likeness based on bayesian neural networks. *Nature Machine Intelligence*,
331 2(8):457–465, 2020.
- 332 G Richard Bickerton, Gaia V Paolini, Jérémie Besnard, Sorel Muresan, and Andrew L Hopkins.
333 Quantifying the chemical beauty of drugs. *Nature chemistry*, 4(2):90–98, 2012.
- 334 Chenjing Cai, Haoyu Lin, Hongyi Wang, Youjun Xu, Qi Ouyang, Luhua Lai, and Jianfeng Pei.
335 midruglikeness: subdivisional drug-likeness prediction models using active ensemble learning
336 strategies. *Biomolecules*, 13(1):29, 2022.
- 337 Paolo Carloni, Giulia Rossetti, and Christa E Müller. Rational design of ligands with optimized
338 residence time. *ACS Pharmacology & Translational Science*, 2025.
- 339 Vinay K. Chaudhri, Naren Chittar, and Michael Genesereth. An introduction to knowledge
340 graphs. <https://ai.stanford.edu/blog/introduction-to-knowledge-graphs/>, May
341 2021. Stanford AI Lab Blog.
- 342 Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
343 diffusion models with self-conditioning, 2023. URL <https://arxiv.org/abs/2208.04202>.
- 344 Zhuokun Ding, Paul G Fahey, Stelios Papadopoulos, Eric Y Wang, Brendan Celii, Christos Papadopou-
345 los, Andersen Chang, Alexander B Kunin, Dat Tran, Jiakun Fu, et al. Functional connectomics
346 reveals general wiring rule in mouse visual cortex. *Nature*, 640(8058):459–469, 2025.
- 347 Gulustan Dogan and Ted Brown. Uncertainty modeling in wireless sensor networks. In *Proceedings
348 of the International Conference on Big Data and Internet of Thing*, BDIOT ’17, page 200–204,
349 New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450354301. doi:
350 10.1145/3175684.3175692. URL <https://doi.org/10.1145/3175684.3175692>.
- 351 Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3d de novo
352 molecule generation, 2024. URL <https://arxiv.org/abs/2404.19739>.
- 353 Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equiv-
354 ariant diffusion for target-aware molecule generation and affinity prediction. *arXiv preprint
355 arXiv:2303.03543*, 2023.
- 356 Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang,
357 and Quanquan Gu. Decomppdiff: diffusion models with decomposed priors for structure-based
358 drug design. *arXiv preprint arXiv:2403.07902*, 2024.
- 359 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
360 <https://arxiv.org/abs/2006.11239>.
- 361 Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
362 for molecule generation in 3d, 2022. URL <https://arxiv.org/abs/2203.17003>.
- 363 Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. 3dlinker: an e (3) equivariant variational
364 autoencoder for molecular linker design. *arXiv preprint arXiv:2205.07309*, 2022.
- 365 Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal Frossard,
366 Max Welling, Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion model
367 for molecular linker design. *Nature Machine Intelligence*, 6(4):417–427, 2024.
- 368 Fergus Imrie, Anthony R Bradley, Mihaela van der Schaar, and Charlotte M Deane. Deep generative
369 models for 3d linker design. *Journal of chemical information and modeling*, 60(4):1983–1995,
370 2020.
- 371 Mohammad Javad Khojasteh, Augustin A Saucan, Zhenyu Liu, Andrea Conti, and Moe Z Win. Node
372 deployment under position uncertainty for network localization. In *ICC 2022-IEEE International
373 Conference on Communications*, pages 889–894. IEEE, 2022.

- 374 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
375 *arXiv preprint arXiv:1609.02907*, 2016.
- 376 Bas Lamoree and Roderick E Hubbard. Current perspectives in fragment-based lead discovery (fbl).
377 *Essays in biochemistry*, 61(5):453–464, 2017.
- 378 Greg Landrum. Rdkit documentation. *Release*, 1(1-79):4, 2013.
- 379 Jim Lawrence, Javier Bernal, and Christoph Witzgall. A purely algebraic justification of the kabsch-
380 umeyama algorithm. *Journal of research of the National Institute of Standards and Technology*,
381 124:1, 2019.
- 382 Adam Leach, Sebastian M Schmon, Matteo T. Degiacomi, and Chris G. Willcocks. Denoising
383 diffusion probabilistic models on $SO(3)$ for rotational alignment. In *ICLR 2022 Workshop on*
384 *Geometrical and Topological Representation Learning*, 2022. URL <https://openreview.net/forum?id=BY88eBbkpe5>.
- 386 Kyunghoon Lee, Jinho Jang, Seonghwan Seo, Jaechang Lim, and Woo Youn Kim. Drug-likeness
387 scoring based on unsupervised learning. *Chemical Science*, 13(2):554–565, 2022.
- 388 Bowen Li, Zhen Wang, Ziqi Liu, Yanxin Tao, Chulin Sha, Min He, and Xiaolin Li. Drugmetric:
389 quantitative drug-likeness scoring based on chemical space distance. *Briefings in Bioinformatics*,
390 25(4), 2024.
- 391 Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
392 graphs. *arXiv preprint arXiv:2206.11990*, 2022.
- 393 Robert E Marc, Bryan W Jones, Carl B Watt, James R Anderson, Crystal Sigulinsky, and Scott
394 Lauritzen. Retinal connectomics: towards complete, accurate networks. *Progress in retinal and*
395 *eye research*, 37:141–162, 2013.
- 396 Alex Morehead and Jianlin Cheng. Geometry-complete diffusion for 3d molecule generation and
397 optimization. *Communications Chemistry*, 7(1):150, 2024.
- 398 Rebecca Manuela Neeser, Ilia Igashov, Arne Schneuing, Michael M. Bronstein, Philippe Schwaller,
399 and Bruno Correia. Flow-based fragment identification via contrastive learning of binding site-
400 specific latent representations. In *AI for Accelerated Materials Design - ICLR 2025*, 2025. URL
401 <https://openreview.net/forum?id=bZW1HLT1gI>.
- 402 Mark EJ Newman. Clustering and preferential attachment in growing networks. *Physical review E*,
403 64(2):025102, 2001.
- 404 Alexander S Powers, Helen H Yu, Patricia Suriana, Rohan V Koodli, Tianyu Lu, Joseph M Paggi,
405 and Ron O Dror. Geometric deep learning for structure-based ligand design. *ACS Central Science*,
406 9(12):2257–2267, 2023.
- 407 Alexander S Powers, Tianyu Lu, Rohan V Koodli, Minkai Xu, Siyi Gu, Masha Karelina, and
408 Ron O Dror. MedSAGE: Bridging Generative AI and Medicinal Chemistry for Structure-Based
409 Design of Small Molecule Drugs. *bioRxiv*, 2025. doi: 10.1101/2025.05.10.653107. URL
410 <https://www.biorxiv.org/content/early/2025/05/15/2025.05.10.653107>.
- 411 David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of chemical information*
412 *and modeling*, 50(5):742–754, 2010.
- 413 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks,
414 2022. URL <https://arxiv.org/abs/2102.09844>.
- 415 T. I. Savjolova. Preface to novye metody issledovaniya tekstury polikristallicheskikh materialov, 1985.
- 416 Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du,
417 Carla Gomes, Tom L Blundell, Pietro Lio, et al. Structure-based drug design with equivariant
418 diffusion models. *Nature Computational Science*, 4(12):899–909, 2024.

- 419 Arne Schneuing, Ilia Igashov, Adrian W. Doppelstein, Thomas Castiglione, Michael M. Bronstein,
420 and Bruno Correia. Multi-domain distribution learning for de novo drug design. In *The Thirteenth*
421 *International Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=g3VCIM94ke)
422 [forum?id=g3VCIM94ke](https://openreview.net/forum?id=g3VCIM94ke).
- 423 Chunquan Sheng and Wannian Zhang. Fragment informatics and computational fragment-based drug
424 design: an overview and update. *Medicinal Research Reviews*, 33(3):554–598, 2013.
- 425 Jihyun Shim and Alexander D MacKerell Jr. Computational ligand-based rational design: role of
426 conformational sampling and force fields in model development. *MedChemComm*, 2(5):356–370,
427 2011.
- 428 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
429 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
430 pages 2256–2265. pmlr, 2015.
- 431 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
432 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.
- 433 Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
434 denoising diffusion for molecule generation. In *Joint European Conference on Machine Learning*
435 and *Knowledge Discovery in Databases*, pages 560–576. Springer, 2023.
- 436 Mohamad Zamini, Hassan Reza, and Minou Rabiei. A review of knowledge graph completion.
437 *Information*, 13(8):396, August 2022. ISSN 2078-2489. doi: 10.3390/info13080396. URL
438 <http://dx.doi.org/10.3390/info13080396>.