
Tackling Molecule Assembly with Graph Diffusion

Anonymous Author(s)
Affiliation
Address
email

Abstract

A common starting point for drug design is to find small chemical groups or “frag-1

ments” that form interactions with distinct subregions in a protein binding pocket.2

However, once suitable fragments are identified, assembling these fragments into3

a high affinity drug with desirable pharmacological properties is difficult. This4

“molecule assembly” task is particularly challenging because, initially, fragment5

positions are known only approximately, and the combinatorial space of potential6

connectivities is extremely large. Even if the individual fragments form favorable7

interactions with regions of the pocket, a poor assembly of these fragments can8

drastically compromise the molecule’s druglikeness and hinder its binding affinity.9

In this paper, we present EdGr, a new graph diffusion framework tailored for the10

molecule assembly task. EdGr can handle both fragments and atoms, and predicted11

candidate edge likelihoods influence node position updates during the diffusion12

denoising process, allowing connectivity cues to guide spatial movements, and13

vice versa. EdGr outperforms previous methods on the molecule assembly task14

and stays robust even as confidence in fragment placement decreases.15

1 Introduction16

Most small molecule drugs work by binding to a specific protein in the body and changing its activity17

so that symptoms improve. In order to design a small molecule drug that targets a given protein, one18

must find molecules that bind tightly and specifically to this protein while maintaining properties19

such as synthesizability, solubility, and permeability. Knowing the 3D structure of the target protein20

is useful: it reveals the shape of the binding pocket, which in principle allows us to design molecules21

that fit in and interact with the pocket. Yet even for proteins whose structures have been known for22

decades, finding molecules that meet all these requirements remains difficult.23

A common approach is to first find small chemical groups, known as “fragments,” that interact24

favorably with various parts of a target protein binding pocket—we refer to this step as “fragment25

generation.” Multiple solutions exist for fragment generation, including experimental screening,26

intuitive design by medicinal chemists, and generative AI techniques [Shim and MacKerell Jr, 2011,27

Sheng and Zhang, 2013, Lamoree and Hubbard, 2017, Carloni et al., 2025, Powers et al., 2023, 2025,28

Neeser et al., 2025]. Given a set of fragments and an atom-level representation of a binding pocket,29

the subsequent challenge is to assemble the fragments into a larger molecule by adding chemical30

(covalent) bonds. One can predict the inter-fragment covalent bonds between fragments, and then use31

them to connect the fragments into a complete molecule.32

We refer to this task as molecule assembly. Broadly speaking, the overarching goal of molecule33

assembly is to use chemical functional groups or fragments to build a high affinity, druglike ligand34

for a specific target protein receptor. A druglike ligand is broadly defined as being synthesizable,35

permeable, metabolically stable, and nontoxic (among many other properties). Molecule assembly36

is difficult in practice because the fragment positions are known only approximately (or not at37

all), yielding a large combinatorial space of potential connectivities, each with vastly different38
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Figure 1: Molecule Assembly Problem Definition. Given fragments (small chemical groups) scattered
in a protein binding pocket (left), we wish to predict inter-fragment chemical bonds that will connect
them into larger molecule that binds tightly to the pocket (right). The fragments positions and
orientations in the larger molecule differ from those provided initially.

pharmacological properties and binding affinities. In machine learning terms, molecule assembly is a39

traditional graph completion problem, where the nodes are atoms, and the edges are bonds. More40

specifically, molecule assembly is an example of spatial graph completion, where one must predict41

links between nodes in a spatial graph, where nodes have coordinate noise.42

No methods directly address spatial graph completion, so we turned to two related tasks: traditional43

graph completion and all-atom molecule generation. We adapt methods used for the two aforemen-44

tioned tasks for molecule assembly. For traditional graph completion, methods such as GCN and45

GraphAttention predict edges with the assumption that spatial coordinates do not change (we refer to46

these as “Traditional graph completion” methods). For all-atom molecule generation, methods such47

as EDM and Equiformer utilize spatial information to generate atoms and bonds in 3D space (we48

refer to these as “Geometric deep learning” methods). A full description of these tasks and methods49

can be found in the Appendix section.50

In this manuscript, we find that these methods are ill-suited to the task of molecule assembly.51

Specifically, traditional graph completion methods do not handle spatial information, and gemoetry-52

prediction methods do not handle the different classes of edges well—molecule assembly requires53

learning across fragments, atoms, unknown inter-fragment edges, and known intra-fragment edges.54

We thus developed EdGr, a spatial graph diffusion framework to address the molecule assembly55

problem. EdGr explicitly handles atoms and fragments together in the diffusion pipeline, and ensures56

all atoms within a fragment are moved according to the same roto-translations. We show that EdGr57

stays robust despite high amounts of noise in fragment placement.58

2 Methods59

2.1 Dataset and Setup60

We follow the dataset preparation steps outlined in Powers et al. [2023] and Powers et al. [2025].61

Our dataset comprises approximately 35,000 protein-ligand complexes from the Protein Data Bank62

(PDB). When benchmarking methods on molecule assembly, we measure their ability to reconstruct63

PDB ligands perfectly, as these ligands are known to be druglike and strong binders. We choose this64

metric instead of calculating in silico druglike metrics because metrics such as QED [Bickerton et al.,65

2012] have been shown to be unreliable estimators of the aforementioned properties [Beker et al.,66

2020, Lee et al., 2022, Cai et al., 2022, Li et al., 2024].67

To define the molecule assembly task on this dataset, we take each ligand (i.e., each small molecule)68

and decompose it into fragments (removing covalent bonds that connect the fragments), following69

the procedure and fragment library described in Powers et al. [2023] and Powers et al. [2025]. This70

fragment library contains fragments such that double, triple, and aromatic bonds always occur within a71

fragment rather than between fragments. Our library comprises fragments that are small enough to be72
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treated as inflexible, such as phenyl, methyl, ethyl groups, and benzene rings. Using small fragments73

allows biologists a greater level of control and precision in fragment selection, as opposed to using74

large fragments with some sub-groups that are undesirable. The aforementioned bond types are rigid75

(they cannot be rotated around), so this is consistent with using inflexible fragments. However, one76

could easily extend this framework to predict double and triple bonds as well. In addition, using77

small, inflexible fragments makes molecule assembly much more difficult than using large fragments:78

small fragments mean more fragments in a pocket, yielding a much larger combinatorial search space79

for bonds compared to using fewer, larger fragments.80

2.2 Forward Noising Process81

We note some key differences between EdGr’s forward noising process and that used in standard82

spatial graph diffusion model. Unlike the standard case, where every point is noised following a83

closed form multivariate Gaussian distribution, our model treats fragments as inflexible; every atom84

in a fragment is noised according to the same translation and rotation vector. We add noise to the85

fragment positions as this reflects the uncertainty in fragment placements outputted by fragment86

generation methods.87

Fragment translational noise is sampled the same way as a standard spatial graph diffusion model88

samples atom coordinate noise. For noising a fragment’s orientation, we follow the isotropic Gaussian89

distribution on SO(3) g ∼ IGSO(3)(µ = 0, ϵ2) [Leach et al., 2022, Savjolova, 1985], which has the90

density function f(ω) = 1−cosω
π

∑∞
l=0(2l + 1)e−l(l+1)ϵ2 sin((l+ 1

2 )ω)

sin(ω
2 ) . To noise the bonds, we apply91

discrete diffusion.92

2.3 Model and Training Details93

Preliminaries We define the following: hl are node embeddings at layer l; xl are node coordinate94

embeddings at layer l; s is an indicator variable representing self conditioning; a are predefined edge95

features; ϕ are neural networks; m are known edge embeddings; and n are missing edge embeddings.96

We include pocket atoms in our graph representation, but treat these atoms as static.97

A diagram of the EdGr model can be seen in Figure 2. We have two parallel multi-layer perceptrons98

(MLPs) to learn edge features, one for known edges and one for missing edges. The known and99

missing edge features then get aggregated per node and get passed to node MLPs that update node100

embeddings and positions.101

mij = ϕe(h
l
i, h

l
j , ||xl

i − xl
j ||2, aij) (1)

nij;t = ϕf (h
l
i, h

l
j , ||xl

i − xl
j ||2, aij , nij;t−1) (2)

xl+1
i = xl

i +
1

M − 1

∑
j ̸=i

(xl
i − xl

j)(ϕx(mij) + ϕy(nij)) (3)

mi =
∑

j∈N (i)

mij ;ni =
∑

j∈N (i)

nij (4)

hl+1
i = ϕh(h

l
i,mi, ni) (5)

Equations 1 and 4 are the message passing and aggregation over known intra-fragment edges [Satorras102

et al., 2022]. We add additional candidate inter-fragment edge features nij , which are updated in a103

similar fashion with a different neural network ϕf and receive the previous timestep’s missing edge104

embeddings if self conditioning is applied (Equation 2). Node positions are updated using a sum over105

all relative distances (xl
i − xl

j) [Satorras et al., 2022] multiplied by the sum of the outputs of ϕx and106

ϕy , which take in the known edge embeddings m and missing edge embeddings n, respectively, and107

output scalar values (Equation 3). Both edge features are then aggregated across all neighbors of108

each node N (i) (Equation 4) and passed to a node MLP that updates node features (Equation 5). We109

compute an MSE loss on x and a Binary Cross Entropy Loss on nij .110
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2.4 Inference111

During inference, we ensure that fragments stay rigid during each step of denoising using the Kabsch112

algorithm (Equation 6) [Lawrence et al., 2019] to calculate the optimal rigid body transformation:113

min
T∗
t ,R∗

t

L(Tt, Rt) =
1

2

∑
i∈F

||x̂i,t+1 −R(x̂i,t + T )||2, xt+1 = T ∗
t +R∗

t x̂t (6)

x̂t is the predicted locations of atoms in a fragment F at timestep t. R∗ and T ∗ are the optimal114

rotational and translation vectors, respectively.115

After denoising, we obtain our final atom positions and weights for every potential inter-fragment116

bond within N Ångstroms (N is a cutoff specified as a hyperparameter). To obtain our final list of117

bonds, we sequentially pop off the bond with the highest weight, check if the bond is chemically118

plausible and the associated fragments are not connected, and connect the atoms. Full details can be119

found in Algorithm 1 in the Appendix.120

3 Results121

3.1 Metrics122

To evaluate model performance, we report the following five metrics. The first four metrics quantify123

a model’s effectiveness at predicting bonds between fragments—the main goal of molecule assembly.124

The fifth metric quantifies the extent to which atom positions generated by a model match those in125

the experimentally determined structure.126

Precision & Recall We define precision and recall as follows:127

Precision =
[Predicted Bonds] ∩ [True Bonds]

Predicted Bonds
,Recall =

[Predicted Bonds] ∩ [True Bonds]
True Bonds

(7)

Full Molecule Recovery (FMR) We define “Full Molecule Recovery” as a binary value for each128

molecule: 0 if the recall is less than 1, and 1 otherwise.129

Tanimoto Similarity We calculate the Tanimoto coefficient of our recapitulated molecule and130

the true molecule by first constructing a Morgan fingerprint [Rogers and Hahn, 2010] of both the131

predicted and original molecule. We use RDKit [Landrum, 2013] to generate the Morgan fingerprint,132

and use RDKit’s builtin Tanimoto Similarity function to calculate the Tanimoto coefficient.133

Root Mean Square Deviation (RMSD) We also calculate Root Mean Square Deviation (RMSD)—134

the L2 error between the predicted atom positions and atom positions in the experimentally determined135

structure. For the molecule assembly task, predicted atom positions are much less important than136

predicted bonds, but we include this metric because the results may still be instructive.137

3.2 Experimental Setup138

We split our comparisons table into three types of methods: EdGr, geometric deep learning methods139

(EDM [Hoogeboom et al., 2022] and Equiformer [Liao and Smidt, 2022]), and traditional graph140

completion methods (Graph Convolutions [Kipf and Welling, 2016], Graph Attention [Veličković141

et al., 2017], Minimum Distance heuristic, and Common Neighbors heuristic [Newman, 2001]). We142

train the geometric deep learning methods to denoise the 3D coordinates in an attempt to recover143

original atom positions, and then connect the two closest atoms belonging to distinct fragments. For144

the traditional graph completion methods models, we pass in the molecular graph, treating relative145

positions between the atom coordinates as edge features, and run standard edge prediction. We do146

not report RMSD for traditional graph completion methods methods, as they do not change spatial147

coordinates.148
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In addition, we benchmark the mixed atom and bond diffusion architectures used by many molecule149

generation methods [Vignac et al., 2023, Morehead and Cheng, 2024, Guan et al., 2024, Schneuing150

et al., 2025] (we report these results as “Mixed Diffusion”). These methods denoise atom types,151

coordinates, and bond types simultaneously via separate diffusion branches. We train these models in152

a similar fashion to the geometric deep learning methods, except instead of simply connecting closest153

atoms, we directly use the predicted bonds from these methods.154

3.3 Comparisons155

To evaluate model robustness, we report model performance on different amounts of noise added to156

the fragments. We report differing amounts of translational noise N (µ, σ2), where we test σ = 1Å157

(Table 1), σ = 2Å (Table 2, Appendix), and σ = 3Å (Table 3, Appendix). A fragment’s rotational158

noise is always sampled uniformly from SO(3), meaning that all rotations are equally likely.159

EdGr outperforms all other models tested according to every metric at every level of translational160

noise. EdGr outperforms Mixed Diffusion, where atoms and bonds are generated simultaneously161

but with separate, uncoupled MLPs. After Mixed Diffusion is EDM, which makes uses diffusion162

to iteratively refine atom positions over N diffusion timesteps. Equiformer attempts to predict the163

final denoised position in a one-shot fashion, and does poorly. The traditional graph completion164

methods performed poorly across the board, likely due to their inability to refine coordinate positions,165

leading to incorrect bond predictions. Overall, these results justify the need to develop an architecture166

specifically tailored to molecule assembly—adapting methods from related tasks underperform.167

Therefore, a framework for molecule assembly that can handle fragments, atoms, and different edge168

modalities is necessary for addressing this task.169

Table 1: Comparison of EdGr to other molecule assembly methods, with translational noise of 1Å
standard deviation. Here and in the subsequent tables below, rotational noise is distributed uniformly
on SO(3), and error bars show 95 percent confidence intervals determined using bootstrapping.
RMSD values are not listed for traditional graph completion methods because those methods do not
adjust atom positions.

Topology Geometry
Model Precision ↑ Recall ↑ FMR ↑ Tanimoto ↑ RMSD ↓

EdGr 85 ± 1% 86 ± 1% 64 ± 2% 88 ± 1% 1.09 ± 0.02Å

EDM 70 ± 1% 70 ± 1% 38 ± 2% 71 ± 1% 1.20 ± 0.02Å
Mixed Diffusion 79 ± 1% 79 ± 1% 53 ± 1% 83 ± 1% 1.24 ± 0.02Å

Equiformer 10 ± 1% 11 ± 1% 1 ± 0% 22 ± 0% 4.46 ± 0.03Å

GCN 23 ± 1% 21 ± 1% 2 ± 0% 29 ± 0% —
Graph Attention 7 ± 1% 7 ± 1% 1 ± 0% 21 ± 0% —

Minimum Distance 27 ± 1% 27 ± 1% 2 ± 1% 31 ± 0% —
Common Neighbors 10 ± 1% 10 ± 1% 1 ± 0% 22 ± 0% —

4 Conclusion170

We present EdGr, a graph diffusion-based edge prediction method for molecule assembly that couples171

prediction of additional bonds with adjustment of atom positions. EdGr substantially and consistently172

outperforms previous methods for this task, which is important in drug design.173

The innovations underlying EdGr—explicit supervision of edge likelihoods and coupled diffusion174

over coordinates and connectivity—offer a general framework for spatial graph completion. For175

example, in neural connectomics, one wishes to infer fully connected neural circuits from microscopy176

data in which many connections between neurons are not visible and precise geometries of neurons177

are uncertain [Ding et al., 2025, Marc et al., 2013]. When designing a wireless sensor network, one178

must determine both spatial positions of sensors and connectivity between sensors [Khojasteh et al.,179

2022, Dogan and Brown, 2017]. Our results may thus have implications well beyond molecular180

design.181
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A Technical Appendices and Supplementary Material182

Table 2: Comparison of EdGr to to other molecule assembly methods, with translational noise of 2Å
standard deviation.

Topology Geometry
Model Precision ↑ Recall ↑ FMR ↑ Tanimoto ↑ RMSD ↓

EdGr 76 ± 1% 77 ± 1% 44 ± 2% 74 ± 1% 1.58 ± 0.02Å

EDM 59 ± 1% 60 ± 1% 24 ± 1% 61 ± 1% 1.65 ± 0.03Å
Mixed Diffusion 69 ± 1% 69 ± 1% 34 ± 2% 70 ± 1% 1.72 ± 0.02Å

Equiformer 10 ± 1% 10 ± 1% 1 ± 0% 22 ± 0% 5.25 ± 0.04Å

GCN 11± 1% 11 ± 1% 1 ± 0% 22 ± 0% —
Graph Attention 7 ± 1% 7 ± 0% 1 ± 0% 21 ± 0% —

Minimum Distance 19 ± 1% 19 ± 1% 1 ± 0% 26 ± 0% —
Common Neighbors 8 ± 1% 8 ± 1% 1 ± 0% 21 ± 0% —

Table 3: Comparison of EdGr to to other molecule assembly methods, with translational noise of 3Å
standard deviation.

Topology Geometry
Model Precision ↑ Recall ↑ FMR ↑ Tanimoto ↑ RMSD ↓

EdGr 71 ± 1% 70 ± 1% 34 ± 2% 72 ± 1% 1.96 ± 0.03Å

EDM 52 ± 1% 52 ± 2% 15 ± 1% 51 ± 1% 2.00 ± 0.03Å
Equiformer 10 ± 1% 11 ± 1% 1 ± 0% 22 ± 0% 6.43 ± 0.04Å

GCN 10 ± 1% 10 ± 1% 1 ± 0% 21 ± 0% —
Graph Attention 8 ± 1% 7 ± 1% 1 ± 0% 23 ± 0% —

Minimum Distance 15 ± 1% 15 ± 1% 1 ± 0% 24 ± 0% —
Common Neighbors 8 ± 1% 8 ± 1% 1 ± 0% 21 ± 0% —

A.1 Differences from all-atom molecule generation and fragment linking183

We highlight differences between molecule assembly and two equally important drug design tasks184

that have previously attracted more attention in the machine learning community: all-atom molecule185

generation and fragment linking.186

All-atom molecule generation All-atom molecule generation is defined as follows: given a protein187

pocket, generate a high-affinity ligand, atom by atom. A variety of diffusion and flow-based models188

address this task by sampling atom positions, atom identities (element types) [Schneuing et al.,189

2024, Guan et al., 2023], and bond types [Guan et al., 2024, Morehead and Cheng, 2024, Schneuing190

et al., 2025, Vignac et al., 2023, Dunn and Koes, 2024]. Whereas all-atom molecule generation191

focuses on creating molecules from scratch, molecule assembly focuses on connecting a known set of192

approximately placed fragments in a binding pocket. Moreover, all-atom generation does not handle193

fragments and treats each atom individually.194

Fragment Linking The fragment linking problem is defined as follows: given two fragments195

positioned precisely in a protein pocket, create a chain of atoms to link the fragments together. Multi-196

ple computational approaches have been developed for fragment linking, including database search197

[Sheng and Zhang, 2013], autoregressive modeling [Imrie et al., 2020], variational autoencoders198

[Huang et al., 2022], and diffusion models [Igashov et al., 2024]. Fragment linking involves adding199

linking atoms between immovable fragments, whereas molecule assembly involves adding bonds200

between noisily placed fragments. This means that fragment linking methods are not applicable to201

molecule assembly, as each problem requires generating different modalities (bonds for molecule202

assembly, and atoms for fragment linking).203
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Figure 2: EdGr Architecture Schematic. Node information and edge information are learned through
MLPs, and the model outputs updated positions and edge weights (middle). After repeating for T
denoising steps, the full molecule with final positions and connectivity is produced (right).

A.2 Existing Spatial Graph Completion Approaches204

Two classes of previous developed methods have been applied to knowledge graph completion and205

all-atom generation: traditional graph completion methods and geometric deep learning methods.206

Traditional graph completion methods These methods predict missing edges in a graph, treating207

spatial coordinates as fixed. These methods can be further subdivided into two subclasses: heuristic208

methods and ML-based link prediction methods.209

Heuristic methods predict edges without any learnable parameters, simply relying on properties of210

the graph to make predictions. For example, the Common Neighbors [Newman, 2001] heuristic211

computes the similarity of pairs of nodes and links nodes with the highest similarities, and the212

Minimum Distance heuristic connects nodes that are the closest in physical space.213

ML-based link prediction methods [Kipf and Welling, 2016, Veličković et al., 2017] are commonly214

used for graph completion in the context of knowledge graphs [Zamini et al., 2022, Chaudhri et al.,215

2021]. These methods typically use graph neural networks to learn to impute missing edges in216

incomplete graphs.217

Both subclasses of methods predict new edges in a graph, which fits the bill for molecule assembly.218

However, graphs in traditional graph completion do not have spatial information. As a result, these219

methods are not well-suited to molecule assembly, where nodes exist in 3D space.220

Geometric deep learning methods These methods explicitly predict spatial coordinates of nodes;221

edges can then be inferred based on methods such as Minimum Distance. Geometric deep learning222

methods such as EDM [Hoogeboom et al., 2022] and Equiformer [Liao and Smidt, 2022] are explicitly223

designed for tasks in n-dimensional space, and are popular for molecular applications. The goal of224

these methods is to predict point positions and attributes, and they are able to do so by treating points225

in space as nodes in a graph, with edges inferred via a distance cutoff.226

Recent work on molecular design has included the development of denoising diffusion and flow227

models for generating coordinates and edges simultaneously [Dunn and Koes, 2024, Morehead228

and Cheng, 2024, Guan et al., 2024, Schneuing et al., 2025]. Although these methods generate229

coordinates, elements, and edges simultaneously, they do so via separate diffusion branches, leading230

to a weak coupling between the atom positions and bond predictions. In contrast, our method’s direct231

coupling approach where bond logits feed directly into the updated coordinates outperforms standard232

mixed diffusion on molecules (see Results and Tables 1, 2, 3).233

A.3 Additional Background234

Diffusion Models Denoising Diffusion Probabilistic Models (Diffusion Models, or DDPMs) [Sohl-235

Dickstein et al., 2015, Ho et al., 2020], are generative machine learning models inspired by non-236

equilibrium thermodynamics. They are characterized by two processes: a forward noising process237

which gradually adds Gaussian noise to the original data x via a Markov chain; and a denoising238

process which is parametrized by a neural network ϕ that learns to remove the noise.239
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Figure 3: Examples of molecule assembly results from different methods, showing both a 2D graph
depiction and a 3D rendering of each molecule. From top to bottom, left to right: the original ligand
(a modified version of penicillin, from PDB entry 1LLB); the ligand decomposed into fragments,
with rotational and translational noise added to each fragment; molecule assembly results from EdGr,
EDM, and the Minimum Distance heuristic.

Self Conditioning In diffusion, ϕ learns to either remove the noise ϵ or directly predict x0 in the240

chain of denoising steps. However, any intermediate predictions x̃0 are discarded in the subsequent241

diffusion steps; self conditioning addresses this deficiency [Chen et al., 2023]. Instead of ignoring242

these intermediate predictions, self conditioning takes these predictions and concatenates them to243

the noise at timestep t to provide additional context for the model, yielding much better downstream244

performance [Chen et al., 2023]. To prevent the model from becoming too reliant on the intermediate245

x̃s, we introduce stochasticity with a random variable s ∼ U(0, 1); if s is greater than or equal to a246

preset threshold p, self conditioning is not applied.247

A.4 Final Bond Selection Algorithm248

A.5 Training & Reproducibility Details for EdGr249

We train our models on a single Nvidia GPU for up to 300 epochs (approximately 1 week on an250

Nvidida A40), using the checkpoint with the lowest validation loss for benchmarking. We train all our251

diffusion models with the AdamW Optimizer, with a learning rate of 3× 10−4, with 100 diffusion252

steps, batch normalization, using ReLU activations, with 4 hidden layers, each comprising 128253
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Algorithm 1 Final Bond Selection
Require: List of bonds and model weights for each, ordered from lowest to highest: bonds

1: Initialize QuickFind datatype: q(n=num_fragments)
2: while !q.is_fully_connected() do
3: atom1, atom2 = bonds.pop()
4: f1, f2 = get_fragment(atom1), get_fragment(atom2)
5: if atom1 and atom2 are bonded to hydrogen atoms and !q.is_connected(f1,f2) then
6: Add atom1 and atom2 to final list of bonds
7: q.connect(f1,f2)
8: else
9: continue

10: end if
11: end while
12: return final list of bonds

neurons. EdGr receives atom coordinates, element types encoded as one-hot vectors, and fragment254

membership encoded as a binary vector as input features.255

A.6 Training & Reproducibility Details for Geometric deep learning methods256

EDM and Equiformer receive the same input features as EdGr.257

EDM We use the EDM architecture from the DiffLinker [Igashov et al., 2024] codebase. We use258

the same hyperparameters as EdGr (3× 10−4 learning rate, 4 EGCL layers, each comprising 128259

neurons, AdamW optimizer, ReLU activations, 100 diffusion steps, batch normalization). We treat260

pocket atoms as static and all ligand atoms as flexible. We trained EDM for 300 epochs, saving the261

checkpoint with the lowest validation loss and using that for benchmarking. To generate the final262

inter-fragment bonds, we use Algorithm 1, but instead of using the bonds list ordered by model263

weight, the bonds list is ordered by Euclidean distance.264

Equiformer We use the implementation of Equiformer [Liao and Smidt, 2022] at this GitHub265

repository: https://github.com/lucidrains/equiformer-pytorch. Due to compute constraints—training266

an Equiformer model on a single A100 GPU took over a week, with 1 epoch completing every 2267

hours—we could not train Equiformer for the full 300 epochs and instead trained it for a week on an268

A100 (roughly 80 epochs). We saved the model with the lowest validation loss and used that check-269

point for benchmarking. We used the default hyperparameters from the repository, but modified the270

following: num_edge_tokens = 2, edge_dim = 4, single_headed_kv = True, heads =271

4, dim_head = 8. We generate inter-fragment bonds in the same manner as described in the272

paragraph describing running EDM.273

A.7 Training & Reproducibility Details for Traditional graph completion methods274

As additional baselines, we also tested standard implementations of the Graph Convolution Network275

(GCN) [Kipf and Welling, 2016] and Graph Attention Networks [Veličković et al., 2017] from276

PyTorch Geometric Version 2.7 (https://pytorch-geometric.readthedocs.io/en/latest/index.html). For277

both architectures we create a node embedding model that learned node embeddings based on the278

molecular graphs of all of the provided fragments and a separate link prediction network that took279

pairs of node embeddings and predicted whether they formed an inter-fragment bond. Each model had280

nodes that represented atoms, with node features including a one-hot representation of element type,281

a numerical representation of the fragment identity, the atom’s current valence, the maximum number282

of bonds the atom could form, and a binary flag of whether the atom could form any additional283

bonds. Learning rates of 1 × 10−2, 1 × 10−3, and 1 × 10−4 were tested for both models. Both284

methods were trained for 3 epochs on a single GPU with the default settings for the AdamW optimizer285

(https://arxiv.org/abs/1711.05101), with the model checkpoints at the end of each epoch featuring the286

lowest validation loss across all hyperparameters being used to report metrics. During development,287

additional hyperparameter settings beyond those listed below and longer training times including288

up to 20 epochs were tested, but did not result in significant changes in validation loss or validation289
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Table 4: Ablation study of EdGr, with translational noise of 1Å standard deviation.

Topology Geometry
Model Precision ↑ Recall ↑ FMR ↑ Tanimoto ↑ RMSD ↓

EdGr base model 85 ± 1% 86 ± 1% 64 ± 2% 88 ± 1% 1.09 ± 0.02Å
Remove candidate
edge→node update 63 ± 1% 64 ± 1% 26 ± 1% 63 ± 1% 1.33 ± 0.02Å

VAE 80 ± 1% 79 ± 1% 51 ± 2% 85 ± 1% 2.29 ± 0.02Å
No self conditioning 80 ± 1% 79 ± 1% 52 ± 2% 83 ± 1% 1.28 ± 0.02Å

performance. The results reported correspond to the best results obtained from the combination of290

hyperparameters investigated for these models.291

Running GCN The GCN node embedding network featured 3 GCN layers, with a hidden dimension292

size of 128, and a node embedding output dimension of size 64. The inverted pairwise distances293

between all atoms based on the noised 3D coordinates were used as edge weights for message passing294

in the GCN. The ReLU function was used as the non-linear activation function, and dropout layers295

were placed after the ReLU activation for the first two GCN layers with a dropout rate of 10%. The296

link prediction network featured 3 MLP layers, with ReLU as the activation function and dropout297

layers after the first two MLP layers with a dropout rate of 10%. The input dimension for the link298

prediction network was 128, equal to a pair of node embeddings concatenated together, and the299

hidden dimension was size 64. The output dimension was size 1, for the binary classification task of300

whether a given pair of node embeddings should have an inter-fragment bond.301

Running Graph Attention The Graph Attention node embedding network featured 3 Graph302

Attention layers, with a hidden dimension size of 128, a node embedding output dimension of size 64,303

and 4 attention heads. The pairwise distances between all atoms based on the noised 3D coordinates304

were provided as edge attributes to each node, along with a one-hot encoding representing whether305

a given edge was a known intra-fragment bond or a potential inter-fragment bond. The ReLU306

function was used as the non-linear activation function, and dropout layers were placed after the307

ReLU activation for the first two GCN layers with a dropout rate of 30%. The link prediction network308

featured 3 MLP layers, with ReLU as the activation function and dropout layers after the first two309

MLP layers with a dropout rate of 30%. The input dimension for the link prediction network was 128,310

equal to a pair of node embeddings concatenated together. The output dimension was size 1, for the311

binary classification task of whether a given pair of node embeddings should have an inter-fragment312

bond.313

A.8 Ablation Studies314

In Table 4, we report ablations. Removing self conditioning yielded a drop in performance. This315

was expected, as knowing the model’s confidence in the predicted bonds at the previous timestep316

of denoising should yield an improvement in the following denoising timestep’s predictions. In317

addition, we replace the diffusion trunk of the model with a VAE instead and find that performance318

on Topology tasks is nearly as good as that of diffusion, but the RMSD is much worse.319

Finally, we have previously mentioned the importance of direct edge prediction and the usage of320

these weights to influence node positions. We investigate the importance of the latter in the following321

ablation study. We continue to output logits nij for every candidate edge, but remove these terms322

from the node coordinate and feature updates. To be precise, we remove the ϕy(nij) from Equation323

3 and ni from Equation 5. We call this ablation “Remove candidate edge→node update." We find324

that removing this update while maintaining direct edge prediction results in significantly reduced325

performance, highlighting the importance of using the candidate edge weights nij in the updates to326

the node features hl
i and coordinates xl

i.327
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