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Abstract

A common starting point for drug design is to find small chemical groups or “frag-
ments” that form interactions with distinct subregions in a protein binding pocket.
However, once suitable fragments are identified, assembling these fragments into
a high affinity drug with desirable pharmacological properties is difficult. This
“molecule assembly” task is particularly challenging because, initially, fragment
positions are known only approximately, and the combinatorial space of potential
connectivities is extremely large. Even if the individual fragments form favorable
interactions with regions of the pocket, a poor assembly of these fragments can
drastically compromise the molecule’s druglikeness and hinder its binding affinity.
In this paper, we present EdGr, a new graph diffusion framework tailored for the
molecule assembly task. EdGr can handle both fragments and atoms, and predicted
candidate edge likelihoods influence node position updates during the diffusion
denoising process, allowing connectivity cues to guide spatial movements, and
vice versa. EdGr outperforms previous methods on the molecule assembly task
and stays robust even as confidence in fragment placement decreases.

1 Introduction

Most small molecule drugs work by binding to a specific protein in the body and changing its activity
so that symptoms improve. In order to design a small molecule drug that targets a given protein, one
must find molecules that bind tightly and specifically to this protein while maintaining properties
such as synthesizability, solubility, and permeability. Knowing the 3D structure of the target protein
is useful: it reveals the shape of the binding pocket, which in principle allows us to design molecules
that fit in and interact with the pocket. Yet even for proteins whose structures have been known for
decades, finding molecules that meet all these requirements remains difficult.

A common approach is to first find small chemical groups, known as “fragments,” that interact
favorably with various parts of a target protein binding pocket—we refer to this step as “fragment
generation.” Multiple solutions exist for fragment generation, including experimental screening,
intuitive design by medicinal chemists, and generative Al techniques [Shim and MacKerell Jr, 2011}
Sheng and Zhang, 2013} [Lamoree and Hubbard} 2017, |Carloni et al., [2025, [Powers et al., 2023} 2025|
Neeser et al.| 2025]]. Given a set of fragments and an atom-level representation of a binding pocket,
the subsequent challenge is to assemble the fragments into a larger molecule by adding chemical
(covalent) bonds. One can predict the inter-fragment covalent bonds between fragments, and then use
them to connect the fragments into a complete molecule.

We refer to this task as molecule assembly. Broadly speaking, the overarching goal of molecule
assembly is to use chemical functional groups or fragments to build a high affinity, druglike ligand
for a specific target protein receptor. A druglike ligand is broadly defined as being synthesizable,
permeable, metabolically stable, and nontoxic (among many other properties). Molecule assembly
is difficult in practice because the fragment positions are known only approximately (or not at
all), yielding a large combinatorial space of potential connectivities, each with vastly different
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Figure 1: Molecule Assembly Problem Definition. Given fragments (small chemical groups) scattered
in a protein binding pocket (left), we wish to predict inter-fragment chemical bonds that will connect
them into larger molecule that binds tightly to the pocket (right). The fragments positions and
orientations in the larger molecule differ from those provided initially.

pharmacological properties and binding affinities. In machine learning terms, molecule assembly is a
traditional graph completion problem, where the nodes are atoms, and the edges are bonds. More
specifically, molecule assembly is an example of spatial graph completion, where one must predict
links between nodes in a spatial graph, where nodes have coordinate noise.

No methods directly address spatial graph completion, so we turned to two related tasks: traditional
graph completion and all-atom molecule generation. We adapt methods used for the two aforemen-
tioned tasks for molecule assembly. For traditional graph completion, methods such as GCN and
GraphAttention predict edges with the assumption that spatial coordinates do not change (we refer to
these as “Traditional graph completion” methods). For all-atom molecule generation, methods such
as EDM and Equiformer utilize spatial information to generate atoms and bonds in 3D space (we
refer to these as “Geometric deep learning” methods). A full description of these tasks and methods
can be found in the Appendix section.

In this manuscript, we find that these methods are ill-suited to the task of molecule assembly.
Specifically, traditional graph completion methods do not handle spatial information, and gemoetry-
prediction methods do not handle the different classes of edges well—molecule assembly requires
learning across fragments, atoms, unknown inter-fragment edges, and known intra-fragment edges.
We thus developed EdGr, a spatial graph diffusion framework to address the molecule assembly
problem. EdGr explicitly handles atoms and fragments together in the diffusion pipeline, and ensures
all atoms within a fragment are moved according to the same roto-translations. We show that EdGr
stays robust despite high amounts of noise in fragment placement.

2 Methods

2.1 Dataset and Setup

We follow the dataset preparation steps outlined in |Powers et al.|[2023]] and |Powers et al.| [2025]].
Our dataset comprises approximately 35,000 protein-ligand complexes from the Protein Data Bank

(PDB). When benchmarking methods on molecule assembly, we measure their ability to reconstruct
PDB ligands perfectly, as these ligands are known to be druglike and strong binders. We choose this
metric instead of calculating in silico druglike metrics because metrics such as QED [Bickerton et al.|

2012]] have been shown to be unreliable estimators of the aforementioned properties [Beker et a!.‘

2020, [Lee et all [2022] [Cai et al., 2022} [Li et al.,[2024].

To define the molecule assembly task on this dataset, we take each ligand (i.e., each small molecule)
and decompose it into fragments (removing covalent bonds that connect the fragments), following
the procedure and fragment library described in|Powers et al.|[2023]] and |Powers et al.| [[2025]]. This
fragment library contains fragments such that double, triple, and aromatic bonds always occur within a
fragment rather than between fragments. Our library comprises fragments that are small enough to be
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treated as inflexible, such as phenyl, methyl, ethyl groups, and benzene rings. Using small fragments
allows biologists a greater level of control and precision in fragment selection, as opposed to using
large fragments with some sub-groups that are undesirable. The aforementioned bond types are rigid
(they cannot be rotated around), so this is consistent with using inflexible fragments. However, one
could easily extend this framework to predict double and triple bonds as well. In addition, using
small, inflexible fragments makes molecule assembly much more difficult than using large fragments:
small fragments mean more fragments in a pocket, yielding a much larger combinatorial search space
for bonds compared to using fewer, larger fragments.

2.2 Forward Noising Process

We note some key differences between EdGr’s forward noising process and that used in standard
spatial graph diffusion model. Unlike the standard case, where every point is noised following a
closed form multivariate Gaussian distribution, our model treats fragments as inflexible; every atom
in a fragment is noised according to the same translation and rotation vector. We add noise to the
fragment positions as this reflects the uncertainty in fragment placements outputted by fragment
generation methods.

Fragment translational noise is sampled the same way as a standard spatial graph diffusion model

samples atom coordinate noise. For noising a fragment’s orientation, we follow the isotropic Gaussian

distribution on SO(3) g ~ Igso(g)(u =0, ¢?) [Leach et al., 2022} Savjolova, 1985|], which has the

density function f(w) = 1=98 5~ (9] 4 1)6’1(”1)62 % To noise the bonds, we apply
2

discrete diffusion.

2.3 Model and Training Details

Preliminaries We define the following: h! are node embeddings at layer [; 2! are node coordinate
embeddings at layer [; s is an indicator variable representing self conditioning; a are predefined edge
features; ¢ are neural networks; m are known edge embeddings; and n are missing edge embeddings.
We include pocket atoms in our graph representation, but treat these atoms as static.

A diagram of the EAGr model can be seen in Figure 2] We have two parallel multi-layer perceptrons
(MLPs) to learn edge features, one for known edges and one for missing edges. The known and
missing edge features then get aggregated per node and get passed to node MLPs that update node
embeddings and positions.

mij = ge(h, b, ||z — 25|, aij) (1)
nija = dp(hl, b, (|2 — 24|17, asj,mije—1) )
ot =i+ M1 Z(iﬁi — 25) (e (mij) + dy(nij)) (3)
J#i
JEN(3) JEN(3)
Wi = ¢n (bl mi,ni) (5)

Equations|T|and [ are the message passing and aggregation over known intra-fragment edges [Satorras
et al.,[2022]. We add additional candidate inter-fragment edge features n;;, which are updated in a
similar fashion with a different neural network ¢, and receive the previous timestep’s missing edge
embeddings if self conditioning is applied (Equation[2). Node positions are updated using a sum over
all relative distances (x! — xé) [Satorras et al., [2022] multiplied by the sum of the outputs of ¢, and
¢y, which take in the known edge embeddings /m and missing edge embeddings n, respectively, and
output scalar values (Equation [3). Both edge features are then aggregated across all neighbors of
each node AV (i) (Equation[4) and passed to a node MLP that updates node features (Equation . We

compute an MSE loss on x and a Binary Cross Entropy Loss on n;;.
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2.4 Inference

During inference, we ensure that fragments stay rigid during each step of denoising using the Kabsch
algorithm (Equation [6)) [Lawrence et al.,[2019] to calculate the optimal rigid body transformation:

. 1 . N . .
min LTy, Be) = 3 D &ierr = R(@i + TP 2oy = T; + Ry 2y (©)
¢ ieF

2, is the predicted locations of atoms in a fragment F at timestep ¢. R* and 7™ are the optimal
rotational and translation vectors, respectively.

After denoising, we obtain our final atom positions and weights for every potential inter-fragment
bond within NV Angstroms (N 1is a cutoff specified as a hyperparameter). To obtain our final list of
bonds, we sequentially pop off the bond with the highest weight, check if the bond is chemically
plausible and the associated fragments are not connected, and connect the atoms. Full details can be
found in Algorithm[I]in the Appendix.

3 Results

3.1 Metrics

To evaluate model performance, we report the following five metrics. The first four metrics quantify
a model’s effectiveness at predicting bonds between fragments—the main goal of molecule assembly.
The fifth metric quantifies the extent to which atom positions generated by a model match those in
the experimentally determined structure.

Precision & Recall We define precision and recall as follows:

[Predicted Bonds] N [True Bonds] Recall — [Predicted Bonds] N [True Bonds]

Precision —
recision Predicted Bonds ’ True Bonds

(N

Full Molecule Recovery (FMR) We define “Full Molecule Recovery” as a binary value for each
molecule: O if the recall is less than 1, and 1 otherwise.

Tanimoto Similarity We calculate the Tanimoto coefficient of our recapitulated molecule and
the true molecule by first constructing a Morgan fingerprint [Rogers and Hahn, |2010] of both the
predicted and original molecule. We use RDKit [Landruml| 2013] to generate the Morgan fingerprint,
and use RDK:it’s builtin Tanimoto Similarity function to calculate the Tanimoto coefficient.

Root Mean Square Deviation (RMSD) We also calculate Root Mean Square Deviation (RMSD)—
the L2 error between the predicted atom positions and atom positions in the experimentally determined
structure. For the molecule assembly task, predicted atom positions are much less important than
predicted bonds, but we include this metric because the results may still be instructive.

3.2 Experimental Setup

We split our comparisons table into three types of methods: EdGr, geometric deep learning methods
(EDM [Hoogeboom et al., [2022]] and Equiformer [Liao and Smidt, [2022]]), and traditional graph
completion methods (Graph Convolutions [Kipf and Welling) 2016]], Graph Attention [Velickovic
et al.,|2017]], Minimum Distance heuristic, and Common Neighbors heuristic [Newman), |[2001]]). We
train the geometric deep learning methods to denoise the 3D coordinates in an attempt to recover
original atom positions, and then connect the two closest atoms belonging to distinct fragments. For
the traditional graph completion methods models, we pass in the molecular graph, treating relative
positions between the atom coordinates as edge features, and run standard edge prediction. We do
not report RMSD for traditional graph completion methods methods, as they do not change spatial
coordinates.
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In addition, we benchmark the mixed atom and bond diffusion architectures used by many molecule
generation methods [[Vignac et al.||2023, [Morehead and Cheng, [2024, |Guan et al., 2024, Schneuing
et al., 2025]] (we report these results as “Mixed Diffusion”). These methods denoise atom types,
coordinates, and bond types simultaneously via separate diffusion branches. We train these models in
a similar fashion to the geometric deep learning methods, except instead of simply connecting closest
atoms, we directly use the predicted bonds from these methods.

3.3 Comparisons

To evaluate model robustness, we report model performance on different amounts of noise added to
the fragments. We report differing amounts of translational noise N'(y, 0%), where we test o = 1A
(Table , o=2A (Table Appendix), and 0 = 3A (Table Appendix). A fragment’s rotational
noise is always sampled uniformly from SO(3), meaning that all rotations are equally likely.

EdGr outperforms all other models tested according to every metric at every level of translational
noise. EdGr outperforms Mixed Diffusion, where atoms and bonds are generated simultaneously
but with separate, uncoupled MLPs. After Mixed Diffusion is EDM, which makes uses diffusion
to iteratively refine atom positions over N diffusion timesteps. Equiformer attempts to predict the
final denoised position in a one-shot fashion, and does poorly. The traditional graph completion
methods performed poorly across the board, likely due to their inability to refine coordinate positions,
leading to incorrect bond predictions. Overall, these results justify the need to develop an architecture
specifically tailored to molecule assembly—adapting methods from related tasks underperform.
Therefore, a framework for molecule assembly that can handle fragments, atoms, and different edge
modalities is necessary for addressing this task.

Table 1: Comparison of EdGr to other molecule assembly methods, with translational noise of 1A
standard deviation. Here and in the subsequent tables below, rotational noise is distributed uniformly
on SO(3), and error bars show 95 percent confidence intervals determined using bootstrapping.
RMSD values are not listed for traditional graph completion methods because those methods do not
adjust atom positions.

Topology Geometry
Model Precision T Recall 1 FMR 1  Tanimoto 1 RMSD |
EdGr 85+1% 86+1% 64+2% 88+1% | 1.09+0.02A
EDM 70+1% 70+1% 384+2% 71+1% | 1.20+0.02A
Mixed Diffusion 19+1% 79+1% 53+1% 83+1% | 1.24+0.02A
Equiformer 10+ 1% 1M+1% 1+£0% 22+0% | 446+ 0.03A
GCN 23+1% 21+£1% 2+0% 29 + 0% —
Graph Attention 7+1% 7+1% 1+ 0% 21 £ 0% —
Minimum Distance 27+ 1% 27+£1% 24+1% 31 £ 0% —
Common Neighbors | 10+ 1% 10£1% 1+0% 22 £ 0% —

4 Conclusion

We present EdGr, a graph diffusion-based edge prediction method for molecule assembly that couples
prediction of additional bonds with adjustment of atom positions. EdGr substantially and consistently
outperforms previous methods for this task, which is important in drug design.

The innovations underlying EdGr—explicit supervision of edge likelihoods and coupled diffusion
over coordinates and connectivity—offer a general framework for spatial graph completion. For
example, in neural connectomics, one wishes to infer fully connected neural circuits from microscopy
data in which many connections between neurons are not visible and precise geometries of neurons
are uncertain [Ding et al.,|2025| Marc et al.| 2013[]. When designing a wireless sensor network, one
must determine both spatial positions of sensors and connectivity between sensors [Khojasteh et al.,
2022} [Dogan and Brownl [2017]]. Our results may thus have implications well beyond molecular
design.



182

183

184
185
186

187
188
189
190
191
192
193
194

196
197
198
199
200
201
202
203

A Technical Appendices and Supplementary Material

Table 2: Comparison of EdGr to to other molecule assembly methods, with translational noise of 2A
standard deviation.

Topology Geometry
Model Precision T  Recall 1 FMR 1  Tanimoto 1 RMSD |
EdGr 76+1% 77+1% 44+£2% 74+1% | 1.58+0.02A
EDM 59+1% 60+1% 244+1% 61 +1% | 1.65=+0.03A
Mixed Diffusion 69+1% 69+1% 344+2% T0+£1% | 1.72+0.02A
Equiformer 10+ 1% 100+1% 1+£0% 22+ 0% | 5.25+0.04A
GCN 11+ 1% 11+£1% 1+0% 22 + 0% —
Graph Attention 7+ 1% 7+ 0% 1+ 0% 21 £ 0% —
Minimum Distance 19+ 1% 9+1% 1£0% 26 + 0% —
Common Neighbors 8+ 1% 8+ 1% 1+ 0% 21 £ 0% —

Table 3: Comparison of EdGr to to other molecule assembly methods, with translational noise of 3A
standard deviation.

Topology Geometry
Model Precision T Recall 1 FMR 1  Tanimoto 1 RMSD |
EdGr M+1% 70+£1% 34+2% 72+1% | 1.96+ 0.03A
EDM 5241% 5242% 154+1% 51+1% | 2.00+0.03A
Equiformer 0+£1% 11+1% 1+0% 22+ 0% | 643 +0.04A
GCN 0+£1% 10+£1% 1+0% 21 £ 0% —
Graph Attention 8+ 1% 7+1% 1+ 0% 23 £ 0% —
Minimum Distance 15+ 1% 15+ 1% 1+£0% 24 4+ 0% —
Common Neighbors 8+ 1% 8+ 1% 1 +0% 21 £ 0% —

A.1 Differences from all-atom molecule generation and fragment linking

We highlight differences between molecule assembly and two equally important drug design tasks
that have previously attracted more attention in the machine learning community: all-atom molecule
generation and fragment linking.

All-atom molecule generation All-atom molecule generation is defined as follows: given a protein
pocket, generate a high-affinity ligand, atom by atom. A variety of diffusion and flow-based models
address this task by sampling atom positions, atom identities (element types) [Schneuing et al.,
2024 (Guan et al.,2023]], and bond types [Guan et al.| 2024, Morehead and Cheng, 2024} |Schneuing
et al.l [2025] [Vignac et al 2023, [Dunn and Koes|, 2024]. Whereas all-atom molecule generation
focuses on creating molecules from scratch, molecule assembly focuses on connecting a known set of
approximately placed fragments in a binding pocket. Moreover, all-atom generation does not handle
fragments and treats each atom individually.

Fragment Linking The fragment linking problem is defined as follows: given two fragments
positioned precisely in a protein pocket, create a chain of atoms to link the fragments together. Multi-
ple computational approaches have been developed for fragment linking, including database search
[Sheng and Zhang| [2013]], autoregressive modeling [Imrie et al.l [2020]], variational autoencoders
[Huang et al., 2022], and diffusion models [Igashov et al.l|2024||. Fragment linking involves adding
linking atoms between immovable fragments, whereas molecule assembly involves adding bonds
between noisily placed fragments. This means that fragment linking methods are not applicable to
molecule assembly, as each problem requires generating different modalities (bonds for molecule
assembly, and atoms for fragment linking).
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Figure 2: EdGr Architecture Schematic. Node information and edge information are learned through
MLPs, and the model outputs updated positions and edge weights (middle). After repeating for T
denoising steps, the full molecule with final positions and connectivity is produced (right).

A.2 Existing Spatial Graph Completion Approaches

Two classes of previous developed methods have been applied to knowledge graph completion and
all-atom generation: traditional graph completion methods and geometric deep learning methods.

Traditional graph completion methods These methods predict missing edges in a graph, treating
spatial coordinates as fixed. These methods can be further subdivided into two subclasses: heuristic
methods and ML-based link prediction methods.

Heuristic methods predict edges without any learnable parameters, simply relying on properties of
the graph to make predictions. For example, the Common Neighbors [Newman) [2001]] heuristic
computes the similarity of pairs of nodes and links nodes with the highest similarities, and the
Minimum Distance heuristic connects nodes that are the closest in physical space.

ML-based link prediction methods [Kipf and Welling}, 2016 [Velickovi¢ et al., [2017]] are commonly
used for graph completion in the context of knowledge graphs [Zamini et al.| 2022} |Chaudhri et al.,
2021]]. These methods typically use graph neural networks to learn to impute missing edges in
incomplete graphs.

Both subclasses of methods predict new edges in a graph, which fits the bill for molecule assembly.
However, graphs in traditional graph completion do not have spatial information. As a result, these
methods are not well-suited to molecule assembly, where nodes exist in 3D space.

Geometric deep learning methods These methods explicitly predict spatial coordinates of nodes;
edges can then be inferred based on methods such as Minimum Distance. Geometric deep learning
methods such as EDM [Hoogeboom et al.l[2022]] and Equiformer [Liao and Smidt|2022] are explicitly
designed for tasks in n-dimensional space, and are popular for molecular applications. The goal of
these methods is to predict point positions and attributes, and they are able to do so by treating points
in space as nodes in a graph, with edges inferred via a distance cutoff.

Recent work on molecular design has included the development of denoising diffusion and flow
models for generating coordinates and edges simultaneously [Dunn and Koes, |2024] Morehead
and Chengl 2024} |Guan et al., 2024, [Schneuing et al., [2025]]. Although these methods generate
coordinates, elements, and edges simultaneously, they do so via separate diffusion branches, leading
to a weak coupling between the atom positions and bond predictions. In contrast, our method’s direct
coupling approach where bond logits feed directly into the updated coordinates outperforms standard
mixed diffusion on molecules (see Results and Tables|T} 2} B).

A.3 Additional Background

Diffusion Models Denoising Diffusion Probabilistic Models (Diffusion Models, or DDPMs) [Sohl+
Dickstein et al., 2015 Ho et al., [2020], are generative machine learning models inspired by non-
equilibrium thermodynamics. They are characterized by two processes: a forward noising process
which gradually adds Gaussian noise to the original data = via a Markov chain; and a denoising
process which is parametrized by a neural network ¢ that learns to remove the noise.
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Provided as input for molecule assembly

Figure 3: Examples of molecule assembly results from different methods, showing both a 2D graph
depiction and a 3D rendering of each molecule. From top to bottom, left to right: the original ligand
(a modified version of penicillin, from PDB entry 1LLB); the ligand decomposed into fragments,
with rotational and translational noise added to each fragment; molecule assembly results from EdGr,
EDM, and the Minimum Distance heuristic.

Self Conditioning In diffusion, ¢ learns to either remove the noise € or directly predict x¢ in the
chain of denoising steps. However, any intermediate predictions Z( are discarded in the subsequent
diffusion steps; self conditioning addresses this deficiency [2023]. Instead of ignoring
these intermediate predictions, self conditioning takes these predictions and concatenates them to
the noise at timestep ¢ to provide additional context for the model, yielding much better downstream
performance 2023]]. To prevent the model from becoming too reliant on the intermediate
Zs, we introduce stochasticity with a random variable s ~ U(0, 1); if s is greater than or equal to a
preset threshold p, self conditioning is not applied.

A.4 Final Bond Selection Algorithm
A.5 Training & Reproducibility Details for EdGr

We train our models on a single Nvidia GPU for up to 300 epochs (approximately 1 week on an
Nvidida A40), using the checkpoint with the lowest validation loss for benchmarking. We train all our
diffusion models with the AdamW Optimizer, with a learning rate of 3 x 10~4, with 100 diffusion
steps, batch normalization, using ReLU activations, with 4 hidden layers, each comprising 128
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Algorithm 1 Final Bond Selection

Require: List of bonds and model weights for each, ordered from lowest to highest: bonds
1: Initialize QuickFind datatype: q(n=num_fragments)
2: while !'q.is_fully_connected() do
3: atoml, atom2 = bonds.pop()

4: f1, f2 = get_fragment(atoml), get_fragment (atom2)
5: if atom1 and atom?2 are bonded to hydrogen atoms and !q.is_connected(f1,£2) then
6: Add atom1 and atom? to final list of bonds
7: q.connect(f1,£2)
8: else
9: continue
10: end if

11: end while
12: return final list of bonds

neurons. EdGr receives atom coordinates, element types encoded as one-hot vectors, and fragment
membership encoded as a binary vector as input features.

A.6 Training & Reproducibility Details for Geometric deep learning methods

EDM and Equiformer receive the same input features as EdGr.

EDM We use the EDM architecture from the DiffLinker [Igashov et al., 2024]] codebase. We use
the same hyperparameters as EdGr (3 x 10~* learning rate, 4 EGCL layers, each comprising 128
neurons, AdamW optimizer, ReLU activations, 100 diffusion steps, batch normalization). We treat
pocket atoms as static and all ligand atoms as flexible. We trained EDM for 300 epochs, saving the
checkpoint with the lowest validation loss and using that for benchmarking. To generate the final
inter-fragment bonds, we use Algorithm [I] but instead of using the bonds list ordered by model
weight, the bonds list is ordered by Euclidean distance.

Equiformer We use the implementation of Equiformer [Liao and Smidt, 2022] at this GitHub
repository: https://github.com/lucidrains/equiformer-pytorch. Due to compute constraints—training
an Equiformer model on a single A100 GPU took over a week, with 1 epoch completing every 2
hours—we could not train Equiformer for the full 300 epochs and instead trained it for a week on an
A100 (roughly 80 epochs). We saved the model with the lowest validation loss and used that check-
point for benchmarking. We used the default hyperparameters from the repository, but modified the
following: num_edge_tokens = 2, edge_dim = 4, single_headed_kv = True, heads =
4, dim_head = 8. We generate inter-fragment bonds in the same manner as described in the
paragraph describing running EDM.

A.7 Training & Reproducibility Details for Traditional graph completion methods

As additional baselines, we also tested standard implementations of the Graph Convolution Network
(GCN) [Kipf and Welling, 2016[] and Graph Attention Networks [Velickovi¢ et al., |2017] from
PyTorch Geometric Version 2.7 (https://pytorch-geometric.readthedocs.io/en/latest/index.html). For
both architectures we create a node embedding model that learned node embeddings based on the
molecular graphs of all of the provided fragments and a separate link prediction network that took
pairs of node embeddings and predicted whether they formed an inter-fragment bond. Each model had
nodes that represented atoms, with node features including a one-hot representation of element type,
a numerical representation of the fragment identity, the atom’s current valence, the maximum number
of bonds the atom could form, and a binary flag of whether the atom could form any additional
bonds. Learning rates of 1 X 1072, 1 x 1073, and 1 x 10~* were tested for both models. Both
methods were trained for 3 epochs on a single GPU with the default settings for the AdamW optimizer
(https://arxiv.org/abs/1711.05101), with the model checkpoints at the end of each epoch featuring the
lowest validation loss across all hyperparameters being used to report metrics. During development,
additional hyperparameter settings beyond those listed below and longer training times including
up to 20 epochs were tested, but did not result in significant changes in validation loss or validation
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Table 4: Ablation study of EdGr, with translational noise of 1A standard deviation.

Topology Geometry
Model Precision? Recallt FMR1  Tanimoto 1 RMSD |
EdGr base model 85+1% 86+1% 64+2% 88+1% 1.09 + 0.02A

Remove candidate 63+1% 64+1% 26+1% 63+1% | 1.33 +0.02A
edge—node update

VAE 80+1% 79+1% 51+2% 85+1% | 2.29+0.02A
No self conditioning | 80+ 1% 79+1% 52+2% 83+ 1% 1.28 + 0.02A

performance. The results reported correspond to the best results obtained from the combination of
hyperparameters investigated for these models.

Running GCN  The GCN node embedding network featured 3 GCN layers, with a hidden dimension
size of 128, and a node embedding output dimension of size 64. The inverted pairwise distances
between all atoms based on the noised 3D coordinates were used as edge weights for message passing
in the GCN. The ReLU function was used as the non-linear activation function, and dropout layers
were placed after the ReLU activation for the first two GCN layers with a dropout rate of 10%. The
link prediction network featured 3 MLP layers, with ReLU as the activation function and dropout
layers after the first two MLP layers with a dropout rate of 10%. The input dimension for the link
prediction network was 128, equal to a pair of node embeddings concatenated together, and the
hidden dimension was size 64. The output dimension was size 1, for the binary classification task of
whether a given pair of node embeddings should have an inter-fragment bond.

Running Graph Attention The Graph Attention node embedding network featured 3 Graph
Attention layers, with a hidden dimension size of 128, a node embedding output dimension of size 64,
and 4 attention heads. The pairwise distances between all atoms based on the noised 3D coordinates
were provided as edge attributes to each node, along with a one-hot encoding representing whether
a given edge was a known intra-fragment bond or a potential inter-fragment bond. The ReLU
function was used as the non-linear activation function, and dropout layers were placed after the
ReLU activation for the first two GCN layers with a dropout rate of 30%. The link prediction network
featured 3 MLP layers, with ReLU as the activation function and dropout layers after the first two
MLP layers with a dropout rate of 30%. The input dimension for the link prediction network was 128,
equal to a pair of node embeddings concatenated together. The output dimension was size 1, for the
binary classification task of whether a given pair of node embeddings should have an inter-fragment
bond.

A.8 Ablation Studies

In Table [d] we report ablations. Removing self conditioning yielded a drop in performance. This
was expected, as knowing the model’s confidence in the predicted bonds at the previous timestep
of denoising should yield an improvement in the following denoising timestep’s predictions. In
addition, we replace the diffusion trunk of the model with a VAE instead and find that performance
on Topology tasks is nearly as good as that of diffusion, but the RMSD is much worse.

Finally, we have previously mentioned the importance of direct edge prediction and the usage of
these weights to influence node positions. We investigate the importance of the latter in the following
ablation study. We continue to output logits n;; for every candidate edge, but remove these terms
from the node coordinate and feature updates. To be precise, we remove the ¢, (n;;) from Equation
[land n; from Equation[5} We call this ablation “Remove candidate edge—node update.” We find
that removing this update while maintaining direct edge prediction results in significantly reduced
performance, highlighting the importance of using the candidate edge weights n;; in the updates to
the node features h! and coordinates z!.
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