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Abstract

Protein mutation effect prediction has advanced several fields, from designing
enzymes to forecasting viral evolution. These models are typically trained on
sequence data, structural data, or a combination of both. Sequence-based models
learn constraints governing protein structure and function from sequence data
and fall broadly into two categories: alignment-based models and protein lan-
guage models (PLMs). We provide the first detailed comparison of modeling
approaches specifically for viruses. We curated a dataset of over 59 standardized vi-
ral deep mutational scanning assays and assessed the relative performance of three
alignment-based models (PSSM, EVmutation, and EVE), three PLMs (ESM-1v,
Tranception, and VESPA), and two versions of SaProt, a structurally-aware protein
language model (SaProt-AF2 and SaProt-PDB). Interestingly, for alignment-based
models, deeper multiple sequence alignments, including more diverse sequences,
often led to worse performance. On the other hand, PLMs tended to perform better
as the size of the training database increased. Overall, alignment-based models
outperformed sequence-only PLMs, while the best alignment-based model (EVE)
performed on par with the best PLM (SaProt-PDB). Our findings suggest that
modeling strategies that are effective for other taxa may not translate directly to
viruses, likely due to the limited number of viral sequences used for training many
PLMs. However, incorporating additional virus-specific data into PLMs could
enhance their predictive power for viral mutation effects. Improvements in viral
mutational effect prediction is crucial not only for understanding viral evolution
but also for the design of vaccines and antibody therapeutics.

1 Introduction

Predicting the functional impact of protein mutations is critical for a wide range of biological
applications, including identifying human disease variants (Frazer et al., 2021), designing enzymes
(Lu et al., 2022; Sumida et al., 2024), and forecasting viral evolution (Thadani et al., 2023; Youssef
et al., 2024). With advances in machine learning, computational methods for mutation effect
prediction have seen significant improvements, offering faster and more scalable alternatives to
traditional experimental methods. These models can leverage protein sequence data, structural
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data, or a combination of both. Sequence models fall into two primary categories: alignment-based
models and protein language models (PLMs). Alignment-based models use evolutionary information
from multiple sequence alignments (MSAs) to predict the impact of mutations (Hopf et al., 2017;
Frazer et al., 2021; Laine et al., 2019). Alternatively, PLMs leverage deep learning techniques to
capture patterns and relationships between residues by training on large databases of sequences,
without relying on MSAs (Alley et al., 2019; Elnaggar et al., 2021; Yang et al., 2024; Lin et al.,
2022; Meier et al., 2021a; Rives et al., 2021; Jumper et al., 2021; Marquet et al., 2022; Notin et al.,
2022). More recently, structurally-aware protein language models, such as SaProt (Su et al., 2023),
that incorporate both protein structural information and amino acid sequences have yielded higher
predictive performance.

Given the rapid emergence of new models for predicting the effects of mutations, benchmarks such as
ProteinGym (Notin et al., 2023) were curated to aid in the comprehensive evaluation and comparison
of these models. Conclusions from such comparisons revealed that across proteins from diverse taxa,
PLMs often outperform alignment-based models. However, this trend does not hold true for viruses.
Viral genomes often have disproportionately fewer and less diverse sequences for training, which can
limit the effectiveness of PLMs that rely on large datasets for optimal performance. Viral proteins
also contain unique biophysical features, with lower protein stability, loosely packed cores, and an
abundance of short disordered segments and coil residues (Tokuriki et al., 2009). These adaptations
facilitate an increased structural flexibility, enabling diverse interactions with varying host proteins
across a broad host range and avoidance of host immune response. They may also compensate for
the deleterious effects of mutations that arise due to the abnormally high mutation rate of viruses or
the overlapping reading frames required by the unusually compact genomes of RNA viruses, which
mean single mutations impact multiple proteins. Conversely, rather than learning across the protein
universe, we have previously shown that alignment-based methods trained on single viral families are
successful for viral antibody escape prediction (Thadani et al., 2023) and vaccine evaluation (Youssef
et al., 2024), effectively predicting SARS-CoV-2 evolution from pre-pandemic information. Thus, it
remains unclear which modeling approaches are most effective for predicting viral mutation effects,
where the biological and evolutionary constraints may differ from those observed in other taxa.

We present the first comprehensive evaluation of mutation effect prediction models for viruses. We
assessed three alignment-based models, three PLMs, and two structurally-aware PLMs. We curated a
collection of 59 standardized viral deep mutational scanning (DMS) assays measuring expression,
host receptor binding, or infectivity. The viruses included are relevant for vaccine design (e.g.,
SARS-CoV-2 and other sarbecoviruses, seasonal and pandemic Flu, and pandemic-threat Lassa and
Nipah viruses) as well as for viral vector design (e.g., AAV). We found that while deeper sequence
alignments do not consistently improve the performance of alignment-based models, PLMs tend
to benefit from larger training databases. Importantly, structure-aware PLMs outperformed other
PLMs despite more limited viral representation, suggesting that incorporating structural information
is useful for viral mutation effect prediction. These findings challenge existing assumptions about
optimal modeling strategies and highlight the potential for further improvements by tailoring PLMs
to virus-specific data. The information gained from this work can inform the development of next-
generation models for viral mutation effect prediction that can facilitate pandemic protection efforts,
aiding in the surveillance of pandemic variants and the design and testing of variant-proof vaccines
as well as de-immunized and targeted viral vectors.

2 Methods

We curated and standardized a set of 59 viral DMSs (more than doubling the number of viral datasets
in ProteinGym) to evaluate eight models, which were selected to span differing modeling approaches
and training on diverse sequence datasets. For alignment-based methods, we tested three models:
position-specific scoring matrix (PSSM), EVmutation (Hopf et al., 2017), and EVE (Frazer et al.,
2021). PSSM assumes each position in the protein evolves independently and assigns a prediction
score for each mutation dependent on its frequency in the alignment. In addition to capturing position-
specific frequencies, EVmutation infers pairwise residue dependencies and can therefore account for
epistatic ineractions (Hopf et al., 2017). Meanwhile, EVE captures higher order interactions by using
a variational autoencoder architecture (Frazer et al., 2021). For these methods, we used three different
sequence datasets for alignment generation: UniRef100, a non-redundant protein sequence database;
UniRef90, a 90% identity-clustered version of UniRef100; and UniRef100+BFD+Mgnify which
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combines UniRef100 with the Big Fantastic Database (BFD) and the Mgnify database. The BFD
integrates sequences from UniProt (Swiss-Prot and TrEMBL) (uni, 2021), Metaclust (Steinegger
& Söding, 2018), and the Soil and Marine Eukaryotic Reference Catalog (Steinegger et al., 2019).
Mgnify includes proteins from metagenomic assemblies (Richardson et al., 2022). We generated
alignments with six different length-normalized bit scores: 0.5, 0.3, 0.1, 0.05, 0.03, and 0.01 bits
per residue. To mitigate redundancy, sequences in the MSA were clustered at 99% identity, with
each sequence within a cluster assigned a weighted contribution equal to the inverse of the cluster
size. A challenge during the process of fitting alignment-based models was the memory required
to query large sequence databases. Some models encountered memory limitations that prevented
training on the largest alignments (Supp Table S2). This highlights the computational intensity of
alignment-based approaches, particularly when using comprehensive databases like BFD and Mgnify,
with 2.1 billion and 2.4 billion sequences, respectively.

For PLMs, we evaluated Tranception (without MSA retrieval) (Notin et al., 2022), ESM-1v (Meier
et al., 2021b) and VESPA (Marquet et al., 2022). Tranception is a autoregressive PLM trained on
UniRef100. ESM-1v has a Transformer encoder architecture and was trained on UniRef90. VESPA
combines per-residue conservation prediction with the embeddings from ProtT5 (Elnaggar et al.,
2021), a PLM with T5 architecture trained first on BFD and then finetuned on UniRef50.

We also evaluate a structure-aware protein language model, SaProt (Su et al., 2023), which employs the
same architecture as ESM- 2 (trained on UniRef50) but expands the embedding layer to encompasses
441 structurally-aware tokens instead of the original 20 amino acid residue tokens. We evaluated
two versions of SaProt: SaProt-AF2 which was trained on the AlphaFold2 database compromising
of approx. 40 million predicted structures (without eukaryotic viruses, though including phages),
and SaProt-PDB which continues pretraining of the SaProt-AF2 model on the 60,000 experimentally
derived structures from the PDB. We use the ProteinGym benchmark(Notin et al., 2023) to extrapolate
the results of the models tested here to the over 50 alignment-based, protein language model, hybrid,
and inverse folding models evaluated previously on a more limited set of viral assays.

3 Results

Using the ProteinGym benchmark (Notin et al., 2023), which evaluated over 50 protein fitness
models across 250+ DMS assays, we observed a clear trend: PLMs consistently outperformed other
models across nearly all taxa, with one notable exception—viruses (Fig 1, Supp Table S1). For viral
proteins, alignment-based models frequently achieved better performance than PLMs, as measured by
Spearman correlation with DMS data. This divergence highlights a critical difference in the predictive
power of PLMs when applied to viral proteins. To this end, we sought to investigate the tradeoffs of
alignment-based models and PLMs for viral mutation effect prediction.

Figure 1: Protein language models have higher performance across all taxa except for eukaryotic viruses. Each
point represents the average correlation across 250 DMS assays for each of the 50 fitness models in ProteinGym,
labeled with their model type. Viral performance is on the dataset provided by ProteinGym which is a more
limited set of DMSs than available in this paper. Lines denote maximum Spearman correlation per model type
for each taxa. For details of included models see Supp Table S1. Notably, this benchmark excludes SaProt-PDB.
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3.1 Alignment-based model

For each protein in our newly curated viral benchmark, we trained three alignment-based mod-
els—PSSM, EVmutation, and EVE. We used the EVcouplings pipeline (Hopf et al., 2019) to generate
MSAs from three databases (Uniref90, Uniref100, and Uniref100+BFD+Mgnify) and to infer PSSM
and EVmutation scores. For training the EVE models, we selected the alignment for each protein that
maximized both the effective number of sequences (Neff) and percent coverage.

Our analysis revealed that, although alignment depth varied across the different sequence databases,
model performance remained largely consistent (Supp Fig S1). Note that despite adequate perfor-
mance when compared to prediction from DMS assays, almost none of the evaluated viral proteins
have sufficient sequence diversity to accurately predict structural contacts from EVcouplings (Supp
Fig S2), as can commonly be done for non-viral proteins. EVE outperformed both PSSM and
EVmutation across most assays (Fig 2A, Supp Fig S3), consistent with previous findings that EVE’s
probabilistic approach offers better predictive accuracy than simpler alignment-based models Frazer
et al. (2021); Riesselman et al. (2018); Thadani et al. (2023).

We next sought to assess whether alignment depth correlated with model performance. Overall,
no consistent trend was observed between Neff and performance across all proteins (Supp Fig
S4). To determine if this relationship held true for individual proteins—i.e., whether increasing
alignment depth specifically improves performance—we employed EVmutation models to analyze
the correlation between Neff and model performance on a per-protein basis. For some proteins,
increasing alignment depth improved performance (resulting in positive slopes between alignment
depth and correlation with DMS), while it decreases performance for other proteins (negative slopes;
Fig 2B-C, Supp Fig S5). Interestingly, our results showed a general trend where increasing the size of
the MSA was most often associated with decreased performance (Fig 2D). This effect was particularly
pronounced in the PSSM models compared to EVmutation models (Supp Fig S6). This suggests that
after a certain threshold, adding more sequences introduces noise or redundant information that can
negatively impact model predictions as mutations are seen on vastly different background sequences,
that are likely to be under different functional constraints.

3.2 Protein language models

Existing PLMs have underperformed for viruses when compared to other taxa or to alignment-based
methods (Fig 1). This discrepancy can largely be attributed to the composition of the training
data. Most PLMs are trained on subsets of UniRef, such as UniRef90 or UniRef50, which contain
disproportionately low numbers of viral sequences, 0.6% and 0.9% respectively (Fig 3A). Sequence
counts drop drastically between UniRef100 and UniRef90, severely limiting the viral diversity
available for training. For example, while UniRef100 contains over 6,000 paramyxovirus fusion
protein sequences, less than 10% of these remain in UniRef90—despite UniRef90 being roughly half
the size of UniRef100 overall (Fig 3A). This stark reduction in viral sequence diversity might explain
why PLMs underperform for viruses and suggests that additional viral-specific training data could
improve their predictive accuracy.

To examine the impact of training data on PLM performance across viruses, we evaluated our newly
compiled viral DMS datasets using three sequence-only PLMs: ESM-1v (trained on UniRef90),
Tranception (trained on UniRef100 without MSA retrieval), and VESPA (trained on BFD and
UniRef50). Notably, some PLMs such as CARP (Yang et al., 2024) were trained on Uniref50, but
were excluded due to their generally low performance on viruses (Table S1). Our analysis revealed
that sequence scale of the training dataset significantly improves PLM performance for viruses, with
ESM-1v performing markedly worse on viruses compared to other taxa (Fig 3B). However, for
viruses with higher effective sequence numbers (Neff), using clustering at 99% sequence identity,
such as Flu and HIV, the detrimental effect of training on UniRef90 was less pronounced. Moreover,
the inclusion of BFD in the training data provided the greatest performance boost for phages (Supp
Fig S7), which are overrepresented in metagenomic sequencing compared to eukaryotic viruses.
Remarkably, inverse folding models also perform particularly well for phages (Fig 1), likely due
to the nature of the tested datasets that focused on stability assays. These findings highlight the
importance of training PLMs on diverse and comprehensive datasets, particularly for viruses, where
sequence representation can vary significantly across databases.
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Figure 2: EVE outperforms other alignment-based models (EVmutation and PSSM) across the 59 viral DMS
datasets measuring phenotypes reflective of fitness. A. Spearman rank correlation between alignment-based
model score and DMS score for each of the viral proteins. B. EVmutation models for Influenza A virus
polymerase basic 1 (PB1) improve in performance as Neff increases. Each point is a Spearman correlation
between an EVmutation model trained on an alignments generated using one of six different bitscores and three
different sequence databases. C. EVmutation models for Escherichia polymerase protein have worse performance
as Neff increases. D. Increasing alignment depth results in worse performance for most viral proteins, especially
those with greater maximum Neff. Each point represents the slope between model performance (Spearman) and
Neff. Negative values imply a decrease in model performance with increase Neff, and positive slopes imply an
increase in model performance with increasing Neff.

Structure-aware modeling may offer a valuable solution to compensate for the limited viral sequence
diversity in traditional sequence databases. For example, Foldseek can retrieve homologous viral
protein structures despite poor sequence similarity (van Kempen et al., 2022; Nomburg et al., 2024).
For example, searching for the Zika virus envelope protein using Foldseek retrieves structures
from other class II fusion proteins spanning multiple viral families, such as those from Semliki,
Chikungunya, Sindbis, Rift Valley Fever, and Eastern Equine Encephalitis viruses. To test this
hypothesis, we scored two versions of SaProt: SaProt-AF2, trained on the AlphaFold2 database
(which excludes eukaryotic viral proteins, but does include phages), and SaProt-PDB, which continues
training on the PDB (containing a limited number of viral structures). Our results show that SaProt-
PDB outperforms all other PLMS in approx 50% of the viral DMS datasets (Fig 3B). Importantly,
the performance boost provided by SaProt-PDB over SaProt-AF2 is particularly pronounced for viral
proteins (Fig 3C, Supp Fig S7), while SaProt-PDB’s advantage over other PLMs declines for viruses
with low numbers of unique strains in the PDB, such as Lassa and Nipah (Supp Fig S8).

Additionally, SaProt and EVE–the best alignment-based model–are roughly on par, yet perform
best on different DMSs (Fig 3D and Supp Fig S9). EVE is much better for viruses with no similar
structure in the PDB and for fitness assays (Supp Fig S9), while SaProt is much better for phages
(stability assays) which are in the AF2 structural training dataset of SaProt. Generally, we found that
for SaProt, pseudo-perplexity, a measure of uncertainty for PLMs, was a good predictor of mutation
effect performance for that virus (Supp Fig S10), supporting uncertainty quantification of its use for
viruses without experimental data for evaluation. Overall, this suggests that incorporating even a
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Figure 3: SaProt-PDB outperforms PLMs trained on sequences alone for viral mutation effect prediction. A.
Number of sequences in Uniref100, Uniref90, and Uniref50, and for antigenic proteins of selected viruses or
viral families. B. Spearman rank correlation between PLM model score and DMS score for each of 59 viral
proteins. C. Comparison of the Spearman rank correlation of SaProt-PDB to SaProt-AF2 for all DMSs from
ProteinGym. SaProt-PDB outperfoms SaProt-AF2 for most eukaryotic viral proteins, but not for phages. D.
Comparison of the Spearman rank correlation of SaProt-PDB to EVE trained on alignments from Uniref100 for
all viral DMSs.

limited number of viral structures can significantly enhance predictive accuracy for protein language
model mutation effects in viruses.

4 Conclusion

Our comprehensive evaluation of protein mutation effect prediction models for viruses reveals key
differences between alignment-based models and PLMs. While alignment-based models generally
outperformed PLMs for viral proteins, our findings suggest that the limited viral sequence diversity
in traditional training datasets, like UniRef90, may be a primary factor. Incorporating structural
information through models like SaProt-PDB significantly improves prediction accuracy, especially
for viruses, indicating that structure-aware training is a promising approach to overcoming the
limitations of viral sequence data. These findings provide insights for future model development
tailored to viral mutation prediction, which could enhance efforts in viral surveillance, aiding variant-
proof vaccine and deimmunized and targeted viral vector design.
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A Supplementary Figures

Supplementary Figure 1: Impact of sequence database choice (UniRef100, UniRef90, or
UniRef100+BFD+Mgnify) on alignment depth and model performance across viral DMSs.
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Supplementary Figure 2: Selected contact maps from Uniref100 alignments with bit score 0.1 for SARS-CoV-2
Spike, Influenza H3 and HIV Envelope proteins. HIV Env is one of the few examples of viral proteins with a
DMS where EVcouplings successfully predict structure contacts, while ability to predict structural contacts is a
strong predictor of model performance for other taxa.
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Supplementary Figure 3: EVE consistently outperforms other alignment-based models (EVmutation and PSSM)
across sequence databases (rows; UniRef90, UniRef100, or UniRef100+BFD+Mgnify) for viral DMSs.
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Supplementary Figure 4: Alignment-based model performance across viral DMSs does not depend on alignment
depth (Neff).
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Supplementary Figure 5: Relationship between Neff and model performance (Spearman rank correlation)
between model scores and DMS.
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Supplementary Figure 6: Increasing alignment depth worsens model performance for some viral proteins. Y-axis
plots the slope between model performance and Neff. X-axis plots the maximum Neff for a given viral protein.
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Supplementary Figure 7: Comparison of the Spearman rank correlation of all PLM models across DMSs
separated by taxa.
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Supplementary Figure 8: Comparison of the Spearman rank correlation of the SaProt-PDB model to SaProt-AF2
model for all viral DMSs. SaProt-PDB performs best on almost all viruses. SaProt-PDB has an advantage over
SaProt-AF2 especially for viruses like SARS-CoV-2 and Influenza that are vastly over-represented in the PDB.
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Supplementary Figure 9: A. Comparison of the Spearman rank correlation of the SaProt-PDB model to the EVE
model trained on alignments from Uniref100 for all viral DMSs. Notably, some viruses do not have EVE scores
given the memory constraints. The two models perform on par with the same average performance. B. The two
models perform best on different DMSs. EVE is better at proteins with no structures within 90% identity in the
PDB while SaProt is better on phages (with structures in the AF2 Database, while other eukaryotic viruses have
been excluded). C. Models also perform best on different assay types, with EVE better at predicting overall
fitness in replication or infectivity assays. SaProt’s seemingly superior performance on stability assays must
however be dissociated from the fact that the viral DMSs with stability assays are also the only phages, for which
there is much more structural training data.
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Supplementary Figure 10: SaProt pseudo-perplexity, used as a measure of uncertainty for PLMs, of the wildtypes
for each of the viral fitness DMSs is a good predictor of SaProt mutation effect performance for that virus.
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B Supplementary Tables

Model Type Model Avg Spearman Viral Avg Spearman

Alignment-based model

GEMME 0.455 0.469
EVE (ensemble) 0.439 0.428

EVE (single) 0.433 0.424
DeepSequence (ensemble) 0.419 0.344

DeepSequence (single) 0.407 0.323
EVmutation 0.395 0.388

Wavenet 0.373 0.328
Site-Independent 0.359 0.383

Hybrid - Alignment & PLM

TranceptEVE L 0.456 0.453
TranceptEVE M 0.455 0.441
TranceptEVE S 0.452 0.433

Tranception L 0.434 0.432
MSA Transformer (ensemble) 0.434 0.414

Tranception M 0.427 0.415
MSA Transformer (single) 0.421 0.390

Tranception S 0.418 0.405
Tranception M no retrieval 0.348 0.349

Unirep evotuned 0.347 0.349

Hybrid - Structure & PLM

SaProt-AF2 (650M) 0.457 0.300
ProtSSN (ensemble) 0.449 0.356

ProtSSN (k=20 h=1280) 0.442 0.347
ProtSSN (k=20 h=512) 0.441 0.359

Protein language model

VESPA 0.436 0.432
VESPAl 0.394 0.392

Progen2 XL 0.391 0.391
Progen2 L 0.380 0.333

Progen2 M 0.379 0.342
Progen2 Base 0.378 0.328

Tranception L no retrieval 0.374 0.395
ESM-1v (ensemble) 0.407 0.279

RITA XL 0.372 0.402
CARP (640M) 0.368 0.273

RITA L 0.365 0.391
RITA M 0.350 0.385

Progen2 S 0.336 0.285
CARP (76M) 0.328 0.150

ESM2 (3B) 0.406 0.274
ESM2 (15B) 0.401 0.313

ESM2 (150M) 0.387 0.137
ESM2 (650M) 0.414 0.238

ESM2 (35M) 0.321 0.102

Inverse folding model
ESM-IF1 0.422 0.374

MIF 0.383 0.359
ProteinMPNN 0.258 0.248

Supplementary Table 1: Model performance previously available in ProteinGym (Notin et al., 2023). Note this
analysis only covers half of the now curated 59 viral datasets.
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Bitscore UniRef90 UniRef100 UniRef+BFD
0.5 57 57 48
0.4 57 56 37
0.3 55 51 28

0.05 54 51 21
0.04 53 45 12
0.03 44 37 10

Supplementary Table 2: Number of successful models given the equal memory constraints at different bitscores
across UniRef90, UniRef100, and UniRef+BFD datasets.

C Extended Methods

C.1 Viral Deep Mutation Scans

We searched for all viral fitness and escape deep mutational scans, focusing here on single substitution
mutations (Sinai et al., 2021; Mattenberger et al., 2021; Álvarez-Rodríguez et al., 2024; Suphatrakul
et al., 2023; Tsuboyama et al., 2023; Bakhache et al., 2024; Qi et al., 2014; Haddox et al., 2018;
Duenas-Decamp et al., 2016; Haddox et al., 2016; Fernandes et al., 2016; Heredia et al., 2019; Doud
& Bloom, 2016; Wu et al., 2014; Lee et al., 2018; Dadonaite et al., 2024; Doud et al., 2015; Jiang
et al., 2016; Lei et al., 2023; Wu et al., 2015; Soh et al., 2019; Li et al., 2023; Ashenberg et al., 2017;
Teo et al., 2024; Hom et al., 2019; Wu et al., 2016; Starr, 2024; Starr et al., 2020; Dadonaite et al.,
2023; Taylor & Starr, 2023; Flynn et al., 2022; Wu et al., 2024; Sourisseau et al., 2019; Setoh et al.,
2019; Maurer et al., 2024; Welsh et al., 2024; Dingens et al., 2019; Frank et al., 2022; Lei et al., 2024;
Kikawa et al., 2023). Some DMSs were excluded from this benchmark depending on the assayed
phenotype, for example drug inhibition assays, or difficulties with the data, but may be included in
the future.

C.2 Alignment-based models

C.2.1 Generation of multiple sequence alignments

All alignment-based models rely on a method for generating a multiple sequence alignment on
which they are trained. Multiple sequence alignments of the corresponding protein family were
obtained using the method outlined in Hopf et al. (2017). Briefly, this involved five search iterations
of the profile HMM homology search tool jackhmmer against the specified sequences database. We
evaluated the impact of searching against three database with vastly different number of sequences:
UniRef100, a database of non-redundant protein sequences; UniRef90, a database obtained by
clustering the UniRef100 database based on 90% sequence identity and specifying a representative
sequence per cluster; Big Fantastic Database (BFD) covering protein sequences from UniProt (Swiss-
Prot&TrEMBL; uni (2021)), Metaclust (Steinegger & Söding, 2018) and Soil Reference Catalog
Marine Eukaryotic Reference Catalog (Steinegger et al., 2019). We used length-normalized bit scores
to threshold sequence similarity. We generated alignments across six bit scores of 0.5, 0.3, 0.1, 0.05,
0.03, 0.01 bits/residue. The alignments were post-processed to exclude positions with more than
50% gaps and to exclude sequence fragments that align to less than 50% of the length of the target
sequence.

C.2.2 PSSM

To infer the contribution of site-specific amino acid constraints without considering explicit epistatic
constraints, we used a site-wise maximum entropy model as implemented in Hopf et al. (2017).

C.2.3 EVmutation

To predict the effects of mutations that explicitly captures pairwise residue dependencies between
positions, we used EVMutation as implemented in Hopf et al. (2017).
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C.2.4 EVE

To predict the effects of mutations capturing high-order dependencies between positions, we used
EVE, a Bayesian VAE model architecture, as implemented in Frazer et al. (2021).

C.3 Protein language models

C.3.1 Sequence datasets

The protein language models described here do not use multiple sequence alignments, instead
using variants of a Transformer (Vaswani, 2017) popularized in natural language modeling for self-
supervised training on a large corpus of sequence data. In this case, the models are trained on large
protein sequence datasets from across the entire protein universe, rather than only sequences specific
to a given family of proteins. These datasets include BFD, Uniref100, and Uniref90, as well as the
AF2 and PDB structure databases. Moroever, because these datasets are alignment-free, these models
can more naturally score insertions and deletions.

C.3.2 Tranception

Tranception (Notin et al., 2022) combines an autoregressive protein language model with inference-
time retrieval from a MSA. We used Tranception Large (700M parameters) trained on Uniref100
without MSA retrieval as implemented in ProteinGym (Notin et al., 2023).

C.3.3 ESM-1v

ESM-1v (Meier et al., 2021b) has a Transformer encoder architecture similar to BERT [Devlin et al.,
2019] and was trained with a Masked-Language Modeling (MLM) objective on UniRef90. We use
the implementation presented in ProteinGym (Notin et al., 2023) to handle sequences that are longer
than the model context window (ie., 1023 amino acids).

C.3.4 VESPA

VESPA (Marquet et al., 2022) combines the embeddings from ProtT5 (Elnaggar et al., 2021) with
a per-residue conservation prediction. ProtT5 uses a T5 architecture which uses an encoder and
decoder and was first trained on BFD and then finetuned on UniRef50.

C.3.5 SaProt

SaProt (Su et al., 2023) introduces a structure-aware vocabulary, into protein language modeling
by training on Foldseek (van Kempen et al., 2022) 3Di tokens which represent the local geometric
conformation information of each residue relative to its spatial neighbors. These 3Di tokens are
combined with typical amino acid residue tokens as input to the SaProt model, which utilizes an
ESM-2 Transformer architecture (Lin et al., 2022). We use both SaProt-650M-AF2, trained on
approximately 40 million AF2 sequences/structures (from Uniref50) which notably excludes all viral
proteins, and SaProt-650M-PDB, which continuously pre-trains the SaProt-650M-AF2 model on the
PDB.

24


	Introduction
	Methods
	Results
	Alignment-based model
	Protein language models

	Conclusion
	Supplementary Figures
	Supplementary Tables
	Extended Methods
	Viral Deep Mutation Scans
	Alignment-based models
	Generation of multiple sequence alignments
	PSSM
	EVmutation
	EVE

	Protein language models
	Sequence datasets
	Tranception
	ESM-1v
	VESPA
	SaProt



