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Abstract

Metal ions serve as essential cofactors in numerous proteins, playing a critical1

role in enzymatic activities and protein interactions. Given their importance,2

accurately identifying metal-binding sites is fundamental to understanding their3

biological functions, with significant implications for protein engineering and4

drug discovery. To address this challenge, we present SuperMetal, a generative5

AI framework that combines a score-based diffusion model, confidence model,6

and clustering mechanism to predict metal-binding sites with high accuracy and7

efficiency. Using zinc ions as an example, SuperMetal outperforms existing state-8

of-the-art tools, achieving a precision of 94% and coverage of 90%, with zinc9

ions localization within 0.52 ± 0.55 Å of experimentally determined positions.10

Furthermore, SuperMetal delivers rapid predictions and is minimally affected by11

increases in protein size. Notably, SuperMetal predicts metal-binding locations12

without needing prior knowledge of ions numbers, unlike AlphaFold3, which13

requires this information for its predictions. While currently trained exclusively14

on zinc ions, SuperMetal’s framework can be easily adapted to predict the binding15

sites of other metal ions by adjusting the training data.16

1 Introduction17

The Protein Data Bank (PDB) contains nearly 200,000 structures, and approximately one-third of18

these proteins contain metal ions [1]. Many proteins require the binding of one or more metal ions19

to perform their functions. Zinc, a vital biologically active metal, is particularly noteworthy as it20

binds to approximately 10% of all human proteins [2]. These proteins rely on zinc for their biological21

function, structural stability, or regulation of activities. [3, 4, 5, 6, 4].22

Given the importance and unique functionality of zinc in proteins, accurately identifying zinc-binding23

sites is crucial. Consequently, Many computational methods have been developed to predict zinc-24

binding sites [7, 8, 9, 10, 11]. Current state of the art predictors for metal location is Metal3D25

[11], a structure-based method that employs 3D Convolutional Neural Networks (CNNs) to predict26

the positions of metal ions, such as zinc. Despite its success, Metal3D faces challenges similar to27

other 3D CNN models [12, 13, 14, 15], such as the need for fine grid spacing (voxelization). The28

computational cost for these voxel-based models increases cubically with the resolution of the input,29

making scaling up difficult [16]. Moreover, these CNN-based models are sensitive to the orientation30

of the input structure, requiring data augmentation to increase the number of training samples and31

reduce the risk of overfitting [11, 17, 18, 19].32

In recent years, diffusion models have emerged as powerful generative AI tools [20, 21], leading to33

significant advancements across various areas of bioinformatics. [22, 23, 24, 25, 26, 27, 28]. Inspired34

by these advancements, we present SuperMetal, a novel generative AI approach that integrates a35

score-based diffusion model, equivariant graph neural networks, and a clustering mechanism to36
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accurately predict zinc ion positions within protein structures. Instead of directly approximating the37

probability distribution of zinc ions, our model estimates the gradient of this distribution and generates38

zinc positions from a normal distribution. These positions are then refined using a confidence model39

and clustered to deliver precise predictions of both the number and locations of zinc ions in a protein.40

SuperMetal surpasses existing methods in terms of coverage and precision, while providing rapid41

predictions, offering significant potential for applications in structural biology, multi-body docking,42

and metalloprotein engineering.43

2 Methods44

The SuperMetal framework operates in three general stages as shown in Fig. 1. The detailed method-45

ology for each of these steps is provided in the supplemental information. The key contributions of46

SuperMetal include (1) a score-based diffusion model that processes geometric graphs of protein47

structures, enabling the sampling of metal positions within proteins, (2) an equivariant graph neural48

network that accurately evaluates each sampled point and filters out low-confidence positions, and49

(3) postprocessing operations designed to optimize prediction accuracy by clustering the predicted50

positions.51

Figure 1: Workflow of SuperMetal.

2.1 Data Set and Preprocessing52

We utilized the ZincBind database [29], a high-quality, non-redundant collection of 19,154 zinc-53

binding sites from 19,103 PDB files. ZincBind clusters sites based on structural and sequence54

similarity, accounting for protein symmetry to avoid mislabeling surface zincs [30]. From this, we55

extracted 10,253 PDB files, excluding structures with over 3000 residues and removing exogenous56

ligands. For structures with multiple models, only the first was used. We randomly selected 1,00057

structures for validation and 350 for testing, ensuring no binding site overlap between testing and58

training/validation datasets.59

2.2 Evaluation and Comparison60

We evaluate predicted metal ion positions using precision, coverage, and mean absolute deviation61

(MAD). Precision is the ratio of true positives (TP) to total predicted sites (TP + FP): Precision =62
TP

TP+FP . Coverage measures the percentage of correctly predicted sites relative to all true sites (TP +63

FN): Coverage = TP
TP+FN . A site is correctly predicted if it is within 5 Å of the experimental position.64

MAD quantifies positional accuracy as the average absolute difference between predicted x̂i and true65

positions xi: MAD = 1
n

∑n
i=1 ∥xi − x̂i∥, where n is the number of sites. These metrics provide a66

comprehensive evaluation of SuperMetal compared to other methods.67

2.3 Forward and Reverse Diffusion68

As illustrated in Fig. 2, the forward step of the diffusion process is governed by a forward stochastic69

differential equation (SDE), described as:70

dx = f(x, t) dt+ g(t) dw, (1)
71 where x represents the positions of all metal ions, t denotes time, w refers to Gaussian noise72

or Brownian motion, g(t) is the diffusion coefficient, and f(x, t) is the drift coefficient. In our73

case, f(x, t) = 0, and g(t) is given by
√

dσ2(t)
dt . The variance σ2(t) evolves based on a model74

hyperparameter, where σt is expressed as σ(1−t)
min ·σt

max, leading to the forward SDE dx =
√

dσ2(t)
dt dw.75
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For a given protein-metal complex, as Gaussian noise w(t) is added, and starting from the initial76

metal ion distribution at t = 0, denoted x(0), the metal position at time t, x(t), can be numerically77

determined using this equation. The translation perturbation vectors, ∆r, also follow a Gaussian78

distribution with mean µ(t) and variance σ2(t), which allows us to compute the gradient of the log79

probability of metal translations over the protein structure y using the equation ∇ log pt(∆r | y) =80

−∆r−µ(t)
σ2(t) . Meanwhile, the score function Sθ(x) is predicted by a neural network, which takes the81

metal ion locations, the protein structure, and the time t as inputs. The parameters of the neural82

network, θ, are optimized by minimizing the loss function Lθ:83

Lθ = Ep(x)

[
∥∇ log pt(∆r | y)− Sθ(x,y, t)∥22

]
(2)

84 The expectation value Ep(x) is calculated by averaging the L2-norm between the true vectors85

∇ log pt(∆r | y) and the predicted vectors Sθ(x,y, t) across all metal ions for each protein in86

the training data.87

Figure 2: Fundamental theory of the score-based generative diffusion model for metal ions in proteins.

Now, for reverse diffusion, we use the trained score function Sθ(x) to solve the reverse stochastic88

differential equation (SDE) and compute the favorable positions of metal ions from a random89

distribution:90

dx =
[
f(x, t)− g(t)2Sθ(x,y, t)

]
dt+ g(t)dw, (3)

91 where Sθ(x, t) is the learned score function from the training phase, and f(x, t) and g(t) represent92

the drift and diffusion terms from the forward SDE. For each protein structure, we run the diffusion93

model’s inference procedure to generate 100 candidate metal ion positions. These ions are guided by94

the score model Sθ(x), ultimately reaching their most favorable positions within the protein structure.95

3 Results and Discussion96

In this section, we present the evaluation and comparative results of SuperMetal against the state-of-97

the-art Metal3D in predicting zinc ion positions within protein structures. Both methods utilize the98

same testing dataset to ensure a fair comparison. As shown in Fig. S3, during SuperMetal’s inference99

step, 100 metal ions are sampled at random positions across the system and denoised via reverse100

diffusion over their translational degrees of freedom. The sampled positions are then filtered using101

the trained confidence model to retain only the most probable metal positions. Finally, these positions102

are clustered to obtain the final predicted metal positions.103

3.1 Comparison between SuperMetal and Metal3D104

Figure 3 shows the precision versus coverage curves for SuperMetal and Metal3D based on varying105

probability thresholds. SuperMetal demonstrates higher precision across a wider range of coverage106

compared to Metal3D. For example, when Metal3D achieves 100% precision, its coverage is around107

30%, whereas SuperMetal reaches approximately 70% coverage at the same level of precision—more108
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than double the coverage of Metal3D. Similarly, at 77% coverage, SuperMetal maintains near 100%109

accuracy, while Metal3D’s accuracy drops to around 93%. Moreover, at 88% coverage, Metal3D’s110

precision is ∼ 84%, whereas SuperMetal achieves ∼ 95%, marking a significant improvement.111

These results clearly indicate that SuperMetal outperforms Metal3D, providing higher precision112

even at greater coverage. This demonstrates SuperMetal’s ability to maintain high precision while113

significantly expanding the scope of its predictions.

Figure 3: Precision vs. coverage for SuperMetal and Metal3D at different probability cutoffs. Labels
beside the curves represent probability cutoffs, p for SuperMetal and t for Metal3D.

114
In addition to evaluating the precision and coverage of metal site predictions, assessing the spatial115

accuracy of the predicted positions is crucial. For each true positive (TP), we measured the mean116

absolute deviation (MAD) between the experimentally determined and predicted metal ion positions117

(Fig. 4). At a probability threshold of p = 0.1, SuperMetal achieves a MAD of 0.61 ± 0.66 Å, which118

improves to 0.44 ± 0.58 Å as the threshold increases to p = 0.9. This trend demonstrates that higher119

probability cutoffs lead to greater spatial precision, with the median MAD decreasing from 0.37 Å at120

p = 0.1 to 0.23 Å at p = 0.999. The relatively small difference between these two median values121

suggests that even low-confidence predictions are spatially accurate within the protein structure. In122

contrast, Metal3D exhibits an increasing median MAD, rising from 0.36 Å at t = 0.7 to 0.87 Å at123

t = 0.99, indicating a greater deviation from ground-truth positions as the probability cutoff increases.124

Additionally, the spread of MAD values in SuperMetal decreases with higher probability cutoffs,125

opposite to the trend observed in Metal3D, where the spread increases. These results indicate that126

SuperMetal consistently provides spatially precise predictions across different probability thresholds,127

and its improved prediction accuracy is accompanied by enhanced spatial precision.128

SuperMetal not only outperforms Metal3D in terms of location prediction accuracy but also demon-129

strates a significant advantage in running speed. The inference runtime comparison as a function of130

protein size (number of residues) for SuperMetal and Metal3D is shown in Fig. 5. For consistent131

comparison, both models were executed using a single thread on one CPU core, with the same132

GPU. We observed that Metal3D’s runtime tends to increase exponentially as the protein size grows,133

whereas SuperMetal maintains consistently low runtimes (under 10 seconds), even for larger proteins.134

For example, when the protein size approaches 2000 residues, Metal3D requires approximately 500135

seconds, which is around 60 times longer than SuperMetal. This large difference can be attributed to136

the multi-scale approach used in SuperMetal. The graph and message passing between metal ions137

and protein residues are constructed only when the residues fall within a certain radius of the metal138

ions. Similarly, the message passing between metal ions and protein atoms is established only when139

protein atoms are within an even smaller radius of the metal ions. This radius-based mechanism140

ensures that only relevant metal-protein interactions are computed, thus optimizing SuperMetal’s141

efficiency. In contrast, Metal3D involves voxelization of the entire protein and grid averaging, which142

results in significantly longer runtimes, especially as the number of protein residues increases.143
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Figure 4: MAD distribution for SuperMetal and Metal3D across various probability cutoffs. Kernel
density estimation was used to illustrate distribution, highlighting medians (white circles), quartiles
(black boxes), and data spread (whiskers up to 1.5x the interquartile range).

Figure 5: Computational runtime vs. protein sizes for superMetal and Metal3D. Polynomial regression
curves (purple and green dashed lines) are only used to clarify the trends.

4 Conclusions144

In this work, we introduced SuperMetal, a generative AI framework designed to predict metal ion145

positions within protein structures. Leveraging a score-based diffusion model, an equivariant graph146

neural network, and a clustering mechanism, SuperMetal achieves both high accuracy and efficiency147

in metal-binding site prediction. When compared to the state-of-the-art Metal3D, SuperMetal148

consistently outperformed across key metrics such as precision, recall, and MAD. It nearly doubled149

the coverage at 100% precision, maintained lower MAD values, and efficiently scaled to handle larger150

protein sizes.151

Notably, SuperMetal does not require prior knowledge of the number of metal ions, providing greater152

flexibility than methods like AlphaFold3. Its ability to predict metal-binding locations with high153

accuracy, speed, and scalability paves the way for future advancements in metalloprotein research.154
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