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Abstract

RNAs are vital molecules that carry genetic information essential for life, with
significant implications for drug development and biotechnology. However, RNA
research is often slowed by the vast amount of literature. To address this, we
introduce RNA-GPT, a multi-modal RNA chat model that simplifies RNA discovery
by leveraging extensive RNA literature. RNA-GPT combines RNA sequence
encoders with linear projection layers and state-of-the-art large language models
(LLMs) for precise representation alignment. This enables it to process user-
uploaded RNA sequences and provide concise, accurate responses. Our scalable
training pipeline, powered by RNA-QA, automatically gathers RNA annotations
from RNACentral using a divide-and-conquer approach with GPT-4o and latent
Dirichlet allocation (LDA) to handle large datasets and generate instruction tuning
samples. Experiments show RNA-GPT effectively handles complex RNA queries,
streamlining RNA research. We also introduce RNA-QA, a 407,616 RNA dataset
for modality alignment and instruction tuning.

1 Introduction

Large language models (LLMs) trained on internet-scale corpora have been shown to perform
extraordinarily well on a large array of tasks from Olympiad-level mathematical and scientific
reasoning to planning long-term tasks for robotic systems [1, 2, 3]. Recent advances in the biological
and medical fields have enabled the adaptation of powerful models to accelerate research, significantly
reducing reliance on traditional experiments. Since proteins, RNAs, and DNAs can be represented
as character strings and a vast amount of sequenced data is readily available, this has created an
ideal environment for training language models to predict and generate protein, DNA, and RNA
structures and sequences. Protein language models like ESM have successfully encoded protein
sequence and structure information, inspiring works such as ProteinGPT and ProtSt, which adapt
protein representations into a language-based format, enabling natural language querying of protein
data [4, 5, 6, 7, 8, 9, 10]. Similar to ESM-2, works like RiNALMo and RNA-FM have utilized the
flexible capabilities of LLMs to learn and predict RNA structure and functions [11, 12].

Much like the motivation behind protein research, where proteins are represented as strings of
characters, RNAs—with their sequences of five unique nucleotides—have also sparked interest in
computational RNA and DNA research using large language models (LLMs).
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While models like ProteinGPT, ProtST, ProteinChat, and ProteinCLIP, have made significant progress
in aligning protein sequences and structures with textual descriptions, advancements in the DNA
and RNA domains are far less advanced [9, 13, 14, 10, 15, 16]. Previous efforts, such as RiNALMo
and RNA-FM have mainly focused on specific tasks like promoter or enhancer prediction, and
structure and function analysis [12, 11, 17]. ChatNT is among the few models striving to bridge
the gap between RNA comprehension and natural language [18]. However, its emphasis is more on
performing biological tasks as a conversational agent rather than providing deep RNA understanding
and comprehensive dialogue. As a result, there is a notable gap in RNA chat models that offer
in-depth knowledge. However, applying multimodal LLMs to RNA modeling presents unique
challenges, especially in integrating diverse modalities such as textual descriptions, RNA sequences,
and structural data.

To overcome these challenges, we propose a two-step approach to RNA-GPT. First, we utilize
the RNA-FM sequence encoder to embed RNA sequences, followed by aligning these sequence
representations with natural language through a large, automatically curated QA dataset from RNA
Central [12, 19]. Secondly, to ensure our model generates concise and accurate responses, we break
down RNA-QA’s abstract summaries into individual QA pairs for instruction tuning, enhancing
the model’s ability to deliver clear and relevant answers. We utilize Meta AI’s flagship Llama-3
8B Instruction as our backbone LLM to provide solid general language understanding [20]. More
specifically, our contributions are as follows:

• Novel Framework. RNA-GPT is one of the first multi-modal RNA sequence chat models
that enables deep, interactive RNA-focused conversations, significantly enhancing the
understanding of RNAs for biological research.

• Large-scale Dataset and Collection Pipeline. We introduce RNA-QA, a QA dataset
derived from the RNA Central Dataset for modality alignment instruction tuning of RNA
chat models [19]. We also present our highly scalable collection pipeline that automates
the scraping and summarizing of relevant literature on RNA. Using a divide-and-conquer
summarization strategy, we ensure that research details are preserved effectively. For over
407,616 RNA samples, we create QA pairs, each accompanied by a comprehensive research
summary based on available literature, and between 5 and 14 QA pairs. The depth and
diversity of these annotations make RNA-QA an excellent resource for instruction tuning.

2 Methodology
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Figure 1: RNA-GPT Modality Fusion & Alignment Stage: we freeze the sequence encoder block and
train the linear projection layer to learn how to align RNA sequence representations with text. In the
alignment stage, the input to the training is only the projected RNA representation. No text prompts
are incorporated in this stage.

2.1 Model Architecture

RNA-GPT uses the pre-trained RNA-FM sequence encoder (Figure 1 and Figure 2) to embed RNA
sequences, which are then passed through a linear projection layer. This layer learns to map the
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Figure 2: RNA-GPT Modality Fusion & Alignment Stage: we freeze the sequence encoder block and
train the linear projection layer to learn how to align RNA sequence representations with text. In the
alignment stage, the input to the training is only the projected RNA representation. No text prompts
are incorporated in this stage.

RNA embeddings to a shared representation space with natural language, enabling alignment with a
backbone LLM, for which we chose Meta’s Llama-3 8B model. The training process is divided into
two stages: 1) Sequence and Modality Alignment, where RNA and natural language representations
are aligned, and 2) Instruction Tuning, where the model is fine-tuned for task-specific QA generation.

Modality Alignment Stage (Stage 1)

RNA sequences in the form of strings are first fed into the pre-trained sequence encoder, featuring 12
transformer layers trained with 23 million RNAs from the RNA Central database via self-supervised
learning [19, 12]. We utilize a specialized token <RNAHere> for RNA-text modality alignment:

Q: < RNA >< RNAHere >< /RNA >< QuestionPrompts >
A: < Description >

2.2 RNA-QA Dataset

Figure 3: RNA-QA uses an automated pipeline to scrape and summarize existing RNA literature.
We apply latent Dirichlet allocation (LDA) to group the vast literature on each RNA, and then we
summarize each group individually using GPT-4o-mini. These summaries are then combined and
refined to produce the final RNA annotation.

The embedded sequence information is encoded into the soft prompts and prepended to the question
prompt. In stage 1 training, the question Q is left empty to prioritize learning the abstract description
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Table 1: RNA-QA (AIS): RNA Sequence (left), Modality Fusion (middle), and RNA-GPT (right).
Embedding base models are BERT, PubMedBERT, and OpenAI’s GPT text-embedding-3-large.

RNA Sequence Modality Fusion RNA-GPT
Metric SBERT SPub SGPT SBERT SPub SGPT SBERT SPub SGPT

Precision 0.7372 0.5528 0.5219 0.6929 0.6507 0.6655 0.8602 0.7384 0.7848
Recall 0.7496 0.5270 0.5474 0.8028 0.6082 0.6603 0.8404 0.7208 0.7561
F1 Score 0.7424 0.5387 0.5339 0.7403 0.6283 0.6627 0.8494 0.7293 0.7700

from the RNA representation. The description tag A is replaced with the full annotation from RNA
Central [19] to train the linear projection layer to align an RNA with its full abstract annotation.

Instruction Tuning Stage (Stage 2)

In stage 2, we instruction-tune the model using our curated RNA-QA dataset. Previous protein-related
chat models rely on fully annotated abstracts, frequently resulting in excessively lengthy and irrelevant
responses. We take a different approach to address this by breaking down the full annotations into
targeted QA samples with concise answers to specific questions as prediction targets. This allows the
chat model to provide more relevant and accurate responses.

We augment the full abstract annotation dataset from stage 1 using GPT-4o-mini to generate explicit
QA pairs for this stage. The prompts from stage 1 are adapted to the Llama-3 style (“###Human :
. . .” and “###Assistant : . . .”), with Q replaced by explicit questions from RNA-QA, such as
“What regulatory role does the RNA have along with other RNAs?” The model then generates
descriptive yet concise answers such as “The RNA is involved in transcript splicing regulation along
with RNVU1-18 and CLK1“ as A.

To achieve modality alignment, we constructed a large-scale dataset from the RNA Central
database [19], comprising 407,616 RNA sequences paired with abstract descriptions.

Divide and Conquer RNA Literature Summarization

We begin by filtering RNA sequences from RNA Central [19], focusing on those indexed with
"Lit Scan," yielding around 420,000 RNAs with associated research papers. We refine this set to
include only sequences up to 1024 nucleotides, the maximum input length for our sequence encoder.
For the remaining 407,616 RNAs, we scrape and extract abstracts from all relevant literature. As
shown in Figure 3, we apply LDA topic modeling to group papers by topic, summarizing each
group individually. This ensures each summarization focuses on a narrower, cohesive subject area,
minimizing information loss. We have found that summarizing broad topics often causes key details
to be missed, as the model struggles to condense diverse information. Grouping similar topics allows
for more precise, detailed summaries that retain essential context. The final annotation is created by
combining these summaries in a final round of summarization. This divide-and-conquer approach
improves accuracy and efficiently handles large datasets. Moreover, it overcomes the token limits of
GPT models, allowing for detailed, information-dense annotations of large RNA research profiles.

2.3 Data Augmentation

Similar works in protein chat alignment often use the entire protein annotation for instruction
tuning [10, 13, 21, 9], which often result in verbose and irrelevant responses. To address this, RNA-
GPT decomposes the rich RNA annotations of RNA-QA into more specific QA-pairs for instruction
tuning using GPT-4o-mini so that user instructions can be concisely answered. Concretely, we prompt
GPT-4o-mini to generate both open-ended and close-ended QA pairs with the context of the RNA-QA
annotation to decompose the abstract into atom-level QA pairs.

3 Experiments

We trained RNA-GPT using the flagship Llama-3 8B model architecture [20] using a smaller 5K
RNA, 121K QA samples subset for our initial model. We are in the process of training the large
RNA-GPT that uses all 407,616 RNAs of RNA-QA with millions of QA samples.
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Figure 5: Semantic Score Comparison

We conducted a series of experiments to assess RNA-GPT’s effectiveness both quantitatively and
qualitatively along with ablation studies to ascertain the importance of various modules at different
stages. These included the original model (LLM with RNA sequence as text input), the modality-
aligned model, and the final instruction-tuned model.

Table 2: RNA-QA (AIS): ROUGE Score with RNA Sequence, Modality Fusion, and RNA-GPT.
RNA Sequence Modality Fusion RNA-GPT

Metric Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

ROUGE 0.2364 0.0935 0.2037 0.2239 0.1364 0.2091 0.5031 0.3667 0.4747

Table 3: RNA-QA (D&C): RNA Sequence (left), Modality Fusion (middle), and RNA-GPT (right).
Embedding base models are BERT, PubMedBERT, and OpenAI’s GPT text-embedding-3-large.

RNA Sequence Modality Fusion RNA-GPT
Metric SBERT SPub SGPT SBERT SPub SGPT SBERT SPub SGPT

Precision 0.7612 0.5498 0.5479 0.6884 0.6201 0.6676 0.8620 0.7173 0.7568
Recall 0.7654 0.5512 0.5649 0.8187 0.5830 0.6602 0.8623 0.7161 0.7554
F1 Score 0.7625 0.5501 0.5561 0.7466 0.6005 0.6637 0.8609 0.7165 0.7560

Table 4: RNA-QA (D&C): ROUGE Score with RNA Sequence, Modality Fusion, and RNA-GPT.
RNA Sequence Modality Fusion RNA-GPT

Metric Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

ROUGE 0.2472 0.0964 0.2182 0.0922 0.0393 0.0799 0.4791 0.2690 0.4405

4 Conclusions

We present RNA-GPT, a multimodal chat model for RNA sequences that enhances LLM-based
question-answering and accelerates RNA discovery with concise, accurate responses. RNA-GPT
aligns RNA embeddings from the RNA-FM encoder with natural language in LLMs like Llama-3
using a learnable projection layer. We optimize instruction tuning with GPT-4o-mini to ensure precise
answers. We also introduce RNA-QA, a 407,616 RNA question-answering dataset derived from
extensive RNA research literature. Our scalable framework, using topic modeling and divide-and-
conquer summarization, enables efficient RNA-to-language dataset curation.

Experiments with our model trained on a 5K subset of RNA-QA show promising responses, achieving
high semantic and lexical scores on unseen RNA data. The full RNA-QA further enhances multimodal
RNA LLM development. RNA-GPT with RNA-QA will inspire innovations in LLM-based RNA
research, driving rapid advancements in the field.
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A Training Details

We conducted initial training of RNA-GPT on a 5K subset of the RNA-QA dataset to generate the
initial model checkpoints.

During the modality alignment (MA) stage (Stage 1), we optimized the projection layer over 10
epochs using a batch size of 1, weight decay of 0.05, and 2,048 warm-up steps. The AdamW
optimizer [22] was employed with β1 = 0.9 and β2 = 0.98. A learning rate scheduler with a linear
warm-up followed by cosine annealing was applied. Specifically, the initial learning rate was set
to 1 × 10−4, the minimum learning rate to 8 × 10−5, and the warm-up learning rate to 1 × 10−6.
Automatic Mixed Precision (AMP) [23] was employed to enhance training efficiency.

For the instruction tuning (IT) stage (Stage 2), the RNA-GPT architecture was further trained for an
additional 10 epochs, maintaining the same batch size of 1, weight decay of 0.05, and reducing the
warm-up steps to 200. The configuration of the AdamW optimizer and the use of AMP remained
consistent with those used in Stage 1.

The training process was executed on two Nvidia A100 GPUs (40GB) and required a total of 1 week
for both stages combined.

We will extend the training process by scaling RNA-GPT to a larger configuration using the full
407,616 dataset from RNA-QA.

9



B Case Studies

RNA Central ID: URS000000F6A7_645133
RNA Sequence: GGCUAGCUCAAUCGGUAGAGCGUGAGACUCUUAAUCUCAAGGU-
UGUGGGUUCGACCCGUAAGCCU

User: What type of RNA is the RNA?

Vanilla LLM: *RNA Sequence Type:* The RNA sequence provided is a DNA sequence.
*DNA*

RNA-GPT (MA): The RNA in question is a non-coding RNA (ncRNA) that is a compo-
nent of the ribonucleic acid (RNA) family. Specifically, it is a small nuclear RNA (snRNA) that
plays a crucial role in the regulation of gene expression and is involved in the processing of
other RNAs.

RNA-GPT (IT): The RNA is a non-coding RNA (ncRNA).

User: What species does this RNA belong to and what are this RNA’s various forms?

Vanilla LLM: (multiple answer)\nIt belongs to Homo sapiens (Humans) and its various forms
include...

RNA-GPT (MA): The RNA belongs to the species Homo sapiens (Human). The various
forms of this RNA are: primary transcripts, mature transcripts, and non-coding RNAs.

RNA-GPT (IT): The RNA belongs to Plasmodium falciparum and its various forms
include tRNA-Phe.

User: What biological mechanisms does the RNA play a role in?

Vanilla LLM: The RNA sequence provided is a piece of ribosomal RNA (rRNA).

RNA-GPT (MA): The RNA is involved in various biological processes, particularly in
gene regulation and epigenetic modification.

RNA-GPT (IT): The RNA plays a role in the regulation of gene expression and the
maintenance of cellular homeostasis.

Figure 6: Interaction between user and RNA-GPT on URS000000F6A7_645133

10



RNA Central ID: URS0000012D5F_15368
RNA Sequence: GUUGCUGUGGUGUAGUGGUUAUCACGUCAGUCUUACACACU-
GAAGGUCUCCAGUUCGAUCCUGGGCAGCAACA

User: What significance does mitochondrial ribosomal RNA (rRNA) have in relation to the
RNA?

RNA-GPT: Mitochondrial rRNA is significant in relation to the RNA, as it is involved in
protein synthesis and has implications for genetic engineering and biotechnology applications.

User: What methods are used to analyze the sequence and structural variations of the RNA?

RNA-GPT: The methods used to analyze the sequence and structural variations of the
RNA include ambivalent covariance models and non-negative matrix factorization (NMF).

Figure 7: Interaction between user and RNA-GPT on URS0000012D5F_15368

RNA Central ID: URS000006DA05_9925
RNA Sequence: UGAAGUGCUGUGGAUUUCUUUGUGAAUCACCAUAU-
CUAAGCUAAUGUGGUGGUGGUUUACAAAGUAAUUCAUAGUGCUUCA

User: What diseases are associated with the RNA?

RNA-GPT: The RNA is associated with osteosarcoma, breast cancer, and epilepsy.

User: How is the RNA implicated in cholangiocarcinoma (CCA)?

RNA-GPT: The RNA is significantly upregulated in CCA and may serve as a biomarker
for early detection and diagnosis.

User: What is the role of the RNA in CCA cell growth?

RNA-GPT: In CCA cell growth, the RNA acts as a tumor suppressor by regulating
BCL-XL expression.

User: What is the role of circular RNAs (circRNAs) in relation to this RNA?

RNA-GPT: CircRNAs play a significant role in the regulation of gene expression and
have been linked to various diseases, including cancer.

Figure 8: Interaction between user and RNA-GPT on URS000006DA05_9925 (Part 1)
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User: How does the knockdown of CDR1as affect gastric cancer (GC) cells?

RNA-GPT: The knockdown of CDR1as in GC cells inhibits cell proliferation, migration,
and invasion, indicating its potential as a therapeutic target.

User: How does the RNA function as a tumor suppressor in CCA treatment?

RNA-GPT: The RNA functions as a tumor suppressor by regulating BCL-XL and BCL-2
expression, which are key regulators of apoptosis.

User: What impact does the RNA have on myotube area and fusion index in DM1?

RNA-GPT: The RNA has a significant impact on myotube area and fusion index in DM1,
indicating its potential role in muscle regeneration.

User: What species does this RNA belong to and what are this RNA’s various forms?

RNA-GPT: The RNA belongs to the chimpanzee (Pan troglodytes) and its various forms
include miRNAs, long non-coding RNAs, and circular RNAs.

Figure 9: Interaction between user and RNA-GPT on URS000006DA05_9925 (Part 2)
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