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Abstract

We are launching a machine learning (ML) competition focused on particle pick-
ing in cryo-electron tomography (cryoET) data, a crucial task in structural biology.
To support this, we have created a comprehensive suite of open-source tools to
develop resources for our competition, including copick for dataset management,
napari plugins for interactive visualization, utilities for converting particle picks
to segmentation masks, and PyTorch tools for custom dataset sampling. These
resources streamline the processes of data handling, labeling, and visualization,
allowing participants to focus on model development. By leveraging these tools,
competitors will be better equipped to tackle the unique challenges of cryoET data
and push forward advancements in particle picking techniques.

1 Introduction

We are hosting a machine learning competition to attract researchers focused on developing meth-
ods for identifying particle positions in 3D images acquired with cryo-electon tomography (cryoET).
CryoET is a powerful technique for visual proteomics, enabling detailed exploration of biological
systems at the molecular level. However, its application in large-scale experimentation is constrained
by low throughput, particularly for identifying the 3D coordinates of proteins or macromolecular
complexes within tomograms — crucial for achieving near-atomic resolutions with sub-tomogram
averaging. This step of identifying particle positions is termed particle picking, the process of iden-
tifying and labeling individual particles within tomograms. Our competition is focused on support-
ing model development and evaluation for particle picking in cryoET data with an emphasis on
identifying multiple particle types of varying sizes in experimental data.

Particle picking in cryoET is typically approached as an object detection or segmentation problem.
Consequently, some of the most successful algorithms are based on model architectures such as
YOLO [, ResNet [2], and U-Net [3} 4]]. Nevertheless, in practice, model performance can vary
significantly depending on the dataset and the particle of interest.

To advance the field, several machine learning competitions have been organized with the aim of im-
proving state-of-the-art techniques for particle picking. Unlike our competition, previous challenges
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in cryoEM have primarily focused on synthetic data. Past competitions in cryo-electron microscopy
(cryoEM) and cryoET relied on synthetic data or focused on specific particles, such as ribosomes.
For example, HREC 2020 for cryoEM [3]], cryoET SHREC 2021 [6], and competitions on hetero-
geneity in cryoEM [7]] have provided valuable benchmarks. Although these competitions have had a
positive impact on the field, synthetic data is not ideal for training machine learning models. It often
fails to capture the full range of distortions, artifacts, and noise often present in experimental data —
which is critical for developing robust generalizable algorithms for real-world applications.

Our competition is designed to identify models that can: (1) maximize prediction performance when
trained on a small number of annotated tomograms, and (2) perform robustly across a range of
particle sizes. This setup reflects the typical scenario faced by cryoET researchers who need to
minimize annotation effort while studying a diverse set of particles, often with only a few tomograms
available for training. This paper outlines the open-source tools we have developed as resources to
support participants in this and future cryoET machine learning competitions.

2 Data

To preserve the integrity of our competition, the data is thoroughly described in a manuscript was
under embargo until the official launch of the competition on November 6, 2024. Details on the
competition and the data can be found in this paper [8]].

In this paper we have used a publicly available synthetic dataset with similar characteristics to
demonstrate the open-source tools developed to support cryoET particle picking competitions. This
dataset uses PolNet [9] to simulate 27 tomograms containing particles of varying sizes. This dataset
is available as deposition CZCDP:10439 on the CZ cryoET Data Portal [10]. The dataset includes
not only tomograms but also ground-truth picks in the copick format and binary segmentation masks
for each particle species. An example tomogram is illustrated in Fig. [I] and is available here:
https://cryoetdataportal.czscience.com/datasets/10439,
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Figure 1: The orthogonal views of tomogram number 20 of the dataset 10439 through CryoET Data
Portal.


https://cryoetdataportal.czscience.com/datasets/10439

3 Methods and Tools

In this paper, we present the suite of open-source tools we have used and created as resources to
support participants in our cryoET particle picking competition. These tools cover a range of func-
tionalities, including data management, visualization, data labeling, and PyTorch dataset loading
and sampling.

For data management, we developed copick (https://github.com/copick/copick), a generic
interface designed to handle cryoET datasets. To facilitate visualization, our example notebooks
provide example code using Matplotlib, along with a custom napari plugin that enables users to vi-
sually browse and interact with copick projects. To streamline data labeling, we created copick-utils
(https://github.com/copick/copick-utils), a collection of utility functions that includes
conversion between point annotations and semantic segmentation masks. For PyTorch Dataset inte-
gration, we developed copick-torch (https://github.com/copick/copick-torch), which of-
fers a PyTorch Dataset tailored for copick and sample code for visualizing sampling patterns within
tomograms. Together, these tools allow us to create unified resources that simplify participation
in cryoET particle picking competitions, helping researchers and developers focus on advancing
particle picking techniques.
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Figure 2: The software ecosystem that is used in resources for our cryoET ML Challenge.

Copick enables accessing, manipulating, and storing multimodal cryoET data—tomograms,
collections of particle picks, segmentation masks, and feature sets. Copick provides a storage-
agnostic API that interfaces seamlessly with various data sources, including local, remote, and
cloud-based platforms, such as the CZ CryoET Data Portal. The API is also used in other tools
that are discussed in this paper, which makes it easier for our competition resources to enable easy
reuse of competitors machine learning tools and pipelines across different data sources. We suggest
that it is critical for competitors in cryoET particle picking competitions to be able to readily adapt
and extend their datasets. An example copick project structure can be seen in the right-side panel of

Fig.3]

Visualizing data from a copick project can facilitate model debugging. A key step in model
development and evaluation for image-based ML models is visualization. In our example notebooks
we provide multiple methods for visualization of copick data: Matplotlib and napari. Furthermore,
other more specialized tools like ArtiaX [[11] can be leveraged for achieving a more holistic visual-
ization from a biological perspective (e.g. visualization of particle structures in context).


https://github.com/copick/copick
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To support interactive visualization we developed the napari-copick plugin which allows users to
browse tomograms, particle picks, and segmentations directly from copick datasets. As a part of the
visualization demos, we provide examples of visualizing PyTorch dataloaders, which are discussed
in a later section. An example of visualizing a copick project using the napari-copick plugin is
shown in Fig.[3]

Loaded Picks: Alkaline phosphatase, placental type

Figure 3: Example synthetic tomogram with picks overlaid in napari-copick.

Converting between particle picks and segmentations. Models that approach particle picking
as a supervised segmentation problem (e.g., DeepFinder [12]] and Topaz [13]]) require semantic seg-
mentation masks for training, and generate segmentation masks as output. However, cryoET particle
picking annotations are generally represented as single points for subtomogram averaging. To ad-
dress this, segmentation based models often use particle coordinates to generate a segmentation
mask, and then extract particle coordinates from segmentation masks. We provide routines for per-
forming these operations on copick projects from the copick-utils Python module.

Our example notebooks provide our current guidance on creating these masks, but we encourage
competitors to consider their own mask generation strategies. We create segmentation masks for
particles by rasterizing, “painting,” each pick as a sphere that has a diameter based upon the particle
type (for example, 50 % 4 5% the ribosome diameter). To convert segmentation masks back to
particle picks we use connected components to convert semantic masks into instance masks, then
perform watershed on each instance mask to split connected merged particles into separate instances,
and finally take the centroid of each instance as a particle pick. An example figure showing particles
and their corresponding rasterized masks is shown in Fig. [d]

Using and visualizing datasets with PyTorch. Innovations in data augmentation and dataset han-
dling can have a significant impact on model performance. To facilitate investigations into copick
datasets, we create example notebooks that use PyTorch-based datasets/dataloaders for copick from
the copick-torch Python module, as well as tools to support the visualization of datasets (see Fig.[3).
The CopickDataset for torch provides patchwise-sampling through the morphospaces python mod-
ule, including the ability to tune segmentation density, striding, and other aspects of patch sampling.
Figure [5b] shows a visualization of a CopickDataset in napari.

Example training and inference notebooks. We provide example notebooks utilizing the copick
ecosystem for data handling (loading and preprocessing), allowing the challenge participants to fo-
cus on model development without having to worry about unfamiliarity with the cryoET data modal-



Figure 4: Picks from synthetic data and the output of segmentation from picks.
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Figure 5: Two panels showing PyTorch dataset samples for different dataloader configurations.

ity. Our core notebook is provided for using a 3D U-Net with PyTorch via MONALI [[14]. This note-
book and model is designed to be compatible with all the tools described in this paper. MONALI also
provides additional models, such as ResUNet and Swin-UNETR, and our notebooks can be readily
adapted to using these models as well. We provide example notebooks (the MONAI 3D U-Net,
TomoTwin, and DeepFindET) in this repository https://github.com/czimaginginstitute/
2024_czii_mlchallenge_notebooks.

Getting more data for training. Our competition provides a limited amount of experimental to-
mograms for training data, but we supplement this challenge with by providing example synthetic
data, tools to support generating synthetic data, and tools for accessing the CZ CryoET Data Por-
tal. Generated synthetic data has the benefit of not only controlling the ground truth for particle
locations, but the complete segmentation mask. We leverage PolNet [9] to generate tomograms
and use a generic album-based [15]] tool for tomogram generation https://copick.github.io/
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copick-catalog/polnet/generate-copick-project. Copick also interfaces with data por-
tals, which can serve as another source of experimental data for supplementing model training.

4 Discussion and Conclusion

We have described a collection of open-source tools that we have leveraged to create example note-
books for cryoET particle picking competitions. These tools encompass a range of functionalities,
including dataset management, automated data annotation generation, example model implementa-
tions, visualization, and synthetic data generation. The examples and notebooks presented in this
paper demonstrate the end-to-end process of data exploration to model development and genera-
tion of predictions. By offering these resources, we aim to empower a broad audience, enabling
participation in cryoET particle picking competitions with minimal prior experience in the domain.

Acknowledgments and Disclosure of Funding

CZ Imaging Institute is made possible with support from the Chan Zuckerberg Initiative (CZII-
2023-327779).

References

[1] Thorsten Wagner, Felipe Merino, Markus Stabrin, Toshio Moriya, Claudia Antoni, Amir Apel-
baum, Philine Hagel, Oleg Sitsel, Tobias Raisch, Daniel Prumbaum, et al. Sphire-cryolo is
a fast and accurate fully automated particle picker for cryo-em. Communications biology,
2(1):218, 2019.

[2] Gavin Rice, Thorsten Wagner, Markus Stabrin, Oleg Sitsel, Daniel Prumbaum, and Stefan
Raunser. Tomotwin: generalized 3d localization of macromolecules in cryo-electron tomo-
grams with structural data mining. Nature methods, 20(6):871-880, 2023.

[3] Tristan Bepler, Kotaro Kelley, Alex J Noble, and Bonnie Berger. Topaz-denoise: general deep
denoising models for cryoem and cryoet. Nature communications, 11(1):5208, 2020.

[4] Emmanuel Moebel, Antonio Martinez-Sanchez, Lorenz Lamm, Ricardo D Righetto, Wojciech
Wietrzynski, Sahradha Albert, Damien Lariviere, Eric Fourmentin, Stefan Pfeffer, Julio Or-
tiz, et al. Deep learning improves macromolecule identification in 3d cellular cryo-electron
tomograms. Nature methods, 18(11):1386—-1394, 2021.

[5] Ilja Gubins, Marten L Chaillet, Gijs van Der Schot, Remco C Veltkamp, Friedrich Forster,
Yu Hao, Xiaohua Wan, Xuefeng Cui, Fa Zhang, Emmanuel Moebel, et al. Shrec 2020: Classi-
fication in cryo-electron tomograms. Computers & Graphics, 91:279-289, 2020.

[6] Tlja Gubins, Marten L. Chaillet, Gijs van der Schot, M. Cristina Trueba, Remco C. Veltkamp,
Friedrich Forster, Xiao Wang, Daisuke Kihara, Emmanuel Moebel, Nguyen P. Nguyen, Tommi
White, Filiz Bunyak, Giorgos Papoulias, Stavros Gerolymatos, Evangelia I. Zacharaki, Kon-
stantinos Moustakas, Xiangrui Zeng, Sinuo Liu, Min Xu, Yaoyu Wang, Cheng Chen, Xuefeng
Cui, and Fa Zhang. SHREC 2021: Classification in Cryo-electron Tomograms. In Silvia
Biasotti, Roberto M. Dyke, Yukun Lai, Paul L. Rosin, and Remco C. Veltkamp, editors, Euro-
graphics Workshop on 3D Object Retrieval. The Eurographics Association, 2021.

[7] Miro A. Astore, Geoffrey Wollard, David Silva-Sanchez, Wenda Zhao, Khanh Dao Duc, Niko-
laus Grigorieff, and Pilar Cossio. The inaugural flatiron institute cryo-em heterogeneity com-
municty challenge, 2023.

[8] Ariana Peck, Yue Yu, Jonathan Schwartz, Anchi Cheng, Utz Heinrich Ermel, Saugat Kandel,
Dari Kimanius, Elizabeth Montabana, Daniel Serwas, Hannah Siems, et al. Annotating cryoet
volumes: A machine learning challenge. bioRxiv, pages 202411, 2024.

[9] Antonio Martinez-Sanchez, Lorenz Lamm, Marion Jasnin, and Harold Phelippeau. Simulating
the cellular context in synthetic datasets for cryo-electron tomography. bioRxiv, pages 2023—
05, 2023.


https://copick.github.io/copick-catalog/polnet/generate-copick-project
https://copick.github.io/copick-catalog/polnet/generate-copick-project

[10]

[11]

[12]

[13]

[14]

[15]

Utz Ermel, Anchi Cheng, Jun Xi Ni, Jessica Gadling, Manasa Venkatakrishnan, Kira Evans,
Jeremy Asuncion, Andrew Sweet, Janeece Pourroy, Zun Shi Wang, et al. A data portal for
providing standardized annotations for cryo-electron tomography. Nature Methods, pages 1-3,
2024.

Utz H Ermel, Serena M Arghittu, and Achilleas S Frangakis. Artiax: an electron tomography
toolbox for the interactive handling of s ub-tomograms in ucsf chimerax. Protein science,
31(12):e4472, 2022.

Emmanuel Moebel, Antonio Martinez-Sanchez, Damien Lariviere, Eric Fourmentin, Julio Or-
tiz, Wolfgang Baumeister, and Charles Kervrann. Deep learning improves macromolecules
localization and identification in 3d cellular cryo-electron tomograms. bioRxiv, 2020.

Tristan Bepler, Andrew Morin, Micah Rapp, Julia Brasch, Lawrence Shapiro, Alex J. Noble,
and Bonnie Berger. Positive-unlabeled convolutional neural networks for particle picking in
cryo-electron micrographs. Nature Methods, 2019.

M Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin
Murrey, Andriy Myronenko, Can Zhao, Dong Yang, et al. Monai: An open-source framework
for deep learning in healthcare. arXiv preprint arXiv:2211.02701, 2022.

Jan Philipp Albrecht, Deborah Schmidt, and Kyle Harrington. Album: a framework for
scientific data processing with software solutions of heterogeneous tools. arXiv preprint
arXiv:2110.00601, 2021.



	Introduction
	Data
	Methods and Tools
	Discussion and Conclusion

