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Abstract

Representation learning and de novo generation of proteins are pivotal computa-
tional biology tasks. Whilst natural language processing techniques have proven
highly effective for protein sequence modelling, structure modelling presents a
complex challenge, primarily due to its continuous and three-dimensional nature.
Motivated by this discrepancy, we introduce an approach using a vector-quantized
autoencoder that effectively tokenizes protein structures into discrete representa-
tions. This method transforms the continuous, complex space of protein structures
into a manageable, discrete format with a codebook ranging from 4096 to 64000
tokens, achieving high-fidelity reconstructions with backbone root mean square
deviations (RMSD) of approximately 1-5 Å. To demonstrate the efficacy of our
learned representations, we show that a simple GPT model trained on our code-
books can generate novel, diverse, and designable protein structures. Our approach
not only provides representations of structures, but also mitigates the challenges of
disparate modal representations and sets a foundation for seamless, multi-modal
integration, enhancing the capabilities of computational methods in protein design.

1 Introduction

The application of machine learning to large-scale biological data has ushered in a transformative
era in computational biology, advancing both representation learning and de novo generation. The
integration of machine learning in molecular biology has led to significant breakthroughs [Sapoval
et al., 2022, Chandra et al., 2023, Khakzad et al., 2023, Jänes and Beltrao, 2024], spanning diverse
and complex data modalities such as sequences, structures, functional descriptors.

The deep learning landscape is increasingly centered around attention-based architectures, particularly
transformers [Vaswani et al., 2017], due to their performance and scalability. Transformers have
proven effective across various domains, including representation [Radford et al., 2021], image
and audio generation [Chen et al., 2020, Chang et al., 2022, Ziv et al., 2024], and reinforcement
learning [Chen et al., 2021, Boige et al., 2023]. Large multi-modal models (LMMs) leveraging
transformer backbones are emerging as key tools in ubiquitous AI (GPT4 [Achiam et al., 2023],
LLaVA [Liu et al., 2024], Gemini [Gemini et al., 2023], Flamingo [Alayrac et al., 2022]), text-
conditioned generation of images (Parti [Yu et al., 2022b], Muse [Chang et al., 2023]) and sounds
(MusicGen [Copet et al., 2023]), and even specialized fields like medicine (Med-Gemini [Yang et al.,
2024b], Med-PaLM [Tu et al., 2024]) and genomics (ChatNT [Richard et al., 2024]). These LMMs
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Figure 1: Schematic overview of our approach. The protein structure is encoded as a graph to extract
features from using a GNN. This embedding is quantized before being fed to the decoder to estimate
the positions of backbone atoms.

use pre-trained encoders to combine modalities in sequence space. However, a methodology for
applying sequence modeling to protein structures is yet to be established. Foldseek [van Kempen
et al., 2024] proposes a quantized autoencoder to encode protein geometry, successful for database
search and augmenting residue-based vocabularies in LMMs [Su et al., 2024]. However, it only
extracts local features, preventing its use for tasks like structure generation or binding prediction
that require global information [Krapp et al., 2023]. Structure-based modeling of proteins remains
challenging due to their 3D and continuous nature, complicating the direct application of transformer
models designed for discrete data. Instead, bespoke geometric deep learning methodologies are
employed, such as GNN [Dauparas et al., 2022, Krapp et al., 2023] and structure-aware modules as in
AlphaFold [Jumper et al., 2021]. Generative modeling of structures typically uses methods designed
for continuous variables, such as diffusion [Watson et al., 2023, Yim et al., 2023] and flow matching
[Bose et al., 2024], rather than discrete-variable models successful in sequence modeling.

To address this gap, we learn quantized representations of protein structures to leverage sequence-
based language models. Our objectives are: (i) To encode protein structures in a discrete latent
space: We propose transforming structural information of proteins into discrete sequential data,
enabling seamless integration with sequence-based models. (ii) To achieve a low reconstruction
error: We aim to minimize the reconstruction error typically reaching the range of 1-5 Ångströms.
Our contributions are threefold. First, we introduce quantized autoencoders that discretize protein
structures into sequences of tokens while preserving information for accurate reconstruction. Second,
we validate our autoencoders through qualitative and quantitative analysis, and various ablation
studies. Third, we demonstrate the practicality of the learned representations by training a simple GPT
model on our codebook, which successfully generates novel, diverse, and structurally viable protein
structures. All source code is publicly available online (https://github.com/instadeepai/
protein-structure-tokenizer/).

2 Method

2.1 Protein Structure Autoencoder

Our objective is to train an autoencoder that maps protein structures to and from a discrete latent
space of sequential codes. Following prior works [Yim et al., 2023, Wu et al., 2024], we consider the
backbone atoms of a protein, N−Cα−C−O, to define the overall structure. For a protein consisting of
N residues, we seek to map its structure, represented by the tensor of the backbone atoms coordinates
p ∈ RN×4×3, to a latent representation z̃ = [z̃1, . . . z̃N

r
], where a r is a downsampling ratio,

controlling the size of the representation. Note that each element z̃i can only take a finite number of
values, with the collection of all possible values defining a codebook C. A schematic overview of the
our autoencoder is depicted in Figure 1. In this section, we focus on: the encoder eθ extracting a set
of Nr embeddings of dimension c denoted z ∈ RN

r ×c , the quantizer qϕ that discretizes z to obtain a
quantized representation z̃, and the decoder dψ that predicts a structure p̃ ∈ RN×4×3 from z̃. The
learnable parameters are respectively denoted (θ, ϕ, ψ) and the learning setting summarizes as:

p
eθ7−→ z

qϕ7−→ z̃
dψ7−→ p̃.
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Encoder The encoder maps the backbone atoms positions p ∈ RN×4×3, to a continuous downsam-
pled continuous representation z ∈ RN

r ×c where r is the downsampling ratio:

eθ : p ∈ RN×4×3 7→ z ∈ R
N
r ×c (1)

Note that when the downsampling ratio r is set to 1, each component zi ∈ Rc can be interpreted as
the encoding of residue i. This representation learning task is similar to mapping point-clouds to
sequences [Yang et al., 2024a, Boget et al., 2024]. Inverse folding [Ingraham et al., 2019, Dauparas
et al., 2022], which estimates amino acid sequences from protein structures, is another example.
ProteinMPNN has shown remarkable success in latter task. Following their design, we parameterize
our encoder using a Message-Passing Neural Network (MPNN) [Dauparas et al., 2022]. Additionally,
we introduce an attention mechanism, detailed in Appendix A.2 and Algorithm 2, to compress the
structure representation by a downsampling ratio r. The encoding scheme is detailed in Appendix A.3.

Quantization The quantizer plays a crucial role by discretizing continuous latent representations
into discrete codes. Instead of employing traditional direct codebook learning methods [van den Oord
et al., 2017, Razavi et al., 2019], we adopt the Finite Scalar Quantization (FSQ) framework [Mentzer
et al., 2024], which we found to be more stable during training. FSQ learns a discrete latent space by
rounding a bounded low-dimensional encoding of the latent representation. Consider zi ∈ Rc, the
ith element of the continuous encodings z, and the quantization levels L = [L1, . . . , Ld] ∈ Nd. Its
discretized counterpart, denoted as z̃i ∈ Zd, typically with d ≤ 8, is defined by:

z̃i = round
(
L

2
⊙ tanh(Wzi)

)
(2)

where ⊙ the element-wise multiplication andW ∈ Rd×c is a weight matrix (details in Appendix A.2).
In doing so, each quantized vector z̃i can be mapped to an index in {1, . . . ,

∏d
j=1 Lj}. This defines a

codebook by its indices, associating an index to a unique combination of the each dimension values.

Decoder The decoder is tasked with estimating a structure p̂ from the quantized representation z̃:

dψ : z̃ ∈ R
N
r ×c 7→ p̃ ∈ RN×4×3 (3)

The task our decoder addresses formulates as a sequence to point-cloud task. A paradigmatic example
of such a task in biology is the protein folding problem, where a protein’s conformation is estimated
given its sequence of amino-acids. We second Jumper et al. [2021] who tackled this task proposing a
novel architecture for point cloud estimation from latent embeddings, parameterizing a point cloud
using frames defined by a tuple T = (R, t) where R is the frames’ orientation and t is the frame
center. The origin of the frame is set to the Cα carbon, and the orientation is defined using the nitrogen
and the other carbon atom, see details in Jumper et al. [2021] and Algorithm 3 and Appendix A.2.

Objective For training, we resort to the Frame Align Point Error (FAPE) loss, introduced in Jumper
et al. [2021], enabling to compare two sets of point clouds. Given a ground-truth frame Ti and
ground-truth atom position xj expressed in Ti, and their predictions Tp

i and xp
j , the FAPE Loss is:

LFAPE = ∥Tp
i
−1

(xp
j )−Ti

−1(xj)∥ (4)

We train our algorithm on around 310000 structures extracted from the PDB dataset [Berman et al.,
2000]. We defer datasets creation details and model hyperparameters to Appendix A.3.

3 Experiments

In this section we first evaluate, both qualitatively and quantitatively, our vector-quantized autoencoder
by considering the compression and reconstruction performance and demonstrate that our tokenizer
indeed permits high-accuracy reconstruction of protein sequences. We then further highlight how this
can be adapted to downstream tasks, by effectively training a de novo generative model for protein
structures using a vanilla decoder-only transformer model trained on the next token prediction task.
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3.1 Autoencoder Evaluation

Experiments We trained severl versions of the quantized autoencoder; with small (K = 4096
codes) and large (K = 64000) codebooks and increasing downsampling ratio (r) (from 1 to 4).
For the downsampling ratio of 1, we also trained codebooks with 432 and 1728 codes to further
show the compression ability of our algorithms. For each codebook we evaluate the reconstruction
performance achieved on the held out test set, to understand the trade-offs between compression and
expressivity associated with these hyperparameter choices.

Metrics To assess the reconstruction performances of the models, we rely on standard structual
biology metrics: The root mean square distance (RMSD) and the TM-score [Y. and J., 2005]. For
context, two structures are considered to have similar fold when their TM-score exceeds 0.5 [Xu and
Y., 2010] and a RMSD below 2Å is usually seen as approaching experimental resolution. We report
the metrics on two datasets: (1) left-out clusters of proteins (independent from the ones in the train
set) and (2) CASP15, a structural dataset recognized for containing complex structures.

Results Our results are summarised in Table 1. We find that with a codebook of K = 64000 and
a downsampling of r = 1; our average reconstruction has 1.59 Å RSMD and a TM-score of 0.95.
For comparison, we also report the reconstruction performance of the exact same models without
latent quantization. Whilst increasing the model capacity may allow these scores to be improved
even further, this is already approaching the limit of experimental resolution (which is to say, the
reconstruction errors are on par with the experimental errors in resolving the structures).

Table 1: Average Test set reconstruction results of our discrete auto-encoding method for several
down-sampling ratios and (implicit) codebook sizes. For CASP-15 we report the median of the
metrics due to the limited dataset size. Note that a RMSD below 2Å is considered of the order of
experimental resolution and two proteins with a TM-score > 0.5 are considered to have the same
fold. The compression is defined as: the number of bits necessary to store the N × 4× 3 backbone
positions divided by the number of bits necessary to store the N

r tokens multiplied by log2(#Codes).
Downsampling Number of Codes Compression Factor Results CASP15

RMSD (↓) TM-Score (↑) RMSD (↓) TM-Score (↑)

1

432 88 2.09 Å 0.91 1.75 Å 0.89
1728 71 1.79 Å 0.93 1.33 Å 0.94
4096 64 1.55 Å 0.94 1.25 Å 0.94

64000 48 1.22 Å 0.96 0.94 Å 0.97

without quantization − 0.97 Å 0.98 1.07 Å 0.93

2

4096 128 2.22 Å 0.90 1.73 Å 0.89
64000 96 1.95 Å 0.92 1.82 Å 0.90

without quantization − 1.45 Å 0.95 1.44 Å 0.90

4

4096 256 4.10 Å 0.81 2.79 Å 0.77
64000 192 2.96 Å 0.86 2.55 Å 0.80

without quantization − 2.19 Å 0.91 1.98 Å 0.84

Table 1 clearly indicates that increasing the downsampling factor or decreasing the codebook size
correspondingly impacts the reconstruction accuracy. Nevertheless in all cases we find that the achiev-
able reconstruction performance is still within a few angstrom with TM-scores clearly exceeding the
0.5 threshold on average. Finally, comparing to continuous autoencoders, our learned quantization
demonstrates significant information compression at the expense of only a small decrease in the
reconstruction precision of the order of 0.5− 1 Å.

The reconstruction performance is illustrated in Figure 5, where examples of the model’s outputs are
superimposed with their corresponding targets in the case of a downsampling factor of r = 2 and
K = 64000 codes. Visually, our model demonstrates its ability to capture the global structure of each
protein. Additionally, our model faithfully reconstructs local conformation of each protein preserving
essential secondary structures elements of the protein such as the α-helices and β-sheets.
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Figure 2: Evolution of the RMSD (left) and TM-score (right) distribution with the codebook size for
a dowsampling ratio of 1 on CASP-15 data.

This is also noticeable in Figure 2 that shows that, given a downsampling ratio, larger codebooks
effectively decrease the reconstruction errors.

3.2 De novo protein structure generation

Experiment We now demonstrate that our learned discrete autoencoder can be effectively leveraged
for downstream tasks. In particular, we consider generation of protein structures from a model trained
in our latent space as a paradigmatic demonstration of our tokenizers utility. This is not just because
generative models for de novo protein design are of great interest for drug discovery – enabling
rapid in silco exploration of the design space – but also as it directly leverages our compressed
representation of protein structures using established sequence modelling architectures.

Specifically, we tokenize our dataset (full details on dataset preparation for this experiment can be
found in Appendix A.4.1) using a downsampling factor of 1 and a codebook with 4096 codes (first
line of Table 1). More specifically, we train an out-of-the-box decoder-only transformer model with 20
layers, 16-heads and an embedding dimension of 1024 (344M parameters) on a next-token-prediction
task on the training split. This decoder-only model is used to generate new sequences of tokens which
are then mapped back to 3D protein structures using our pre-trained decoder.

Metrics We evaluate generated structures on designability, novelty, and diversity. Designability,
or self-consistency, uses ProteinMPNN [Dauparas et al., 2022] to predict sequences for generated
structures and refolds them using ESMFold [Lin et al., 2022] to measure structural similarity. We
report the proportion of proteins with TM-score (scTM) above 0.5 and RMSD (scRMSD) below
2Å. A useful generative model should produce varied samples, not mere replications. Diversity is
assessed via structural clustering, reporting the number of clusters normalized by the number of
generated sequences. Novelty compares generated structures to a reference dataset using TM-score,
considering structures novel if their maximum TM-score is below 0.5.We follow Yim et al. [2023]
for these metrics and provide more details in Appendix A.4.2.

Baselines We compare our model with recent competitive methods, namely FrameDiff [Yim et al.,
2023] and RFDiffusion [Watson et al., 2023]. Both use bespoke SE(3) diffusion models specifically
designed and trained the structure generation task. Note that, the state-of-the-art RFDiffusion
leverages the extensive pre-training of RoseTTAFold [Baek et al., 2021] on a large dataset and
requires considerable computational cost.

Results The results for different metrics are given in Table 2, with sampling strategies described in
Appendix A.4.3. Our GPT model generates protein structures comparable to specialized methods like
FrameDiff. We report self-consistency and diversity metrics for 1600 randomly sampled structures
from our validation in Table 2. While our method shows competitive performance in generating
designable domains, the results for novelty and diversity are more nuanced. Our model generates
structures closer to the reference dataset, possibly due to sampling parameters favoring modes of
the data distribution (Appendix A.4.3). Although generating structures that are novel and diverse is
desirable, structures that differ too much from the natural proteins found in the reference dataset, can
also indicate unrealistic structures, making the novelty and diversity metrics harder to interpret on their
own. Visualizing novelty against designability (Figure 8), we find that 9.01% of our samples are both
novel and designable, compared to 8.18% for FrameDiff and 58.58% for RFDiffusion. Additional
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Figure 3: Visualisation of generated samples (green) super-imposed with their self-consistent ESM-
predicted structures (blue).

results and analyses are provided in Appendix A.4.4. In Figure 3, we visualize random samples from
our model superimposed with ESM-predicted structures, showing diverse structures with non-trivial
secondary elements and close alignment with original samples, highlighting designability.

4 Conclusion

This work presents a methodology for learning a discrete representation of protein geometry, mapping
structures into sequences of integers while recovering near-native conformations upon decoding.
Our primary contribution is enabling the application of standard sequence-modeling techniques to
protein structures. The expressiveness of the tokenized representation is crucial for high-fidelity
reconstruction of 3D structures. Empirical and visual inspection confirm this for our methodology.
A proof-of-concept GPT model trained on tokenized PDB entries demonstrates competitive perfor-
mance with some recent diffusion-based models. While not yet matching seminal approaches like
RFDiffusion, the potential of sequence-modeling algorithms across diverse data modalities suggests
a promising direction for future research.
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V. Gligorijević, P. D. Renfrew, T. Kosciolek, J. K. Leman, D. Berenberg, T. Vatanen, C. Chandler,
B. C. Taylor, I. M. Fisk, H. Vlamakis, R. J. Xavier, R. Knight, K. Cho, and R. Bonneau. Structure-
based protein function prediction using graph convolutional networks. Nature Communications,
2021.

A. Herbert and M. Sternberg. MaxCluster: a tool for protein structure comparison and clustering.
arXiv, 2008.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,
L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den Driessche,
B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, O. Vinyals, J. Rae, and L. Sifre. An
empirical analysis of compute-optimal large language model training. In Advances in Neural
Information Processing Systems, 2022.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text degeneration.
In International Conference on Learning Representations, 2020.

C. Hsu, R. Verkuil, J. Liu, Z. Lin, B. Hie, T. Sercu, A. Lerer, and A. Rives. Learning inverse folding
from millions of predicted structures. In International Conference on Machine Learning, 2022.

J. Ingraham, V. Garg, R. Barzilay, and T. Jaakkola. Generative models for graph-based protein design.
In Advances in Neural Information Processing Systems, 2019.

7



J. Jänes and P. Beltrao. Deep learning for protein structure prediction and design—progress and
applications. Molecular Systems Biology, 2024.

B. Jing, S. Eismann, P. Suriana, R. J. L. Townshend, and R. Dror. Learning from protein structure
with geometric vector perceptrons. In International Conference on Learning Representations,
2021.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie,
B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals,
A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly accurate protein structure
prediction with alphafold. Nature, 2021.

H. Khakzad, I. Igashov, A. Schneuing, C. Goverde, M. Bronstein, and B. Correia. A new age in
protein design empowered by deep learning. Cell Systems, 2023.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved varia-
tional inference with inverse autoregressive flow. In Advances in Neural Information Processing
Systems, 2016.

L. F. Krapp, L. A. Abriata, F. Cortés Rodriguez, and M. Dal Peraro. Pesto: parameter-free geometric
deep learning for accurate prediction of protein binding interfaces. Nature Communications, 2023.

T. Kucera, C. Oliver, D. Chen, and K. Borgwardt. Proteinshake: Building datasets and benchmarks
for deep learning on protein structures. In Advances in Neural Information Processing Systems
Datasets and Benchmarks Track, 2023.

Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, A. dos Santos Costa, M. Fazel-Zarandi,
T. Sercu, S. Candido, et al. Language models of protein sequences at the scale of evolution enable
accurate structure prediction. bioRxiv, 2022.

H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. In Advances in neural information
processing systems, 2024.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

F. Mentzer, D. Minnen, E. Agustsson, and M. Tschannen. Finite scalar quantization: VQ-VAE made
simple. In International Conference on Learning Representations, 2024.

C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M. Thornton. CATH – a
hierarchic classification of protein domain structures. Structure, 1997.

A. Radford and K. Narasimhan. Improving language understanding by generative pre-training. arXiv,
2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Better language models and their
implications. Technical report, OpenAI, 2019.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In
International conference on machine learning, 2021.

A. Razavi, A. van den Oord, and O. Vinyals. Generating diverse high-fidelity images with VQ-VAE-2.
In Advances in Neural Information Processing Systems, 2019.

G. Richard, B. P. de Almeida, H. Dalla-Torre, C. Blum, L. Hexemer, P. Pandey, S. Laurent, M. Lopez,
A. Laterre, M. Lang, et al. Chatnt: A multimodal conversational agent for dna, rna and protein
tasks. bioRxiv, 2024.

L. Robinson, T. Atkinson, L. Copoiu, P. Bordes, T. Pierrot, and T. Barrett. Contrasting sequence
with structure: Pre-training graph representations with PLMs. In NeurIPS 2023 AI for Science
Workshop, 2023.

8



N. Sapoval, A. Aghazadeh, M. G. Nute, D. A. Antunes, A. Balaji, R. Baraniuk, C. J. Barberan,
R. Dannenfelser, C. Dun, M. Edrisi, et al. Current progress and open challenges for applying deep
learning across the biosciences. Nature Communications, 2022.

D. E. Scott, A. R. Bayly, C. Abell, and J. Skidmore. Small molecules, big targets: drug discovery
faces the protein–protein interaction challenge. Nature Reviews Drug Discovery, 2016.

J. Su, C. Han, Y. Zhou, J. Shan, X. Zhou, and F. Yuan. Saprot: Protein language modeling with
structure-aware vocabulary. In International Conference on Learning Representations, 2024.

B. Trippe, J. Yim, D. Tischer, D. Baker, T. Broderick, R. Barzilay, and T. S. Jaakkola. Diffusion prob-
abilistic modeling of protein backbones in 3D for the motif-scaffolding problem. In International
Conference on Learning Representations, 2023.

T. Tu, S. Azizi, D. Driess, M. Schaekermann, M. Amin, P. Chang, A. Carroll, C. Lau, R. Tanno,
I. Ktena, and o. others. Towards generalist biomedical AI. NEJM AI, 2024.

A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation learning. In
Advances in Neural Information Processing Systems, 2017.

M. van Kempen, S. S. Kim, C. Tumescheit, M. Mirdita, J. Lee, C. L. M. Gilchrist, and J. Söding. Fast
and accurate protein structure search with foldseek. Nature Biotechnology, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

J. L. Watson, D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern, A. J. Borst,
R. J. Ragotte, L. F. Milles, B. I. M. Wicky, N. Hanikel, S. J. Pellock, A. Courbet, W. Sheffler,
J. Wang, P. Venkatesh, I. Sappington, S. Vázquez Torres, A Lauko, V. De Bortoli, E. Mathieu,
S. Ovchinnikov, R. Barzilay, T. S. Jaakkola, F. DiMaio, M. Baek, and D. Baker. De novo design of
protein structure and function with RFdiffusion. Nature, 2023.

K. E. Wu, K/ K. Yang, R. van den Berg, S. Alamdari, J. Y. Zou, A. X. Lu, and A. P. Amini. Protein
structure generation via folding diffusion. Nature Communications, 2024.

J. Xu and Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinfor-
matics, 2010.

Zhang Y. and Skolnick J. Tm-align: a protein structure alignment algorithm based on the tm-score.
Nucleic Acids Residues, 2005.

L. Yang, Y. Tian, M. Xu, Z. Liu, S. Hong, W. Qu, W. Zhang, B. Cui, M. Zhang, and J. Leskovec.
VQGraph: Rethinking graph representation space for bridging GNNs and MLPs. In International
Conference on Learning Representations, 2024a.

L. Yang, S. Xu, A. Sellergren, T. Kohlberger, Y. Zhou, I. Ktena, A. Kiraly, F. Ahmed, F. Hormozdiari,
T. Jaroensri, E. Wang, E. Wulczyn, et al. Advancing multimodal medical capabilities of gemini.
arXiv, 2024b.

J. Yim, B. Trippe, V. De Bortoli, E. Mathieu, A. Doucet, R. Barzilay, and T. Jaakkola. SE(3) diffusion
model with application to protein backbone generation. In International Conference on Machine
Learning, 2023.

J. Yu, X. Li, J. Y. Koh, H. Zhang, R. Pang, J. Qin, A. Ku, Y. Xu, J. Baldridge, and Y. Wu. Vector-
quantized image modeling with improved VQGAN. In International Conference on Learning
Representations, 2022a.

J. Yu, Y. Xu, J. Y. Koh, T. Luong, G. Baid, Z. Wang, V. Vasudevan, A. Ku, Y. Yang, B. K. Ayan,
B Hutchinson, W. Han, Z. Parekh, X. Li, H. Zhang, J. Baldridge, and Y. Wu. Scaling autoregressive
models for content-rich text-to-image generation. Transactions on Machine Learning Research,
2022b.

A. Ziv, I. Gat, G. Le Lan, T. Remez, F. Kreuk, J. Copet, A. Défossez, G. Synnaeve, and Y. Adi. Masked
audio generation using a single non-autoregressive transformer. In International Conference on
Learning Representations, 2024.

9



A Appendix

A.1 Related Works

Learning from Protein Structures. Learning from protein structure is thriving research field that
encompasses a wide variety of tasks crucial task. For instance, inverse folding [Ingraham et al., 2019,
Hsu et al., 2022, Dauparas et al., 2022, Jing et al., 2021] or binding site estimation [Krapp et al., 2023,
Ganea et al., 2022] are critically enabling for drug design [Scott et al., 2016]. Others [Consortium,
2006, Robinson et al., 2023, Kucera et al., 2023, Gligorijević et al., 2021] focus on learning from
protein structure to provide a better understanding of the role of the structure, hence pushing the
knowledge frontier of biological processes.

Representation Learning of Protein Structures. ["Eguchi et al., 2022] learns a VAE using as
inputs matrix distances and predicting 3D coordinates. The supervision is done by comparing distance
matrices. Despite the straightforward nature of sampling from a VAE latent space, it often yields
subpar sample quality, see [Kingma et al., 2016]. Foldseek [van Kempen et al., 2024] propose to learn
a VQ-VAE on small chunks of protein comparing true and reconstructed local geometrical features.
Because of the locality of the data used in Foldseek, decoding only small chunks of structures, this
quantization defines an interesting tool for efficient structure database search but does not enable full
backbone structure sampling. Closer to our work, Gao et al. [2023] propose a quantized autoencoder
of protein structures, with however only limited reconstruction performances limiting its applicability.

Generation of Protein Structures. A substantial body of literature addresses the challenge of
sampling the protein structure space. Numerous studies have advocated for the use of diffusion-based
models Wu et al. [2024], Yim et al. [2023], Watson et al. [2023] or flow matching techniques [Bose
et al., 2024]. While many of these works, such as those by [Yim et al., 2023, Watson et al., 2023,
Bose et al., 2024], employ complex architectures to ensure invariance to rigid-body transformations,
[Wu et al., 2024] opted for an alternative parameterization directly preserving symmetries allowing
the authors to capitalize on conventional architectures, yet working only on small protein crops.

A.2 Architectures

We provide in this section additional details on the autoencoder architecture.

Quantizer For the FSQ quantizer, we use linear projections for encoding and decoding of the
codes following the original work of [Mentzer et al., 2024]. For all the experiments, we fix the
dimension of the codes to d = 6. Then, we quantize each channel into L unique values L1, . . . , Ld
and refer to the quantization levels as L = [L1, . . . , Ld]. The size of the codebook C is given by the
product of the quantization levels: |C| =

∏d
j=1 Lj . For the experiments with small codebooks with

|C| = 4096, we use L = [4, 4, 4, 4, 4, 4] and for large codebooks experiments, |C| = 64000, we take
L = [8, 8, 8, 5, 5, 5].

In more details the FSQ quantizer writes as Algorithm 1:

Algorithm 1 Finite Scalar Quantization

1: Input: zi ∈ Rc (residue embedding), Wproj ∈ Rc×d Wup−proj ∈ Rd×c (weight matrices), L
number of levels

2: Output: z̃i (Quantized output)
// Compute low dimensional embedding

3: zi =Wproj · zi
// Bound each element zij between [−Lj/2, Lj/2]

4: zij =
Li
2 tanh(zij)

// Round each element to the nearest integer
5: z̃i =Wup−proj · round(zi)
6: return z̃i

The product Wproj zi facilitates scalar quantization within a lower-dimensional latent space, thereby
defining a compact codebook. This is similar to the low dimensional space used for code index
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lookup in Yu et al. [2022a]. The subsequent up-projection operation then restores the quantized code
to its original dimensionality.

Resampling The cross-attention based resampling layer can be used for both down (resp. up)
sampling, effectively reduces (resp. increases) the length of the sequence of embeddings is described
in Algorithm 2.

Algorithm 2 Resampling Layer

1: Input: Queries, Inputs, Mask
2: Output: Queries, Inputs
3: Queries = CrossAttention(Inputs, Queries, Mask)
4: Queries = MLP(Queries) and Inputs = MLP(Inputs)
5: return (Queries, Inputs)

Local Cross-Attention Masking The encoder network used in this work preserves the notion of
residue order, as defined in the primary structure of a protein (i.e. its ordered sequence of amino
acids). We do not provide our algorithm with information regarding the amino-acids. However, we
do include the order of the residues from which extract the atoms coordinates. When downsampling
the encoder representations using a standard cross-attention operation, the resulting output virtually
includes information from any other residue embeddings, irrespective of their relative position in
the sequence. In order to encourage the downsampled representation to carry local information,
we propose to use local masks in the CrossAttention update of the resampling layer defined in
Algorithm 2. This will guide the network towards local positions (in the sequence) and prevent
information from distant embeddings. We illustrated the local masking in Figure 4, where only the
direct neighbors are kept in the attention update.

Input
Embeddings

Attention
Mask

Downsampled
Embedding

Figure 4: Illustration of the local attention mechanism when using 2 neighbors for aggregation.

Decoder For the decoder, we re-purpose the Structure Module (SM) of AlphaFold [Jumper et al.,
2021]. In Jumper et al. [2021], a pair of 1D and 2D features (called the single representation and pair
representation respectively) is extracted from the data by the Evoformer and fed to the SM to recon-
struct the 3D structure. Contrary to AlphaFold, we encode the structures with a set of 1D features - the
sequence of discrete codes obtained after tokenization. Inspired by the OuterProductMean module
of the Evoformer (Alg. 10 in SM of Jumper et al. [2021]), we compute a pairwise representation
of the structure by computing the outer product of the quantized sequence after projection, and
concatenating the mean with the pair relative positional encoding, as defined in Algorithm 3.

Algorithm 3 Pairwise Module

1: Input: s = (si)i≤N
2: Output: k = (kij)i,j≤N

// linear transforms of the initial embedding
3: sleft =Wleft.s, sright =Wright.s

// (n = k): protein length, d: embedding dim
4: k = einsum(nd, kd -> nkd, sleft, sright)
5: k = MLP(kij ,RelativePositionalEncoding(i, j)i,j≤N )
6: return k = (kij)i,j≤N
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Overall algorithm, the encoding and decoding processes write as described in Algorithm 4

Algorithm 4 Overall Algorithm Pseudo-Code

1: Input: p ∈ Rn×4×3, (θ, ϕ, ψ)
2: Output: z̃, p̃

// Compute embedding at the residue-level
3: z = GNN(p)

// Downsample N → N/r
4: z = Resampling(z)

// Quantize
5: z̃ = qϕ(z)

// Upsample N/r → N
6: s = Resampling(z̃)

// Make pairwise representation for decoding
7: k = PairWiseModule(s)

// Decode
8: p̃ = StructureModule(s,k)
9: return z̃, p̃ (Quantized output)

A.3 Training Details and Metrics

Dataset We use approximately 310000 entries available in the Protein Data Bank (PDB) [Berman
et al., 2000] as training data. The presence of large groups of proteins causes imbalances in the data
set, with many protein from the same family sharing structural similarities. To mitigate this issue,
we sample the data inversely proportional to the size of the cluster it belongs to when clustering
the data by sequence similarity using MMseqs21. We filter all chains shorter than 50 residues and
crop the structures that have more than 512 residues by randomly selecting 512 consecutive amino
acids in the corresponding sequences and resort to cluster size based sampling, see Appendix A.3.
We randomly select 90% of clusters training and use the remaining as test set. Amongst these 10%
withhold clusters, we retain 20% for validation, the remaining 80% structural clusters being used for
test.

Data Preprocessing We consider the graph G = (V, E) consisting of a set of vertices - or nodes
- V (the residues) with features f1V . . . f

|V |
V and a set of edges E with features f1E . . . f

|E|
E . For the

node features, we use a sinusoidal encoding of sequence position such that for the i-th residue, the
positional encoding is

(
ϕ(i, 1) . . . ϕ(i, d)

)
where d is the embedding size. For the edge features we

follow Ganea et al. [2022]. More specifically, for each defined by residue vi, a local coordinate
system is formed by (a) the unit vector ti pointing from the α-carbon atom to the nitrogen atom, (b)
the unit vector ui pointing from the α-carbon to the carbon atom of the carboxyl (−CO−) and (c)
the normal of the plane defined by ti and ui: ni = ui×ti

∥ui×ti∥ . Finally, setting: qi = ni × ui, the edge
features are then defined as the concatenation of the following:

• relative positional edge features: pj→i = (nTi u
T
i q

T
i )(xj − xi),

• relative orientation edge features: qj→i = (nTi u
T
i q

T
i )nj , kj→i = (nTi u

T
i q

T
i )uj , tj→i =

(nTi u
T
i q

T
i )vj ,

• distance-based edge features, defined as radial basis functions: fj→i,r = e
−

∥xj−xi∥
2

2σ2r , r =
1, 2...R where R = 15 and σr = 1.5.

Compression Factor We define the compression factor of Table 1 as the ratio between the number
of bits necessary for encoding the backbone position atoms and the number of bits necessary to store
the latent codes. With positions stored as 64-bit floats and latent codes stored as 16-bit unsigned

1The cluster size is readily available in the PDB data set: https://www.rcsb.org/docs/
grouping-structures/sequence-based-clustering

12

https://www.rcsb.org/docs/grouping-structures/sequence-based-clustering
https://www.rcsb.org/docs/grouping-structures/sequence-based-clustering


Figure 5: Visualisation of the model reconstruction (blue) super-imposed with the original structures
(green) for a downsampling factor of r = 2 and K = 64000 codes (fourth column of Table 1).
Each row shows a different structures seen from a different rotation angle (column). The length and
reconstruction RMSD are also given on the left of the most left column.

integers (since the highest number of latent codes is 64000 < 216), we can write the compression
factor as:

Compression Factor =
N × 4× 3× 64

N × log2(#Codes)/r
(5)

Model Hyperparameters Our encoder is a 3 layers message passing neural network following
Dauparas et al. [2022] and with swish activation function. The graph sparsity is set to 50 neighbours
per residue. When the downsampling ratio is r > 1, the resampling operation consists in a stack of
3 resampling layers as described in Algorithm 2, the initial queries being defined as the positional
encodings. We strictly follow the implementation of AlphaFold [Jumper et al., 2021] regarding the
structure module and use 6 structure layers.

Optimization and Training Details We found that clamping the FAPE loss with a threshold of
10 improves the training stability. The optimization is conducted using AdamW [Loshchilov and
Hutter, 2019] with β1 = 0.9, β2 = 0.95 and a weight decay of 0.1. We use a learning rate warm-up
scheduler, progressively increasing the learning rate from 10−6 to 10−3, and train the model for 250
epochs on 128 TPU v4-8 with a batch size 1024.

Additional Results We provide in Figure 5 the superimposition of reconstructed structures with
their original target.
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A.4 De novo Structure Generation

A.4.1 Training details

GPT hyperparameters We use a standard decoder only transformer following the implementation
of [Hoffmann et al., 2022] with pre-layer normalization and a dropout rate of 10% during training.
We follow Hoffmann et al. [2022] for the parameters choice with 20 layers, 16 heads per layers, a
model dimension of 1024 and a query size of 64, resulting in a model with 344M parameters.

Training and Optimization Given the tokenization of PDB training set, we respectively prepend a
<bos> and append <eos> tokens and pad all sequences with <pad> token so that all sequences are
of size 514. Hence, the maximum number of actual structural token per sequence is 512. The loss
associated to <pad> tokens is masked out.

For the optimization, we utilize a ADAMw with β1 = 0.95, β2 = 0.9 and a weight decay of 0.1.
We also employ a learning rate scheduling linearly warming-up increasing the learning rate up to
5.10−5 for the first 1000. Following the seminal work of Radford and Narasimhan [2018], we employ
embedding, residual and attention dropout with rate of 10% rate. We found the batch size to have a
crucial importance on the optimization and adopt a batch size 65,792 tokens per batch.

The total number of actual structural tokens is 70M. In that perspective, and in line with works such
as Hoffmann et al. [2022], we believe that leveraging large dataset of predicted structures such as
AlphaFold 2 can provide significant improvements when training the latent generative model.

A.4.2 Structure generation metrics

Designability We adopt the same framework than [Yim et al., 2023, Trippe et al., 2023, Wu et al.,
2024] to compute the designability or self-consistency score:

• Compute 8 putative sequences from ProteinMPNN [Dauparas et al., 2022] with a temperature
sampling of 0.1.

• Fold each of the 8 amino-acid sequences using ESMFold [Lin et al., 2022] without recycling,
resulting in 8 folds per generated structure.

• Compare the 8 ESMFold-predicted structures with the original sample using either TM-score
(scTM) or RMSD (scRMSD). The final score is taken to be the best score amongst the 8
reconstructed structures.

In Table 2, we report the proportion of generated structures that are said to be designable, i.e samples
for which scTM>0.5 (or scRMSD< 2 Å when using the RMSD).

Novelty For the reference dataset, we use the s40 CATH dataset [Orengo et al., 1997], publicly
available here. In order to reduce the computation time, we first retrieve the top k = 1000 hits using
Foldseek [van Kempen et al., 2024]. We then perform TM-align [Y. and J., 2005] for each match
against the targeted sample and report the TM-score corresponding to the best hit. A structure is then
considered as novel if the maximum TM-score against CATH (cathTM) is lower than 0.5 and report
the proportion of novel structures in Table 2

Diversity Finally, we measure the diversity of the samples similarly to Watson et al. [2023]. More
specifically, the generated samples are clustered using an all-to-all pairwise TM-score as the clustering
criterion and we observe the resulting number of structural clusters normalized by the number of
generated samples. For a diverse set of generated samples, each cluster should be composed of only a
few samples - or equivalently, the number of different clusters should be high. We use MaxCluster
Herbert and Sternberg [2008] with a TM-score threshold of 0.6 as in Watson et al. [2023].

A.4.3 Sampling

Baselines For each baseline methods, we follow a standardized process similar to that of Yim et al.
[2023] to generate the testing dataset: we sample 8 backbones for every length between 100 and

2https://alphafold.ebi.ac.uk/
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500 with length step of 5: [100, 105, . . . , 500]. We re-use the publicly available codes and use the
parameters reported in Watson et al. [2023] and Yim et al. [2023] respectively.

Generating Structures with a Decoder-Only Transformer Sampling for our method is a 2
steps process: first, sample a sequence of structural tokens from the trained prior described in
Appendix A.4.1, then reconstruct the structures using the trained decoder. There are many ways to
sample from a decoder-only transformer model [Vaswani et al., 2017, Radford and Narasimhan, 2018,
Radford et al., 2019, Holtzman et al., 2020]. We chose temperature sampling [Vaswani et al., 2017]
with other alternative sampling strategies such as top-k [Radford et al., 2019] and top-p (or nucleus)
sampling [Holtzman et al., 2020] resulting in little improvement at the cost of increased complexity.
As showed in Vaswani et al. [2017], the temperature controls the trade-off between the confidence
and the diversity of the samples. In order to tune the temperature, we sampled 2000 samples for each
temperature between 0.2 and 0.8 in step of 0.2 and compute the designability score for these samples.
As expected, the higher the temperature, the more varied the samples. Indeed, the distribution of
the proteins length, depicted in Figure 6, shows a greater diversity of higher temperatures. On the
other hand, with lower temperatures, the length distribution is more concentrated around few lengths.
Similarly we can see than for lower temperatures, the samples closer to the modes of the length
distribution (samples with length between 100 and approximately 300) achieve higher scTM-score
(see Figure 6). The results reported in Table 2 are obtained with a temperature of 0.6, as it achieves a
satisfying trade-off between designability and diversity.

Figure 6: Ablation of the temperature sampling. Left: Histogram of the generated structure length.
Right: Designability score vs temperature sampling.

Contrary to the baselines, our model learns the join distribution the length and the structures p(s) =∫
l
p(s, l)dl where the random variables s and l represent the structures and the length respectively.

Indeed, only the conditional distribution p(s|l) is modeled by the diffusion-based baselines. In
Figure 6, we show the length distribution learned by the model.Since we can only sample from the
joint distribution and not the conditional, we adopt the following approach: First, we sample 40,000
structures from the model (using a temperature of 0.6 as previously established). We then bin the
generated structures by length, with a bin width of 5 and bin centers uniformly distributed between
100 and 500, specifically: [100, 105, . . . , 500]. Finally, we limit the maximum number of structures
per bin to 10, randomly selecting 10 structures if a bin contains more than this number.
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Method scTM (↑) scRMSD (↑) Novelty Diversity

Ours 76.61% 41.00% 35.78% 71.4 %
FrameDiff 75.77% 25.31% 56.64% 82.0%
RFDiffusion 97.07% 71.14% 86.11% 95.0%

Validation Set 97.67% 82.36 % − 70.1%

Table 2: Structure generation metrics for our method alongside baselines (and nature)specifically
designed for protein structure generation. Self-consistent TM-score (scTM) and self-consistent
RMSD (scRMSD) are two different ways to asses the designability of the generated structure. Note
that while high novelty score is desirable, structures that are too far from the reference dataset can
also be a sign of unfeasible proteins.

A.4.4 Additional Results

Figure 7: Designability score vs samples length. Left: scRMSD score for different structure lengths.
Right: scTM score for different structure lengths.

Figure 8: Left: Novelty score for different structure lengths. Right: Novelty score versus designability
score.
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Figure 9: Distribution of the designability scores for novel domains (cathTM<0.5).
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