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Abstract

Peptides are becoming a major therapeutic modality. Although peptides are in-
tegral to biological processes, designing therapeutic peptides de novo remains a
challenging prospect. In this paper, we exploit the rich biological inductive bias
of amino acids and introduce HelixFlow, a flow-matching model to design full-
atom peptide structures. We incorporate a hotspot-specific sequence-conditioned
SE(3)-equivariant flow matching module for full-atom helical structure gener-
ation and a novel pocket-flow module to generate the binding peptides given
target receptors. HelixFlow presents substantial new architectural features over
the previous HelixDiff family of models including an equivariant all heavy atom
representation, a transformer-based model for flow prediction, and flexible-length
generation. By one-shot generation without assembling and direct coordinate gen-
eration, HelixFlow could become a more powerful tool for realistic peptide design
and open a door for more concise conditional generations on the atom level. As a
proof of concept, we designed an acetylated D-peptide of Insulin-like peptide 5
(INSL5) that selectively activates the relaxin family peptide receptor 4 (RXFP4).
Our designed D-INSL5 peptide shows good biological activity, comparable AKT
phosphorylation levels and high resistance to protease degradation, underscor-
ing the successful integration of deep learning and structure-based modeling and
simulation for target-specific peptide design.

1 Introduction

Computational peptide design has emerged as a pivotal field in biomedicine, driven by peptides’
crucial roles in cellular processes and their therapeutic potential as unique pharmaceutical agents.
Peptides are involved in nearly 40% of protein-protein interactions essential for cellular functions
[8]. Renowned for their high specificity and low toxicity compared to small molecules, peptides
have demonstrated commercial viability, as evidenced by several top-selling GLP-1 agonist drugs
[12]. Among peptide structures, α-helices are the most common secondary configuration in proteins,
crucial for protein stability, DNA-binding, and membrane traversal [8]. Despite their prominence,
native helical peptides pose challenges as drug candidates because they are susceptible to proteolysis
and exhibit fragile conformational stability without a protein scaffold[1]. To address these limitations,
peptides composed of D-amino acids present a promising alternative. These D peptides can engage
in specific heterochiral interactions with natural L-protein targets, offering improved stability and
reduced immunogenicity due to their mirror-image topologies. [5, 9, 10].

Previous D-peptide computational design methods like structural similarity search and HelixDiff
have their strengths—providing stable D-analogs and enabling de novo design, respectively [4, 14].
Utilizing these techniques, we have developed D-peptide analogs capable of activating the GLP-1,
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Figure 1: Conceptual overview of HelixFlow, hotspot-specific modules and pocketFlow modules.
A) Peptide Embedding Utilizing 3D Graphs and Overview of HelixFlow Architecture. This approach
encodes full-atom peptides as 3D graphs, with edge features represented by relative positions rij .
Node features encompass amino acid types, atom types, spatial coordinates, and masking information.
The process commences by sampling from a Gaussian prior that jointly models sequence and
structure, followed by iterative refinement using a neural Ordinary Differential Equation (ODE). At
each iteration, the SE(3) model predictions guide the flow direction, with the SE(3) model being
adapted from the Equiformer architecture. B) The hotspot-specific conditional module flowchart to
generate peptides. The module is given both the peptide length and the sequence information for
the target hotspots as shown. Then the hotspot-specific inpainting module generates the rest of the
regions as shown in the inpainting matrix. This model directly generates L helices since the training
data were L-peptides.C). Hotspot-specific inpainting module flowchart to generate D-peptides. The
flowchart is similar to B) but with an extra step called the mirror transformation, which transforms
the generated L-helices into D-peptides D). Pocket-specific inpainting module flowchart to generate
binding peptides. The features are transformed into irreducible representations using spherical
harmonic functions. Given the receptor only, the module would generate the binding peptides through
a similar inpainting process.

PTH, and GLP-2 receptors [4, 13, 11, 14]. However, the structural similarity search is limited by
the D-PDB database, and represents only a small fraction of possible stable helices. Conversely,
HelixDiff suffers from slow inference speeds and is constrained by fixed-length design.

Flow matching models have recently shown their ability to provide results comparable to diffusion
models at a lower computational expense, and they offer an innovative solution to mitigate stochastic
variability and expedite inference in the generative modeling of images and molecules. In protein
design, several research groups have updated their state-of-the-art models using flow matching, like
transitioning from FrameDiff[16] to FrameFlow[15]. Leveraging these advancements, our work
represents one of the first forays into peptide design utilizing flow matching.

We introduce HelixFlow, a SE(3)-equivariant flow matching model for generating flexible-length,
all-atom helical peptide structures. It features an effective inpainting mechanism for one-shot
α-helical D peptide design that aligns targets with desired hotspot configurations. We further
investigate the application of our model, referred to as the PocketFlow module, in designing peptide
binders. HelixFlow outperforms HelixDiff in both unconditional generations and precise atomic-level
conditional generation. As a proof of concept, we designed an acetylated D-peptide, D-INSL5Flow,
targeting the relaxin family peptide receptor 4 (RXFP4) by matching critical hotspots in Insulin-like
peptide 5 (INSL5), a hormone involved in metabolism and appetite regulation. While D-INSL5Flow
exhibited lower potency (EC50 of 1.97 µM) compared to L-INSL5 (EC50 of 0.29 µM) in stimulating
RXFP4-expressing cells, it showed comparable AKT phosphorylation levels and high resistance
to protease degradation. These results suggest that HelixFlow could become a powerful tool for
developing novel bioactive peptides with desired properties in early drug discovery.

2 Methods

We developed a flow-matching model named HelixFlow that can generate flexible, all-atom helical
peptide structures of varying lengths. These peptides are represented using graph-like structures that
incorporate a mixture of scalars and vectors to represent, where scalars include one-hot encoded
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sequence data and atom types, and vectors are atom coordinates, as illustrated in Fig S1. To accurately
capture all atomic details, we include all heavy atoms within each residue, resulting in a consistent
representation of 14 atoms per residue with padding where necessary. To ensure equivariance to
rotations and translations, we leverage the spherical harmonic functions to transform scalars and
vectors into irreducible representations. We leverage the Equiformer architecture proposed by Liao et
al. [6] as our flow prediction network, as depicted in Fig. 1A.

To be useful, we integrated a conditional hotspot-specific inpainting generation module, tailored
specifically to the receptor of interest, as shown in Fig. 1B and C. Hotspot residues, defined as
those crucial for target recognition, binding, and receptor activation, were first identified. Then, we
constrained the structural generation of novel peptides to these hotspots, ensuring functional designs.
The hotspot residue information provides contextual cues for the module to reconstruct the remaining
data. This conditional generation process, focused on filling in the masked graph neural network
matrix, resulted in more targeted and precise outputs. Consequently, we were able to generate a
variety of realistic conformational rotamers based on hotspot residues and amino acid types, achieving
superior conformation matching, particularly in D-peptide design settings.

Beyond the hotspot inpainting module, we are also exploring the use of our network for peptide
binder design using the PocketFlow module (Fig. 1D). To achieve this, we collected peptide-receptor
complex data from the Protein Data Bank (PDB). To properly represent the target chain, we included
only key target residues which are defined as those within a 5Å distance of the binding peptide on the
receptor. We then applied a similar inpainting process to generate peptide binders. However, unlike
the hotspot-specific module that requires the known hotspots, this approach uses only the receptor as
input to produce a complementary binding peptide.

Similar to other generative models like diffusion, flow matching learns to match the flow that
transforms a given prior distribution p0 towards the data distribution p1 through a learned ODE that
pushes the prior forward to data distribution by traveling from t0 to t1. The fundamental idea is that
given pt as the probability path, the vector field vt that generates pt could be learned efficiently by
decomposing the target probability path pt as a mixture of tractable conditional probability paths
pt(x|x1) , t ∼ U([0, 1]) . The density is conditioned on a data point x1 ∼ pdata which interpolates
between a prior distribution p0(x|x1) = q(x) and an approximate p1(x|x1) = δ(x − x1). Given
a conditional vector field ut(x|x1) that generates the time evolution of this conditional probability
path, one then regresses against the marginal vector field with a neural network. At convergence, the
learned vector vθ(x, t) is a neural ODE that evolves the prior distribution q(x) to the data distribution
pdata(x).

vθ(x, t) := Ex1∼pt(x1|x)[ut(x|x1)] (1)

More specific to our model, we used the Gaussian distribution as our prior, and we defined our
conditional probability path as below:

p(x|x1) = (1− t)x0 + tx1, x0 ∼ q(x0) (2)

The loss is then computed by comparing the predicted vector field vθ(x, t) with the true conditional
vector field ut(x|x1), combining both sequence loss and structural loss. This loss is minimized
using a neural network, which learns the vector field that transforms the prior distribution to the
data distribution. The implementation also incorporates conditional generation by masking specific
regions, such as the non-hotspot residues on the helical peptides, to condition the flow model on these
substructures. This approach enables accurate inpainting of peptide sequences and atomic positions.

3 Results

Unconditional sampling analysis.

We used HelixFlow to unconditionally generate 2000 synthetic helical structures ranging from 14
to 20 amino acids. The generated data exhibited a similar range of physical structural features to
the training data (Fig S3A-D). We also compared the results with HelixDiff. Notably, HelixFlow
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has shown better sequence recovery and Rosetta scores compared with HelixDiff, indicating a better
performance for α-helix structure generation (Fig. S2).

Hotspot-specific peptide generation analysis

We evaluated the performance of our hotspot-specific impainting module on test sets, generating
L-type or D-type helices that match the desired hotspot residues (Table 1). The evaluation involved
calculating the RMSD between the target and generated helix structures via partial alignment of the
hotspot and matched residue atoms. Impressively, 73% of the L-type 3-hotspot test cases showed
RMSDs of less than 1 Å for the target hotspots. Additionally, 16.9% had RMSDs between 1 and
1.5 Å (Table 1). The D-type test is to use our model for designing D-peptides that mimic bioactive
L-peptides. We applied a mirror conversion step to transform helices into generated D-peptides.
Given a set of hotspots in a known L-peptide, our model conditionally generated novel D-helix
peptide structures using the hotspot inpainting mechanism and mirror conversion. In 67.7% of the
D-type 3-hotspot and 47.9% of the D-type 4-hotspot test cases, the RMSDs of matching residues
were below 1.5 Å. HelixFlow outperforms HelixDiff in both D-type and L-type test sets.

Test Hotspots Method rmsd ( < 1Å) rmsd (1 ∼ 1.5Å) rmsd (1.5 ∼ 2Å) rmsd ( > 2Å)
L type 3 HelixFlow 73.0% 16.9% 10.1% 0%
L type 3 HelixDiff 58.0% 31.8% 5.7% 4.5%
D type 3 HelixFlow 14.6% 53.1% 29.2% 3.1%
D type 3 HelixDiff 9.4% 45.8% 41.7% 3.1%
D type 4 HelixFlow 3.1 % 44.8% 42.7% 9.4%
D type 4 HelixDiff 3.1 % 38.5% 45.8% 12.5%

Table 1: Evaluation of the hotspot-specific conditional generation by HelixDiff and HelixFlow.
For each set of rows, the same test cases were compared between HelixDiff and HelixFlow. The
lowest RMSD for each test case is calculated and summarized in the table. The hotspot columns
indicate the randomly selected hotspot residues in the test cases, and the test columns show the type
of the generated structures.

Pocket-specific peptide generation analysis

We extended our helixFlow network into binder design problem called PocketFlow module. We
perform the early ablation studies on two critical components to assess the performance: the structural
deviation from the original binder structure and sequence similarities, as shown in table 2. We utilized
the DiffAb [7] model and retrained on the same dataset as the control group. DiffAb [7] parameterized
protein backbones like AlphaFold2, where the atomic positions within a residue are determined by a
CA translation vector and a rotation matrix constructed from the positions of the N, CA, and C atoms.
Noted, the structures generated by the PocketFlow module and DiffAb were post-optimized using
OpenMM [3], a commonly used tool for energy minimization and internal structural optimization.
This module is still under development, and we plan to conduct more comprehensive studies in the
future.

Table 2: Evaluation of the generated peptide binders from the PocketFlow Module (left) Each
test set is evaluated by masking out the entire peptide and using two methods (DiffAb [7] and
PocketFlow) to generate 96 binding peptides. The RMSD and ARR are calculated as the average
value. DiffAb initially was a diffusion model for generating CDRs in antibodies targeted at antigens.
We retrained the model using the same peptide-receptor complex dataset using it as a control group.
(right) Example of Pocketflow generated sample (in green) aligned to the ground truth PDB structure
(in red).

De novo design of D-INSL5 agonists of the RXFP4 using HelixFlow
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We focused on key residues of INSL5 chain B: R13, Y17, R23, and W24 to design a new D-peptide
analog of INSL5 using HelixFlow. The ligand structure bound to full-length RXFP4 (PDB: 7yj4)
was used as a starting point. Several retro-inverted D-helix structures were generated with HelixFlow.
We evaluated the root mean square deviation (RMSD) between specific atoms in the starting helix
and the generated D-helix structures. The best design, D-INSL5_flow (RMSD = 1.44 Å), was
chosen for further modeling (Fig. S4A left). We also designed D-INSL5_mirror_image_search by
scanning a D-PDB database with our method for converting L-peptides into stable D-peptide analogs.
INSL5 was divided into two fragments, helix1 and helix2, with hotspots: R13, I16, Y17 (helix1) and
S21, R23, W24 (helix2). Several D-helix structures were generated, and the best-matched peptides
were joined to form D-INSL5_mirror_image_search (Fig. S4A Right). Both D-INSL5_flow and
D-INSL5_mirror_image_search were superimposed onto the Cryo-EM RXFP4-INSL5 structure to
model RXFP4 complexes with D-peptide analogs (Fig. S4B). The RXFP4+D-peptide complexes
were simulated in a POPC:PSM bilayer using 300 ns MD simulations, alongside a wild-type INSL5-
RXFP4 complex for comparison. The D-peptides are retro-inverted relative to INSL5, leading to
N-terminal embedding in RXFP4’s transmembrane domain, unlike INSL5, which interacts with
the receptor’s extracellular domain. To prevent electrostatic repulsion with RXFP4’s R208, the
N-terminal residues of both D-peptides were acetylated. Both D-peptides stabilized near their initial
positions according to their RMSD profiles, with D-INSL5_flow showing the smallest RMSD (Fig.
S5A). RMSF profiles indicated N-terminal stability of D-peptides was comparable to the C-terminal
segment of INSL5 chain B (Fig. S5B). The structural superposition of representative clusters from
the MD simulations revealed significant matching between D-analogs and INSL5 hotspots, with the
most notable differences at R13, an exposed INSL5 hotspot (Fig. S5C-D).

Experimental validation of the D-INSL5 peptide designed with HelixFlow

To experimentally validate the designed D-peptides, the D-INSL5 peptides and L-INSL5 were
chemically synthesized. We then conducted a circular dichroism analysis of the peptides in solution
to determine the peptides’ secondary structure. According to our findings, the two D-peptides
and L-INSL5 all retain helical structures in solution (Fig. 2A). Following that, we constructed a
RXFP4-expressing HEK293 cell line to test the ability of the L-INSL5 and D-INSL5-Flow design to
activate the RXFP4. INSL5 binding to the RXFP4 has previously been reported to inhibit adenylyl
cyclase to produce cyclic adenosine monophosphate (cAMP), thereby inhibiting protein kinase A
(PKA) pathways. To assess the biological potency of L-INSL5 and the D-peptides, we used the
HTRF cAMP assay with forskolin. L-INSL5 inhibited the forskolin-induced cAMP accumulation in
RXFP4-expressing HEK293 cells with a half maximal effective concentration (EC50) value of 0.290
µM. D-INSL5-flow and D-INSL5-mirror-image- search inhibited the cAMP production to a lesser
extent, with an EC50 of 1.97 µM and 3.2 µM, respectively. Both D-INSL5 agonists stimulated the
RXFP4 with efficacies ranging from 75.4 to 83.1 % compared to L-INSL5 activation (Fig. 2B).

We then investigated whether D-INSL5 analogs can induce the downstream signaling pathway
activation through binding to RXFP4. The signal transduction pathways activated by INSL5 at
RXFP4 include the activation of MAPK/ERK pathway, as well as AKT signaling patwhay [2]. We
determined whether stimulating the RXFP4 with the D-INSL5 analogs would induce ERK and AKT
phosphorylation. Both D-INSL5 analogs triggered comparable p-ERK and p-AKT level to L-INSL5
in RXFP4-expressing HEK293 cells (Fig. 2C-E). Finally, we examined the protease resistance of
both D-INSL5 analogs. In terms of therapeutic applications, D-peptides have the advantage of longer
half-life in serum due to protease-resistance. L-INSL5 was almost completely degraded within 2 h,
while over 85% of both D-INSL5 analogs can remain after 2.5 h incubation with proteinase K (Fig.
2F). Consequently, the D-INSL5 agonists exhibited high protease resistance, thereby expecting a
longer half-life and higher therapeutic potency.

4 Conclusion

In this work, we developed HelixFlow, a flow-matching SE(3)-equivariant model, capable of gen-
erating all-atom α-helix peptide structures and enabling conditional peptide design with matching
hotspots. The effectiveness of direct conditional design is a crucial feature of HelixFlow, leveraging
ordinary differential equations for smoother data-to-noise transformations and more precise synthesis
through a reverse flow-matching process. This study highlights the capability of flow-matching gener-
ative models, such as HelixFlow, as peptide design tools, demonstrating their capacity to outperform
classic diffusion-based approaches. Our findings illustrate the benefits of using a flow-matching
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Figure 2: Experimental validation of D-INSL5 agonists designed with HelixFlow. A) Circular
dichroism measurements of the D-INSL5 designs and L-INSL5 in solution. B) Activity profile
of L-INSL5 and D-INSL5 peptides in HEK293 cells stably expressing RXFP4. C) Western blots
showing the p-ERK and p-AKT levels induced by the D-INSL5 analogs and the native L-INSL5 at
20 µM concentration. D-E) Quantification of the p-ERK levels (D) and p-AKT levels (E) induced by
D-INSL5 agonists relative to L-INSL5 treated cells after 4 h of incubation. n.s., not significant. F)
Quantification of the remaining D-INSL5 analogs and L-INSL5 after Proteinase K treatment in 30
min intervals. Intensities of peptide bands were normalized to the intensity of the untreated peptide
(T0).

SE(3)-equivariant model, including enhanced sample generation quality, a robust conditional gener-
ation pipeline, and greater stability in constructing D-peptide analogs. Future work would involve
creating an algorithm capable of designing new peptides that can interact with proteins in a controlled
manner, enhancing their bioactivity.
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Supplementary Methods

Design strategy to generate the D-GLP-1 agonist

We superimposed D-INSL5_flow and D-INSL5_mirror_image_search structures onto

the Cryo_EM structure of RXFP4 bound to INSL5 to build the 3D structure of the

RXFP4 in complex with both D-peptide analogs (Fig. S4B). The RXFP4+D-peptide

complexes were then embedded in a POPC: PSM (1:1) bilayer before evaluating its

binding mode stability using 300 ns MD simulations (Fig. S4B). We also simulated the

RXFP4 bound to the wild-type INSL5 as a control. The D-peptides analog designed in

the current work are retro-inverted compared to INSL5. This difference in the direction

means that D-INL5 peptides have their N-terminal residue embedded in the

transmembrane domain of the RXFP4, while INSL5, its chain B C-terminal residue

interacts with the receptor's extracellular domain. The role of R208 in the TM core of

RXFP4 to stabilize the C-terminal negative charge of INSL5 chain B has been

previously reported. Then, we acetylated the N-terminal residue of both D-peptides to

prevent any electrostatic repulsion of the D-peptides N-terminal residues with R208.

Circular dichroism (CD) analysis

Peptide secondary structure determination was carried out using a Jasco J-810

spectropolarimeter. Lyophilized peptide powders were dissolved in 20 % acetic acid

(v/v) for D-INSL5 peptides and 20 % acetic acid (v/v) with 0.5 mM DTT for L-INSL5.

Peptide concentrations were 50 μM for L-INSL5, D-INSL5_Flow, and

D-INSL5_Mirror. Samples were read using a 0.1-cm cuvette path length with ten

accumulations per run, 50 nm/min scanning speed. All spectra were background

subtracted.

cAMP inhibition assay

Inhibition of forskolin-induced cAMP accumulation by L-INSL5 peptide and

D-INSL5 peptides, was measured by a HTRF cAMP Gs Dynamic kit (Revvity)

following manufacturer’s protocol. Briefly, HEK293T cells expressing RXFP4 were

trypsinized from subconfluent culture and seeded in a 96-well low-volume plate at a

density of 2,000 cells per well. The cells were stimulated with different concentrations

of peptides plus 1.5 μM forskolin. After 2 h of incubation at 37 ℃, cAMP d2 reagent,
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and cAMP Eu-Cryptate antibodies were added to each well. After incubation at room

temperature for 30 min in the dark, the plate was read using a Synergy 2 plate reader

(BioTek) with excitation at 330 nm and emission at 620 nm and 665 nm. Data were

normalized to the value of forskolin-treated sample and were used to calculate the EC50

value by fitting it to a non-linear sigmoidal curve using GraphPad Prism 8.

Western blot

After cell starvation (0 % FBS, 6 h), HEK293 cells expressing RXFP4 were treated

20 µM of L or D-INSL5 peptides for 4 h for ERK and AKT pathway activation. Cells

were lysed with lysis buffer (10 mM Tris-HCl pH 7.4, 1% SDS, 100 mM NaCl, 1 mM

EDTA, 1× protease inhibitor mixture (Sigma)) for 30 min at 4℃. Protein samples were

separated on a SDS-PAGE gel and transferred to PVDF membranes. Transferred

samples were immunoblotted with primary antibodies, followed by incubation with

horseradish peroxidase-conjugated secondary antibodies (Cell Signaling) and detected

using enhanced chemiluminescence (Invitrogen). For quantification, band intensities

were quantified using ImageJ software 38 and normalized to the β-actin loading control

values. Relative band intensity was presented as a ratio compared to the value of the

L-INSL5.

Protease stability assays

For protease stability assay, 50 μM of peptide were diluted in 80 μl of reaction buffer

(10 mM Tris-HCl, 10 mM NaCl, pH 7.4, 5 μM CaCl2), and 12 μl were removed for the

un-treated T0 sample. Proteinase K (Bioshop) was then added to a final 100 μg/ml

concentration. Samples were incubated at 37 °C, and 30 μl was removed after each time

point, and protease activity was blocked by the addition of 10 mM PMSF.

Protease-inactivated samples were frozen at -20 °C until further use. Frozen samples

were analyzed by SDS-PAGE. Gels were stained using Coomassie Brilliant Blue dye.

The densitometry of bands was determined using ImageJ software. All samples were

normalized to their respective untreated sample (T0).

Statistical analysis

Statistical significance was analyzed by a two-tailed unpaired Student’s t-test

using MS Excel. A P value of less than 0.05 was considered statistically significant.
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Supplementary Figures.

A. Invariant B. Equivariant

Figure S1. Graphical scheme of the features encoded in HelixDiff (invariant) and
HelixFlow (equivariant) to generate novel helices.

Helices are encoded as the combined vectors of the primary sequence information using
one-hot encoding and structural information A) Invariant Features. The structural information is
represented as phi (ϕ), psi (ψ), omega (ω), and bond angles, while the side chains are defined
using the five chi (χ) angles. B). Equivariant features. The encoding process involves
categorizing different tensor types (scalars and vectors) based on their behavior under rotation,
using spherical harmonics that transform into irreducible representations. Features can be mixed
with scalars and vectors. Scalars, also called L0 vectors, are referred to the invariant features
like atom types, and residues types. Vectors refer to the atom coordinates in our model, which
are L1 vectors. The L0 and L1 vectors represent angular frequency under rotation.
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A.

C.

B.

Figure S2 Sequence identity of the helical structures at fixed length 14 amino acids
generated using HelixDiff and HelixFlow, as well as Rosetta score.

A) HelixDiff. B) HelixFlow. Helices with 14 amino acids were randomly generated and
compared to the nearest natural helices from the training data to calculate sequence identity for
two algorithms. HelixDiff was only applied to fixed-length helices. C) Rosetta distribution
regarding fixed length 14 generations by HelixFlow and HelixDiff
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Figure S3. Assessment of the novel helices generated with HelixFlow at random lengths.
A-D) Structural features regarding bond length, psi, phi, omega, and bond angles between 2k
generated samples and training data. E) Sequence identities compared with training data. F)
Rosetta score distribution by generated peptide length using HelixFlow. G) Comparing the
rosetta scores distribution of the training data and the ones generated HelixFlow.

Figure S4. Design of the D-INSL5 analogs. A) Strategy for design two novel D-INSL5
analogs using HelixFlow (left) and the mirror image search of a D-PDB database (right). For the
mirror image search design, the INSL5 structure was divided into two overlapping peptides
named helix1, and helix2. Helix1 extends from E10 to A20, while helix2 runs from I16 to W24.
Critical hotspots for the INSL5 function chosen for the design were colored as licorice. B)
Structural superposition of D-INSL5_flow analog (red) over the INSL5 chain B (yellow)
structure bound to the RXFP4 (light green) (pdb code: 7yju). In the right, it is shown the RXFP4
coupled to D-INSL5_flow embedded in a POPC:PSM (1:1) membrane. The orange (POPC) and
gray (PSM) surface represent the lipids structure.
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Figure S5. Design and modeling the 3D structure of D-GLP-1_diff analogs bound to the
GLP-1 receptor. A) Root mean square deviation (RMSD) of the heavy atoms of INSL5 and the
D-INSL5 analogs bound to the RXFP4. B) Root mean square fluctuation (RMSF) per residue of
the heavy atoms of INSL5 and the D-INSL5 analogs bound to the RXFP4. C) Structural
superposition of the most representative cluster extracted from the MD simulation of RXFP4
bound to D-INSL5_flow over the most representative structure extracted from the MD
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simulation of the INSL5 in complex with RXFP4. D) Structural superposition of the most
representative cluster extracted from the MD simulation of RXFP4 bound to
D-INSL5_mirror_image_search over the most representative structure extracted from the MD
simulation of the INSL5 in complex with RXFP4. We showed as licorice the hotspots and
matching residues (red) in the L (yellow) and D-peptide (red), respectively. In the hotspots and
matching residues, the nitrogen and oxygen atoms were colored in blue and red, respectively.
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