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Abstract

Proteins are dynamic, adopting ensembles of conformations. The nature of this
conformational heterogenity is imprinted in the raw electron density measurements
obtained from X-ray crystallography experiments. Fitting an ensemble of protein
structures to these measurements is a challenging, ill-posed inverse problem. We
propose a non-i.i.d. ensemble guidance approach to solve this problem using exist-
ing protein structure generative models and demonstrate that it accurately recovers
complicated multi-modal alternate protein backbone conformations observed in
certain single crystal measurements.

1 Introduction

Proteins are dynamic molecules, transitioning between states during biological processes and other-
wise thermodynamically sampling conformations within these states. Although models generated by
X-ray crystallography typically depict a single conformation, this is actually an ensemble measure-
ment. Protein crystals are an enormous array of molecules and the electron density reconstructed
from the diffraction captures variability between the atom locations in this array. As flexibility in the
protein chain increases, the electron density becomes increasingly spread out. Since it is difficult to
recognise and model the specific conformations giving rise to the average density, variability around
the best-fit model is typically reported only indirectly, in the form of the B factor. However, where
detectable, crystallographers model atoms in multiple alternate locations (commonly termed, altlocs).
Alternately located segments of the protein backbone have remained under-recognised, since most
visualisation platforms (e.g., pymol and chimeraX) and programs using structural models as inputs
(e.g., gromacs) ignore altlocs altogether or resolve them with simple heuristics [4]. A recent work
[11] created a comprehensive catalogue of altlocs extracted from PDB structures, suggesting that
this dataset should find use in efforts towards predicting multiple structures from a single sequence.
Interestingly, the authors showed that for a set of well-separated and stable altlocs, even if structural
ensemble predictors recognise the region as being flexible, they fail to capture the experimentally
determined conformations or even the bimodality of the distribution of backbone conformations.

Representing proteins as ensembles of model structures, better capturing their dynamic nature, is
a key goal in structural biology [15] and protein structure prediction. We suggest an generative
approach that directly produces samples that are faithful to the experimental data. We showcase the
proposed approach on electron densities resolved from X-ray crystallography, focusing on altloc
regions having at least two clearly distinct conformations.
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Contributions. We formulate the problem of reconstructing a protein structure ensemble that obeys
given experimental measurements as an inverse problem, in which the forward model describes the
formation of the electron density given an ensemble. We use a pre-trained diffusion model to embody
the prior joint probability of the atom coordinates given the amino acid sequence, and guide it to
sample from the conditional probability given the observed density. We develop a differentiable
forward model and a non-i.i.d. score guidance method that uses the entire ensemble sampled from the
model in contrast to the standard score guidance that uses individual samples. We demonstrate that
the proposed methodology faithfully recovers alternate conformations from crystallographic electron
densities that are not reproduced correctly by unconditional sampling.

2 Methods

Notation. We denote by a the amino-acid sequence, x the backbone coordinates of a protein
structure, and let χ be the sidechain dihedral angles from which the side chain atom coordinates
can be straightforwardly computed and denoted by {yi(x,χ,a)}. Note that the dependence on the
sequence a is implicit as the amino acid identities are required to calculate the atom locations from
x and χ. We denote by p(x) the distribution of the random variable x, and by Fo : R3 → R and
Fc : R3 → R the observed and calculated electron densities, respectively.

Problem setting. Given an experimentally observed electron density of a protein structure Fo

and the amino-acid sequence a, our goal is to recover the posterior distribution p(x,χ|a, Fo) of
protein structure that explains Fo by sampling a non-i.i.d. ensemble X = {(xm,χm)} from
it. Following the standard Bayes’ theorem, the posterior of the ensemble can be factorized as
p(X|a, Fo) ∝ p(Fo|X ,a) · p(X|a) = p(Fo|X ,a) ·

∏
k p(x

m,χm|a), where p(Fo|X ,a) is the
likelihood of observing Fo given a structure ensemble X and p(x,χ|a) is the prior distribution
of the protein conformations given the sequence. It is crucial to observe that the samples in the
ensemble are not independent. While the prior can be split into independent terms p(xm,χm|a), the
likelihood generally depends on all the samples at once and is, therefore, inseparable. Our approach
is summarized in Figure 1.
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Figure 1: The proposed density-guided protein ensemble generation
method. The diffusion model is used to sample a non-i.i.d. ensemble
from which the likelihood of the observed electron density is calculated
and used to guide the sampling.

Protein structure prior.
We employ Chroma [5] to
model the distribution of
feasible protein structures.
While other protein struc-
ture generative models ex-
ist [1, 6], we chose Chroma
because it is a score-based
generative models, and it ef-
fectively models p(x,χ,a).
We also experimented with
distributional graphormer
(DiG)[17], however, we
found that the score mod-
eled by DiG is unstable,
and it models only the back-
bone atoms, and does not
model backbone oxygens
and sidechains, which con-
tribute to majority of the
electron density.

Chroma models the all-
atom representation of the
protein structure by the fol-
lowing factorized form, p(x,χ,a) = p(x)p(a,χ|x), where the distribution of backbone coordinates,
p(x), is modeled via a score-based diffusion model, and p(a,χ|x) is modeled as an autoregressive
model. Chroma’s forward diffusion process is modeled as a variance-preserving SDE [13], whose
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backward SDE is given by,

dx =

[
−1

2
x−PP⊤∇x log pt(x)

]
βtdt+

√
βtPn, (1)

where P is a fixed preconditioning matrix, βt is the noise schedule, and n is isotropic Gaussian noise.
The score function ∇x log pt(x) is modeled as an equivariant graph attention network. Sampling
occurs by first drawing backbone coordinates by integrating Eq. 1 from [T, 0]. Modeling xall given x
is presented in the sequel. Because Chroma models the backbone coordinates x independently to the
sequence, conditioning xall on the sequence a can be done trivially by substitution. We discuss the
details of sidechain packing in Section A.1 in the Appendix.

Modeling the likelihood. Assuming p(Fo|X ,a) is Gaussian, the log-likelihood of Fo is given by,

log p(Fo|X ,a) = −

∥∥∥∥∥Fo −
1

|X |
∑
m

Fc (x
m,χm,a)

∥∥∥∥∥
2

2

, (2)

where ∥ · ∥2 is the L2 norm in the space of electron densities, and the individual Fc terms are given
by the kernel density estimates,

Fc (ξ) =

Ns∑
k=1

A∑
i=1

5∑
j=1

aij ·
(

4π

bij +B

) 3
2

·exp
(
− 4π2

bij +B
· ∥Rkyi(x

m,χm,a) + tk − ξ∥22
)
, (3)

where Ns is the number of symmetry operations, A is the number of atoms in the asymmetric unit, Rk

is the rotation matrix of the k-th symmetry operation, tk is the translation vector of the k-th symmetry
operation, yi is the location of the i-th atom, aij and bij are tabulated form factors [10], B is the
B-factor, and ξ is the point in space at which density is calculated. In standard molecular replacement
and structure refinement pipelines, the B-factor is used to model the experimental electron density
as a mixture of Gaussians. In our approach, however, we essentially sample directly from the joint
distribution of the atom locations which allows more complex density models. The B-factor is,
therefore, more akin to the bandwidth parameter in kernel density estimation (KDE) techniques. We
apply a uniform B-factor across all atoms that should be inversely proportional to the ensemble size.
Ideally, the optimization of the exact value should be part of the sampling procedure that we intend
to develop in the future; here, we adopted a somewhat naive approach by taking the average of the
individual B-factors for each atom in the given protein structure.

Sampling from the posterior. To sample a non-independent ensemble from the posterior, we
define the joint diffusion variable X = (x1, . . . ,x|X |) concatenating all backbone coordinates of the
ensemble, and plug Eq. 2 into the backward SDE equation [3, 16],

dX =

[
−1

2
X−PP⊤(∇X log pt(X) + η · ∇X log p(Fo|X,χ(X),a))

]
βtdt+

√
βtPn. (4)

Note that the diffusion is only applied to the backbone coordinates, from which the sidechain
dihedrals χ(X) = (χ1, . . . ,χ|X |) are calculated using the differentiable sidechain packer. While
the unconditional (prior) score term, ∇X log pt(X), is separable (i.e., block diagonal), the guidance
term is inseparable as mentioned above. The hyperparameter η is used to scale the guidance score
directing the diffusion model to generate samples that are better aligned with the observed density,
thereby increasing the likelihood of Eq. 2.

Filtering samples using matching pursuit. We observed that when sampling large ensembles
using non-i.i.d. guidance, certain samples in the ensemble tend to overfit to noise in the density
map, reducing the overall ensemble quality. To mitigate this, we adopt a matching pursuit-based
approach [8] to filter out low-quality samples and greedily select a subset of the ensemble, XI =
{(xm,χm) : m ∈ I}, that best aligns with Fo. Starting with I = ∅, each iteration seeks to maximize
log p(Fo|XI∪{m},a) over all m /∈ I. The optimal element m is then added to the support set I and
the process is repeated until the likelihood no longer increases. The procedure is summarized as
Algorithm A2 in Appendix A.

3



7EC8:A 143–146 1LU4:A 95–100 2YNT:A 126–128

U
nc

on
di

tio
na

l
G

ui
de

d
0.8186

0.8903

0.6842

0.7997

0.6584

0.8383

Figure 2: Density-guided Chroma fits the density better than unguided Chroma, and recovers two
known alternative locations accurately. Full protein structure is displayed as white cartoons. The
sampled ensembles in the region of interest are depicted as sticks and overlaid on the experimental
density 1σ-isosurface. The inserts show the agreement of Fc (red) to the observed density Fo (blue)
visualized as 1σ-isomeshes. Cosine similarities Fc and Fo are reported below each panel. Density
guidance produces consistently better density alignment and correctly captures the multi-modal
nature of the observed density.

3 Results

Experimental setup. To evaluate the efficacy of our methods, we primarily aim to assess the
alignment between the density computed from sampled conformers, Fc, and the experimentally
observed densities, Fo. Additionally, we seek to investigate the ability of our approach to generate
accurate conformers in the structural space. We, therefore, focus on regions where the density exhibits
multi-modal behavior and aim to recover alternate locations (altlocs) consistent with those modeled
in the original PDB structures. To facilitate these investigations, we selected crystallographic protein
structures from the Protein Data Bank (PDB) [2] that exhibit discernible separation between backbone
and sidechain atoms at the altloc residues using the analysis in [11]. Note that all these examples
present highly intricate multi-modal backbone distributions that are poorly predicted by existing
ensemble sampling techniques. We further restricted our attention to high resolution structures (2.5 Å
or better) to ensure high-quality electron density maps. Since the electron density maps available in
the PDB are mean-centered and lack an absolute scale, we converted them to physical units (e−/Å

3
)

following the method described in [7]. A comprehensive list of proteins used in our experiments is
reported in Table A3.

For all experiments, we will use the publicly available versions of Chroma’s diffusion-based backbone
sampler and Chroma’s GNN-based sidechain packer for χ-angle prediction as our prior [5]. Since
the backbone sampler is not sequence-conditioned, applying density guidance across the entire
protein would exacerbate the ill-posed nature of the problem. To mitigate this, we employ Chroma’s
SubstructureConditioner to constrain atoms outside the target residues to their ground truth
locations. All visualizations were rendered using ChimeraX [9].

Evaluation criteria. The results were evaluated using a batch sampling approach. For each batch,
we identified a subset of samples that provided the optimal match to the observed electron density.
The similarity between the observed electron density and the mean calculated density of the selected
subset was quantified using cosine similarity ⟨Fo, Fc⟩/(∥Fo∥·∥Fc∥) in the space of electron densities.
Furthermore, we computed an alternate location (altloc) proximity score for each sample in the batch.
The score was calculated as bimodality_score(x) = (1−min(r(x), 1/r(x))) · sign(r(x) −
1/r(x)), where r(x) = ∥x − xA∥/∥x − xB∥, and xA and xB are the backbone atom locations of
altlocs A and B, respectively. In this formulation, score(x) approaches −1 as x converges to altloc A,
and approaches +1 as x converges to altloc B.
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Figure 3: Density-guided Chroma accurately captures the bimodal distribution of the backbone
conformations, while unconditional sampling consistently fails to represent it. Negative scores
represent proximity to the modeled altloc A, while positive scores correspond to altloc B.

Density alignment. To evaluate the proposed method’s effectiveness in aligning with Fo, we
compare the samples generated using density-guided diffusion with those from an unconditional
diffusion process. Using the procedure outlined in Algorithm A1 we sample a batch of 16 density-
guided conformers. Likewise, a batch of 16 unconditional conformers are sampled using Eq. 1. Both
batches are filtered (Algorithm A2) to retain at most 5 samples that best fit the observed Fo map.
From these best-performing conformers, we construct the Fc map and compute the correlation with
Fo using cosine similarity. This evaluation is repeated across all proteins listed in Table A3. The
quantitative results comparing unconditional sampling and density-guided sampling are presented in
Figure A3. Due to variations in resolution, the results are not comparable across proteins. However,
we note that while Chroma provides a strong prior for protein structures, it struggles to accurately
capture experimental density. This reinforces the finding that other protein ensemble sampling
programs cannot correctly reproduce the observed densities in such intricately flexible regions [11].
Additionally, Figure 2 visually showcases, on three structures, how guided sampling improves the
alignment between Fc and Fo.

Bimodality and structural alignment. We evaluate the impact of aligning with the experimental
density on the structural space. Specifically, we focus on regions of proteins with alternate confor-
mations (altlocs) where the density exhibits a bimodal distribution. By conditioning our diffusion
process on Fo, we aim to capture this bimodality and generate samples consistent with the originally
modeled altlocs in the PDB. From the aforementioned experiment, we utilize the filtered samples
from both density-guided and unconditional ensembles. Each sample is assigned proximity score
to one of the altloc (A or B). The resulting score distributions are visualized in Figure 3. Guided
sampling consistently achieves bi- and multi-modal behavior with proximities to both modeled altlocs
(positive and negative modes in the plot), while the unconditional counterpart often fails to correctly
represent this behavior. Additionally, our method performs well in regions with unimodal density and
no alternative conformations, as detailed in Section A.3 and visualized in Figures A1 and A2 in the
Appendix.

4 Conclusion

In this work, we presented a novel density-guided generative modeling approach for reconstructing
protein structure ensembles from crystallographic electron density maps. By formulating the task as an
inverse problem, we leveraged a pre-trained diffusion model as a flexible prior over protein backbone
conformations, introducing a non-i.i.d. score guidance technique that optimizes the ensemble as a
whole, rather than individual structures thereof. Our method outperforms unconditional sampling,
particularly in multimodal regions, recovering altlocs consistent with PDB data and aligning more
closely with the observed electron densities. Looking forward, our method opens several promising
directions for future exploration, such as extending to larger proteins, enhancing the modeling of
B-factors, improving sidechain packing accuracy, and extending to the forward models of other
experimental modalities such as cryoEM/ET. We believe that our work also provides an important
step toward more accurate and data-driven modeling of protein dynamics.
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A Appendix and Supplemental Material

A.1 Side-chain packing

As previously mentioned in Section 2, the diffusion model’s prior is defined over the backbone
coordinates of the protein structure. However, majority of the electron density is concentrated near
the sidechain atoms. To account for this, we leverage Chroma’s sidechain packer to sample the χ
dihedral angles and impute the sidechain atoms using the sampled angles and the rotamer library
[12]. Since the density map is generated from a noise-free protein structure, we denoise the backbone
atoms x at each iteration using the diffusion model before computing the χ angles. The denoised
variable x̂0 serves as an estimate of the noiseless backbones x.

The χ sampler is an autoregressive sidechain decoder that models lθ(χ|x,a) ≈ log p(χ|x), where θ
denote the model parameters. The autoregressive decomposition of the likelihood is given by

lθ(χ|x,a) =
∑
i

lθ(χi|χi−1, χi−2, . . . χ1,a,x).

Once the χ angles are sampled, the combination with the backbone coordinates x fully describes the
protein structure.

Unfortunately, sampling χ angles for every amino acid at each timestep of the diffusion process
introduces a significant computational bottleneck, which can severely impede the sampling procedure.
To mitigate this, we restrict χ dihedral angle sampling to the amino acids being optimized, along with
a window of size W = 5 amino acids before and after the target region. Incorporating this window
provides the model with greater structural context, thereby enhancing the accuracy of the angle predic-
tions. For non-target residues, where the structure is anchored by the SubstructureConditioner,
χ angles are computed using the ground truth coordinates from the PDB file.

Additionally, performing χ dihderal angle sampling and backpropagating through the χ sampling and
the diffusion models at every iteration results in an excessively long and computationally expensive
backpropagation graph. Given that atomic coordinates generally exhibit minimal change between
iterations, this repeated sampling and backpropagation can become redundant. Hence, we implement
a Gibbs-sampling-based optimization strategy [14].

Specifically, we sample the dihedral angles only once every Tχ iterations and then detach them from
the backpropagation graph. During the intermediate iterations, we freeze the backbone coordinates
x and optimize the angles Sχ times based on Eq. 2. This approach stabilizes the backpropagtaion
process while ensuring that the sidechains conform to the observed density Fo.

The specifics of sidechain packing are presented in Algorithm A1.

A.2 Hyperparameters

In our experiment, we employed a guidance scale of 9.0 and clipped the gradient norms to a maximum
of 32.5. The χ diheral angels were resampled every 40 diffusion steps (Tχ). For each diffusion step,
25 SGD optimization steps (Sχ) were performed on the χ with a step size of 0.001. We generated
a batch of 16 samples with non-i.i.d guidance. Notably, all the results presented in this paper were
obtained using these hyperparameters without any additional tuning, highlighting the simplicity and
robustness of our density-guidance approach.

A.3 Unimodal densities

As a control experiment, we evaluated our method on protein 7EC8, specifically on chain B, which
exhibits unimodal behavior. We sampled two regions: residues 205-208, which are characterized
by a low B-factor, and residues 143-146, which display a higher B-factor. Although both regions
are unimodal, the increased B-factor in residues 143-146 led to more spread-out and blurred density,
resulting in slight variability in the samples. The cosine similarity results for both regions are shown
in Table A1, demonstrating that our guided method consistently outperformed the unconditional
approach. A visual comparison of the results is presented in Figures A1 and A2.
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Residue Range Guided Unconditional
205–208 0.9240 0.7886
143–146 0.9316 0.7814

Table A1: Cosine similarity results for two sampled regions in chain B of protein 7EC8.

7EC8:A 143-146
dual conformation
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high B-factor
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low B-factor
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Figure A1: Comparison of conditional and unconditional sampling in bimodally- and
unimodally-distributed regions of protein 7EC8:A. The figure illustrates the differences between
unconditional sampling (first row) and density-guided (second row) sampling methods in three
regions of the protein (left-to-right): residues 143− 146 of chain A exhibiting an explicitly modeled
dual conformation (two altlocs), the same position in chain B originally modeled as a high B-factors
single conformation, and residues 205− 208 in chain B, originally modeled as a low B-factors single
conformation. Our density-guided sampling consistently describes the flexible region in both chains
as a bimodal distribution while producing a tightly distributed ensemble for the third low B-factor
region.

A.4 Ablation

We conducted an ablation study on the batched (non-i.i.d) sampling procedure. As discussed in
Section 2, our density-guidance approach leverages a batch of non-i.i.d samples, where we compute
an expectation over Fc maps and compare it to Fo as depicted in Eq. 2. In contrast, when we generate
i.i.d samples by optimizing each sample individually without taking an expectation – the performance
deteriorates, as shown in Table A2.
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Figure A2: Comparison of density fitting for residues 205-208 of protein 7EC8. The unguided
approach (left) does not adequately align the calculated density with the observed density, whereas
the guided approach (right) demonstrates significantly better alignment. The observed density is
represented by the light blue surface, while the calculated density from the samples is shown as a
dark red isomesh.

Figure A3: Comparison of cosine similarities between ensembles obtained using unconditional
and density-guided sampling.

PDB Guided (batched) Guided (i.i.d)
2O1A 0.7903 0.7459
3OHE 0.8416 0.8369
7EC8 0.8903 0.8585

Table A2: Batched sampling of protein ensembles produces superior alignment to Fo compared
to i.i.d sampling.
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A.5 Algorithms

Algorithm A1 Density-guided backbone sampling

Require: Backbone denoising diffusion model ϵθ; χ sampling model χθ; χ resample time steps Tχ;
number of χ optimization steps Sχ; χ optimization step size λχ; target density Fo; number of
diffusion steps N ; guidance scale λ; preconditioning matrix P; diffusion schedule constants
{αn}Nn=1, {βn}Nn=1 as in chroma; amino acid sequence of the protein a; Fc density forward
model.

1: z ∼ N (0, I)
2: xN = Pz
3: for n = N to 1 do
4: n ∼ N (0, I)
5: ϵ̂ = ϵθ(xn,n)

6: µ̂ = αn+1
2(1−αn)

xn −
√
αn

1−αn
ϵ̂

7: x̂0 =
xn −

√
1− αnϵ̂√
αn

8: if n ∈ Tχ then
9: χ̂n = χθ(x̂0)

10: else ▷ Optimize the side-chain angles
11: Initialize χ̃n,0 = χ̂n+1

12: for i = 0 to Sχ − 1 do
13: χ̃t,i+1 = χ̃t,i − λχ∇χ ∥Fc(all_atom(x̂0, χ̃t,i,a))− Fo∥22
14: end for
15: χ̂n = χ̃n,Sχ

16: end if
17: xn−1 = µ̂+ λ∇x

[
∥Fc(all_atom(x̂0, χ̂n,a))− Fo∥22

]
+
√
βnPn ▷ Eq. 4

18: end for
19: return x0

Algorithm A2 Selecting samples using matching pursuit [8]

Require: D = {d1, . . . , dn}: Sample densities (Fc) from forward model, dt: Target density from
Fo density map, corr(·, ·): Function to compute correlation metric, mmax: Maximum allowed
samples to select, a: Amino Acid sequence of the protein

1: I = ∅
2: P = {0, 1, 2, . . . , |D| − 1}
3: scurrent = 0
4: while |I| < mmax do
5: c = {corr(dI∪{i}, dt) | di ∈ D, i /∈ P}
6: ibest, smax = argmax

i
c,max c ▷ Maximize log p(Fo|XI∪{ibest},a)

7: I = I ∪ {ibest} ▷ Add best sample
8: P = P \ {ibest} ▷ Update candidates
9: if smax < scurrent then

10: break
11: end if
12: scurrent = smax
13: end while
14: return I
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A.6 Dataset

PDB ID Protein function Source organism Expr. system Altloc site Altloc sequence Resolution (Å)
1LU4:A Oxidoreductase Mycobacterium tuberculosis E. coli 95 – 100 YNVPWW 1.12

2O1A:A Surface active protein Staphylococcus aureus E. coli 50 – 53 KQNN 1.60

2Q3G:A Structural Genomics Homo sapiens E. coli 24 – 27 FNVP 1.11

2YNT:A Hydrolase Pseudomonas aeruginosa E. coli 126 – 128 GNG 1.60

3OHE:A Hydrolase Marinobacter nauticus VT8 E. coli 97 – 104 YQGDPAWP 1.20

3V3S:B Hydrolase Pseudomonas aeruginosa E. coli 227 – 232 KAQERD 1.90

4NPU:B Hydrolase Human immunodeficiency virus 1 E. coli 33 – 36 FEEI 1.50

4OLE:B Unknown Homo sapiens E. coli 59 – 69 ASTEKKDVLVP 2.52

5G51:A Viral Protein Deformed wing virus E. coli 31 – 36 GSASDQ 1.45

6JF2:A Structural protein
Salmonella enterica subsp.

enterica serovar Typhimurium
str. LT2

E. coli 50 – 54 VTAGG 2.00

6QQF:A Hydrolase Gallus gallus Gallus gallus 68 – 75 RTPGSRNL 1.95

7EC8:A Hydrolase Uncultured bacterium E. coli 187 – 190 DGGI 1.35

7R7W:B Immune system Homo sapiens E. coli 46 – 50 IEKVE 1.17

Table A3: Protein structures used for the evaluation in our experiments. Note that the residue
indices of the altloc sites are given with respect to the first residue in the structure (numbered as 1)
and may differ from the author-assigned indices in the original structures.
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