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Abstract

Generating diverse sequences for protein backbones remains an active challenge
with important implications. De novo protein design typically requires screening
large sets of diverse sequences to identify viable candidates under certain experi-
mental conditions. Sequence design has also recently been employed to generate
synthetic data for training models. Diverse sets of sequences can be trivially gener-
ated by increasing the sampling temperature of sequence design models; however,
we find that the covariation between residues in these sequences do not recapitulate
natural covariation or the structures for which they were designed. An alternative
approach designs sequences for structural ensembles, motivated by previous studies
demonstrating that natural sequence variation is strongly tied to structural varia-
tion rather than the constraints of a static backbone. RFdiffusion, with a reduced
number of noising and denoising steps, has demonstrated the ability to diversify
structures via learned potentials. Here, we compare sequences generated using
single fixed backbones and partial RFdiffusion ensembles. Our analyses reveal
that structural variation from RFdiffusion results in increased sequence diversity
at a given sequence temperature without compromising AlphaFold2 designability
metrics. Moreover, the covariance from partial diffusion MSAs better recapitulate
natural covariation and contacts. Lastly, we propose a new approach to evaluate the
quality of sequences, which tests AlphaFold2 self-consistency using shallow syn-
thetic MSAs. This method enables evaluation of sequences for which the efficacy
of the AlphaFold2 single-sequence self-consistency remains limited.

1 Introduction

Advancements in generative modeling have led to the development of automated pipelines for de
novo protein design. These pipelines generally share a common procedure: sequence-free backbone
generation followed by structure-conditioned sequence design, often generating and screening a
large set of candidate sequences. At inference, structure-conditioned sequence design models, such
as ProteinMPNN, predict the conditional probability distribution of the amino acid identity for a
residue given the backbone structure and all other amino acid identities, wherever decoded; that
is, P (seqi|backbone, seq_i), where _i indicates the sequence for all resides excluding residue i
[1]. Specifically, the categorical probability distribution of amino acid identities is computed via
softmax(ak, τ) = eak/τ∑A

j=1 eaj/τ
, where τ is a sampling temperature hyperparameter. In order to

generate a sequence for a given backbone, one can sample from this predicted probability distribution.
As τ → 1, amino acid identities are sampled from the distribution inferred by the model, and as
τ → 0, samples approach the argmax of the distribution.

Currently, diverse sets of sequences can be generated by increasing the sampling temperature, τ .
Theoretically, when applied to natural backbones, sampling sequences directly from the inferred
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distribution should yield the natural sequence distribution. However, additional analysis is required
to investigate whether this phenomenon arises in practice.

Another approach to generating diverse sequences is based on diversifying the target backbone.
Indeed, by exploring structural and sequence diversity of natural proteins, studies have suggested that
highly diverse sequences from a protein family often have non-trivial discrepancies (1̃-3Å RMSD)
[2–4]. A previous study demonstrated the value of structural diversity for sequence design by applying
Rosetta backrub to natural domains [5–7]. Briefly, backrub generates realistic ensembles by modeling
the local conformational flexibility of crystallographic structures. Their resulting synthetic multiple
sequence alignments (MSAs) better recapitulated natural pairwise covariation compared to those
generated using the static crystal structure coordinates alone. Their results therefore highlighted
the dominant role of structural constraints defined by backbone flexibility rather than a single static
structure in driving sequence variability.

Recently, RFdiffusion with partial noising and denoising schedules has been used to sample diverse
and idealized backbones for binder design [8–10]. Rather than applying the full noising and denoising
process across T steps to generate a random backbone, P (structure), the partial diffusion protocol
takes a structure as input and uses a smaller number of steps (t < T ) to generate a similar structure
from a noisy version of the initial structure, P (structure∗|structureinitial + ϵ), where ϵ increases
with t (Fig. 1). This protocol leverages RFdiffusion’s learned potentials and may generate realistic
ensembles similar to the Rosetta backrub method.

Here, we compare sets of sequences generated using the partial RFdiffusion workflow against those
designed using a fixed backbone using the same 40 structurally diverse domains used in the backrub
design study. We measure sequence diversity and evaluate the degree to which covariation reflects
natural coevolution and structural constraints. We then evaluate individual sequences using single-
sequence AlphaFold2 (AF2) self-consistency metrics and propose a new AF2-based approach to
evaluate sets of designs, which provides a framework for comparing sequence design methods and
circumvents issues regarding AF2’s inability to predict structure from a single-sequence. [11].

2 Results

2.1 Structural diversity from partial RFdiffusion increases sequence diversity for a given
ProteinMPNN temperature

Starting from the crystallographic structures of the 40 domains from the backrub design study, we
first perform a grid search of ProteinMPNN sampling temperatures (τ ∈ {0.01, 0.1, 0.2, ..., 1})
and RFdiffusion steps (T ∈ {0, 1, 5, 7, 10, 12, 15, 20}, where T = 0 corresponds to a single fixed
backbone) to characterize sequence diversity along these two axes (Fig. 1). We limit the maximum
number of steps to T = 20 since structures generated beyond 20 steps reflect different folds (TM-
score < 0.5) (Fig. S1). We find that while sequence design using fixed backbones and ProteinMPNN
sampling temperature τ = 1 results in a maximum average sequence identity of 31%, the diversity
of sequences designed using partial RFdiffusion ensembles exceeds this level at substantially lower
sampling temperatures (Fig. 2A). For example, sequences generated by setting T = 15 and τ = 0.4
surpasses this diversity with an average of 28%. The remaining analyses focus on evaluating these
diverse sets and their individual sequences.

2.2 Synthetic MSAs generated using partial RFdiffusion ensembles recapitulate natural
covariation and contacts

The backrub design study revealed that structural constraints play a dominant role in shaping residue
covariation in natural sequences [5]. We reason that reliable sequence design of natural backbones
should also recapitulate natural covariation since similar structural constraints are imposed. Therefore,
in order to characterize synthetic MSAs generated from the fixed backbone and partial diffusion
design protocols, we first compute the overlap between highly covarying residues in the designed
sequences and natural sequences, consistent with the analysis performed in the Rosetta backrub
design study. Similar to the backrub designed sequences, synthetic MSAs generated using partial
RFdiffusion yields greater overlap in covarying residues than the MSAs generated from a fixed
backbone (Fig. S2). The median percent overlap maximizes at 33% setting T = 15 and τ = 0.3
(p = 10−9). Notably, at a comparable sequence diversity, a sampling temperature of 1 on a fixed
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Figure 1: Partial diffusion design protocol and evaluation overview

backbone results in a median overlap of 19%, highlighting a substantial decrease in covariation
similarity (p = 10−15). Interestingly, the overlap using partial RFdiffusion is generally lower than the
median overlap of 38% from the backrub design study (p = 0.01). We note that Rosetta backrub uses
all-atom contexts to generate realistic conformations, which may result in more realistic ensembles.
Further studies are needed to explore this trend.

A B

Figure 2: (A) Average sequence identity across design pa-
rameters; (B) average difference in P@L between synthetic
and natural MSAs

Whereas the synthetic MSAs were
generated strictly using structural con-
straints imposed by the partial RFdif-
fusion ensembles, natural sequences
arise from a variety of constraints, in-
cluding structure, function, and sta-
bility among many others. We there-
fore reason that the source of remain-
ing mismatch between highly covary-
ing pairs may be due to differences in
these constraints. In order to predict
contacts from these MSAs, we com-
pute the inverse covariance and apply
average product correction for each
MSA. Indeed, by computing the pre-
cision of the top L covarying pairs of
residues for contact prediction (P@L),
we find that the covariance from par-
tial diffusion MSAs more strongly reflect contacts compared to covariance in natural MSAs (Fig.
2B). The increased P@L further supports that differences in covariation between natural and partial
diffusion generated synthetic MSAs reflect differences in constraints and the structurally idealized
characteristic of the designed sequences. Notably, contact prediction using fixed backbone MSAs
resulted in significantly lower P@L compared to natural MSAs across all temperatures (FDR < 0.05),
suggesting that fixed backbone design weakens expected second order relationships.

2.3 Sequence design using partial RFdiffusion ensembles maintains AlphaFold2
self-consistency at high levels of sequence diversity

Next, we aim to measure compatibility between the target structure and individual sequences, referred
to as designability. In order to evaluate designs, we employ the widely used AF2 self-consistency test
on a random subset of 50 sequences per domain [12, 11]. We first generate 50 sequences for each
of the 40 domains applying ProteinMPNN across varying temperatures on fixed backbones. RMSD
between the predicted structure using AF2 single-sequence mode and the crystal structure increases
monotonically with sampling temperature, consistent with the hypothesis that sequence-structure
compatibility deteriorates as sampling temperature increases (Fig. 3A).

We next ask whether highly diverse sets of sequences from the partial RFdiffusion protocol maintain
AF2 self-consistency. To this end, we compare sequences from the maximally diverse set from

3



fixed backbone design (τ = 1) to a comparably diverse set generated from 15 RFdiffusion steps
and sampling temperature of 0.4 (average sequence identity = 31% and 29%, respectively). Notably,
predictions for sequences generated by the partial diffusion generally remain closer to the target
structure (p = 2 ∗ 10−16) (Fig. 3B, 3C). Of the 40 domains, 10 have a median RMSD < 2Å using
the partial diffusion protocol, while none have a median RMSD that passes this standard threshold
when using a fixed backbone with τ = 1. Moreover, the partial diffusion protocol generated at
least 1 sequence with RMSD < 2Å for 29 domains compared to 12 for fixed backbone design.
Among the domains with the most self-consistent sequences is chloroplastic m-type thioredoxin, for
which the median RMSD is 1.7Å, maintaining the structure around the active site (Fig. 3D). The
structure is entirely ablated in predictions from fixed backbone design, with no predictions less than
2Å RMSD. Overall, single-sequence AF2 self-consistency experiments suggest the dramatic increase
in compatibility of diverse sequences to their target backbones using partial RFdiffusion ensembles.

A B

C
Partial di�usion T = 15
ProteinMPNN temperature = 0.4
 

Fixed backbone
ProteinMPNN temperature = 1

 

Median RMSD: 1.7Å Median RMSD: 12.2Å 

D

Figure 3: (A) Median RMSD for each of the 40 domains across ProteinMPNN sampling temperatures;
(B) median RMSD between AF2 predictions and crystal structure for each domain using partial RFd-
iffusion (T = 15, τ = 0.4) and fixed backbone design (τ = 1); (C) distribution of RMSD comparing
fixed backbone design and partial diffusion; (D) structural alignment of five AF2 predictions for each
of two experiments superimposed to the crystal structure (blue; PDB id: 1FB0)

2.4 Evaluating large designs using AlphaFold2 prediction with shallow MSAs

AF2 single-sequence self-consistency scores are widely used for in-silico evaluation, yet they often
fail for naturally occurring proteins [13]. Given that self-consistency for designs generally decreases
sharply for larger designs (more than 300 residues), we randomly select seven natural, high confidence
(median pLDDT > 0.85) AF2 structures of proteins with at least 750 residues [9, 13–15]. We find
that none can be predicted with AF2 in the absence of an MSA (TM-score < 0.5). While the
number tested remains small and more thorough analyses are needed to establish a relationship
between sequence length and AF2 single-sequence self-consistency, these results motivate new
evaluation methods that do not fail for natural sequences. Building on the notion that the diversity
reflected in designed sequences should be consistent with structural constraints, we ask whether AF2
self-consistency using MSAs can address this problem.

We first note that structural signal is not entirely ablated from these synthetic MSAs, even for
fixed backbone design (Fig. S3). The Evoformer module of AF2 computes the mean across the
outer product of each sequence. Therefore, given an MSA with sufficient depth, AF2 should
extract the proper structural signal from noisy MSAs (i.e. law of large numbers). We therefore
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test self-consistency across varying depths of synthetic MSAs from 2 to 128, binned by powers of
2. Furthermore, in order to avoid structural refinement from learned potentials and to emphasize
extraction of structural properties directly from the MSA, we disable AF2 recycling and templates.
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Figure 4: Comparing the median TM-score of AF2 predictions
across MSA depths

Using the seven large natural
sequences for which the struc-
tures AF2 cannot predict in
single-sequence mode, we first
generated synthetic MSAs for
each using the fixed backbone
method with sampling temper-
ature τ = 1 and partial RFdif-
fusion with T = 10 and τ =
0.3. The resulting MSAs have
comparable diversity with av-
erage sequence identity 25%
across the seven proteins. We
note that the natural MSAs
have slightly higher average se-
quence diversity (38%) when
subsampled for 128 sequences
each using hhfilter [16]. Inter-
estingly, we find that while AF2 is able to recover the correct fold (TM-score > 0.5) using only 8
sequences on average from partial RFdiffusion and natural MSAs, none of the folds are recovered for
the fixed backbone MSAs at this depth (Fig. 4). This result is consistent with our previous analyses,
which suggest decreased compatibility between sequences designed with ProteinMPNN temperature
τ = 1 and their target structure. Moreover, at this MSA depth, the TM-score for predictions using
partial diffusion MSAs are significantly higher than those using natural MSAs (p = 0.02). Again,
we reason that these sequences generated using a low ProteinMPNN sampling temperature are
structurally idealized, whereas natural sequences are optimized for many other factors. Overall, our
analyses highlight the potential value of using synthetic MSAs for AF2 self-consistency tests for
evaluating the compatibility between designed sequences and target structure.

3 Discussion

Sequence design using structural ensembles generated via partial diffusion offers a promising ap-
proach to generate large, diverse sets of sequences for a given backbone. We find that the covariances
stored in the diversity of these sequences better recapitulates natural covariation arising from struc-
tural constraints. Single-sequence AF2 self-consistency highlighted i) the monotonic deterioration of
designability along increasing sampling temperatures; and ii) that the partial diffusion protocol main-
tains strong self-consistency metrics at high sequence diversity levels. While single-sequence AF2
self-consistency evaluations have been widely adopted, its efficacy as a general test for designability
is complicated by its failure to validate natural sequences. We therefore introduced a variant of the
self-consistency metric using shallow MSAs, which distinguished natural, partial diffusion, and fixed
backbone sequences. Future work can explore whether these differences are linked to experimental
success rates and can be used to evaluate sequence design methods.

Crucially, these analyses further support the hypothesis that sequence diversity is best achieved
via structural diversity. While current structure-conditioned sequence design models approximate
the probability distribution based on a static structure, P (sequence|structure), structural con-
straints applied to protein sequences may be more accurately represented by a set of structures,
P (sequence|structure(s)). Experimental validation is needed to further substantiate whether differ-
ences in computational evaluations are reflected in the success rates of designed sequences.

These results carry implications beyond de-novo protein design. In order to scale deep learning
models, recent studies have explored whether augmenting training datasets using samples from
generative models could improve model performance [17–22]. Interestingly, ESM3 was trained using
synthetic sequence-structure pairs generated using a structure-conditioned sequence design model on
structures from the AlphaFold database and ESM Metagenomic atlas. Our results motivate further
investigation into the consequences of training protein language models on synthetic data.
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4 Supplementary material
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Figure S1: Median TM-score of structures generated using partial RFdiffusion and the crystal
structure across diffusion steps.
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Figure S2: Median proportion of overlapping covarying residues between synthetic and natural MSAs.
Red box indicates the maximum similarity experiment.

4.1 Covariance analyses

To compute the overlap of the top covarying pairs of residues in synthetic and natural MSAs, we
follow the analysis described in the backrub design study [5]. Briefly, we first compute the mutual
information between residues, then subtract the background mutual information due to noise and
shared phylogeny (APC) [23]. These values are then converted to Z-scores per column and multiplied
per pair of residues. The final score is the square root of the absolute value of this score. Pairs with
scores greater than two standard deviations above the mean are considered to be the top covarying
pairs. Covariation overlap is computed as 2C/(A+B), where C is the number of shared covarying
pairs, and A and B are the total number of top covarying pairs in the natural and synthetic MSAs,
respectively. For these analyses, we limit to residues without gaps in the natural MSA, consistent
with the pre-processing performed in the backrub design study. Additional details can be found in the
corresponding manuscript.
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Figure S3: Average precision of the top L covarying pairs of residues for contact prediction (P@L)
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Figure S4: Contact prediction from natural and synthetic MSAs for human EBF1 IPT/TIG domain
(PDB id: 3MQI). Fixed backbone and partial diffusion MSAs have comparable average sequence
identities (40% and 38%, respectively. Top row shows contacts from the crystal structure, defined as
residues within 8Å, followed by the top L (length) covarying residues from the inverse covariance
calculation with average product correction (APC). Red points indicate covarying residues that
are not contacts, while blue points indicate true positive contacts. Bottom row shows the cartoon
representation of the crystallographic structure, followed by the inverse covariance matrix after
computing the L2-norm of the sum across the second and fourth dimensions of the L× 20× L× 20
tensor and applying APC.

We predict residue contacts from MSAs using the top L couplings from the inverse covariance
method, where L corresponds to the length of the protein [24]. Additional details can be found in the
corresponding manuscript.
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4.2 Structure conditioned sequence design using ProteinMPNN

All ProteinMPNN sequence design is performed using the ColabDesign implementation, using the
v_48_020 model.

4.3 AlphaFold2 structure prediction and self-consistency evaluation

For all AlphaFold2 predictions, we use the ColabFold implementation with random seed set to 42
[25]. For single-sequence self-consistency tests, we used default settings for ColabFold setting
"msa-mode" to "single_sequence". For the shallow-depth MSA self-consistency evaluations, we
randomly sample a certain number of sequences to generate synthetic MSAs. We subsampled the
natural MSA using hhfilter with a minimum coverage of 80%, maximum sequence identity of 90%,
and specifying the "diff" parameter to the depth of the MSA [16]. If the depth exceeded the specified
depth, we randomly sampled from the remaining sequences. We selected the top prediction from the
5 models based on maximum pTM.
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