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Abstract

Generative Flow Networks (GFlowNets), a class of generative models have recently
emerged as a suitable framework for generating diverse and high-quality molecular
structures by learning from unnormalized reward distributions. Previous works in
this direction often restrict exploration by using predefined molecular fragments
as building blocks, limiting the chemical space that can be accessed. In this work,
we introduce Atomic GFlowNets (A-GFNs), a foundational generative model
leveraging individual atoms as building blocks to explore drug-like chemical space
more comprehensively. We propose an unsupervised pre-training approach using
offline drug-like molecule datasets, which conditions A-GFNs on inexpensive
yet informative molecular descriptors such as drug-likeliness, topological polar
surface area, and synthetic accessibility scores. These properties serve as proxy
rewards, guiding A-GFNs towards regions of chemical space that exhibit desirable
pharmacological properties. We further our method by implementing a goal-
conditioned fine-tuning process, which adapts A-GFNs to optimize for specific
target properties. In this work, we pretrain A-GFN on the ZINC15 offline dataset
and employ robust evaluation metrics to show the effectiveness of our approach
when compared to other relevant baseline methods in drug design.

1 Introduction
GFlowNets are amortized samplers that learn stochastic policies to sequentially generate compo-
sitional objects from a given unnormalized reward distribution. They can generate diverse sets of
high-reward objects, which has a demonstrated utility in small molecules drug-discovery tasks [1].
Traditionally, GFlowNets for molecules generation have focused on fragment-based drug discovery
i.e. the GFlowNet action space comprises of some predetermined fragments as building blocks for
molecules. While producing diverse candidates, fragment-based approach limits the pockets of chem-
ical space assessible by GFlowNet policy [2, 1, 3, 4]. A truly explorative generative policy, tapping
into the full potential of GFlowNet would be realizable when using atoms instead of fragments as
the action space [5, 6, 7]. On the other hand, the vastness of accessible state space makes training
atom-based GFlowNets susceptible to collapse. Earlier atom-based GFlowNets attempts overcame
this issue by limiting to small trajectories [3]. However, since most commercially available drugs have
molecular weights ranging from 200 to 600 daltons[8, 9], the molecules generated from these small
trajectories are unlikely to possess the drug-like characteristics necessary for therapeutic efficacy.
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In this work, we propose to mitigate the small trajectory length constraint for atom-based GFNs by
pretraining them with expert demonstrations, coming in the form of offline drug-like molecules. A
detailed discussion on related works can be found in appendixA. Our main contributions in this paper
are as following:

• We introduce A-GFN-an atom-based GFlowNet for sampling molecules proportional to
rewards governed by inexpensive molecular properties.

• We propose a novel strategy for unsupervised pretraining of A-GFNs by leveraging drug-like
molecules using offline, off-policy training. This pretraining enables broader exploration
of chemical space while maintaining diversity and novelty relative to existing drug-like
molecule datasets.

• Through extensive experimentation, we demonstrate that goal-conditioned fine-tuning of
A-GFNs for sampling molecules with desired properties offers significant computational
advantages over training A-GFNs from scratch for the same objectives.

2 Preliminaries
GFlowNets are generative models designed to sample structured objects from a state space S
in proportion to a reward function R (sT ) assigned to terminal states sT . The model generates
trajectories τ = (s0, a0, . . . , sT ) by transitioning between states through actions, guided by a forward
policy PF (s′ | s). The key idea is to learn a flow function F (s) that ensures the total flow into
each state equals the flow out, so the probability of reaching any terminal state is proportional to its
reward. This is achieved by aligning the forward and backward policies PF and PB , ensuring the
final distribution over terminal states reflects the desired reward distribution.

Existing extensions of GFlowNets that handle multiple, potentially conflicting objectives [3, 2], along
with the benefits of scalability to large action spaces and credit assignment makes them well-suited
for molecular generation tasks; the primary focus of our work. We consider molecules as their
topological graphs G = (A,E,X ) such that X ∈ Rn×d define d-dimensional atomic features for
the n nodes in G, E ∈ {0, 1}b×n×n is edge-adjacency tensor for b types of edges connecting n
nodes and finally A ∈ {0, 1}n×n is the adjacency matrix for n nodes. The corresponding trajectory
τ for G (τ = (s0, a0), ....(sn, an)) is generated by sampling actions a from a conditional learning
policies PF (. | c; θ) and PB(. | c,G; θ) of the GFlowNet Gθ, where state si is a partially constructed
subgraph of G, and sn = G.

Our primary objective is to learn π such that the generated G are chemically valid molecular graphs
satisfying some defined molecular property conditional ranges c, and exhibiting sufficient diversity.
Specifically, we want to train a conditional policy which samples molecular graphs G with probability
proportional to R(G|c), where R(G|c) is a reward function measuring how well generated G satisfies
c. Our secondary objective involves fine-tuning this pretrained Gθ = (PF (; θ), PB(; θ)) to achieve
drug discovery tasks with certain molecular property constraints and establish the benefits of fine-
tuning GFlowNets. Trajectory balance [10] being the most common learning objective designed to
improve credit assignment in GFlowNets is used as the training method in this work.

LTB(τ) =

(
log

(
Zθ

∏n
t=1 PF (st|st−1; θ)

R(x)
∏n

t=1 PB(st−1|st; θ)

))2

(1)

where, trajectory τ = (s0, s1, ...., sn) such that sn = x is a fully constructed object. Within the
context of our work, x ∈ X are samples from the combinatorial space of all possible molecules
using actions at ∼ A. The Trajectory Balance Objective ensures that the product of forward policy
probabilities along a trajectory is proportional to the product of backward policy probabilities and the
reward along the same trajectory.

3 Unsupervised Pretraining with Inexpensive Rewards
To construct molecular graphs, we design an action space with 5 action types. The agent can add
a node (heavy atom) to the graph, add an edge between two nodes, set a node’s properties (e.g.
its chirality), set a bond’s properties (i.e. its bond order), or stop the trajectory. We use a graph
neural network [11] to parameterize a policy with such actions, using the GNN’s invariances to
produce per-node and per-edge logits. We are also careful to mask these logits such that the produced
molecules always have valid valences (i.e. by design the molecules are always convertible to RDKit
molecules and SMILES). Since our method generates molecules atom by atom, we refer to the
approach as Atomic GFlowNet (A-GFN).
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3.1 Inexpensive Molecular Rewards
In the context of pre-training A-GFN models for molecular design, we utilize inexpensive molecular
rewards—such as Topological Polar Surface Area (TPSA), Quantitative Estimate of Drug-likeness
(QED), synthetic accessibility (SAS), and the number of five or six-membered rings in a molecule.
These rewards are computationally cheap to evaluate and serve as proxies for more complex properties.
Fine-tuning the models is then conducted on more expensive and computationally intensive tasks,
such as predicting binding affinity or toxicity (e.g., LD50), which are crucial for drug discovery but
require significant computational resources or experimental data to assess accurately.

3.2 Reward Function
In order to pre-train a goal-conditioned A-GFN for learning molecular properties p ∈ P , we need
to define the property-specific conditional ranges cp = (clow, chigh) from which molecules are
generated. We use the following goal-conditioned reward function for property p and molecule x:

Rp(x|cp, d⃗ > 0) = reward(px | cp, d⃗ > 0) =


0.5 ∗ exp

(
− (clow−px)

λ

)
if px < clow

exp
(
− (px−chigh)

λ

)
if px > chigh

0.5∗(px−clow)
(chigh−clow) + 0.5 otherwise

(2)

here, λ controls the decay rate, clow and chigh are the lower and upper bounds for property p, and
d⃗ ∈ R represents the preference_direction hyperparameter, indicating whether lower or higher
property values within the range cp are preferred (for further details, see appendix B,C). Note that
during training, we sample these ranges so that the model learns to be robust to inference-time queries
(sec 3.3).

Drug discovery is inherently a multiobjective optimization problem where the drug candidates are
expected to simultaneously have several desired properties, such as a high drug-likeliness (QED),
high SAS, and reasonably low TPSA, among other criteria. In our de novo molecular generation setup,
we wish to satisfy the same multiobjective desiderata [3]. We choose this aggregated scalarization of
the multiobjective reward over property set P as

R(x|cp1 , ..., cp|P |) =
∏
p∈P

Rp(x|cp) (3)

3.3 Reward conditioning A-GFN
To alleviate the problem of sparse rewards in training A-GFNs for molecular graph generation
with some hard constraints, we condition the sampler by using a distribution of goals derived from
reasonable lower and upper bounds of the molecular property ranges we care about. This conditioning
effectively narrows down the search space to regions of interest defined by these property ranges,
ensuring that the generated molecules are not only diverse but also relevant to the specific objectives
of the drug discovery process. In order to ensure that the A-GFN does not develop a selective
bias towards specific values within a property range and instead explores the full range of possible
values for each molecular property p, we sample the conditional vectors cp,j uniformly across their
respective ranges. Specifically, for the jth online trajectory in the batch, the lower and upper bounds
clowp,j , c

high
p,j for the property p are drawn from a uniform distribution as clowp,j , c

high
p,j ∼ U(clow, chigh),

where clow and chigh are the predefined desired lower and upper bounds for the property p. In cases
where the values for properties p for the trajectory j leading to a valid molecular graph are known a
priori (pj) (e.g., from molecules in an offline dataset), cp,j are centered around these known values,
i.e. clowp,j , c

high
p,j ∼ T (pj , σp, clow, chigh), where T is a truncated normal distribution centered at the

value of property p calculated for trajectory j, σp is a hyperparmeter controlling the variance of T for
property p.

Such a probabilistic goal-sampling strategy ensures that each trajectory within the batch is conditioned
on a randomly selected sub-range within the broader property range. This enables our laid out
objective of promoting exploration across the entire desired chemical space and preventing the
A-GFN from overfitting to narrow regions within the chemical space. In order to further prevent
A-GFN from memorizing the specified property ranges but rather encourage it to learn to sample
molecules within any arbitrary range, we provide negative samples by sampling out-of-bounds
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conditionals with a small probability. To this end, with ϵ ≈ 0, we sometimes sample clowp,j , c
high
p,j from

U(clowp , chighp ) and U(clowp,j , c
high
p ) respectively for the online trajectories, while for offline trajectories,

these conditional bounds are sampled as following

(clowp,j , c
high
p,j ) =

{
(clowp ∗,U(clowp ∗, pj)) if Bi = 0

(U(pj , chighp ∗), chighp ∗) if Bi = 1

where Bi is a Bernoulli random variable with P (Bi = 0) = P (Bi = 1) = 0.5 and clowp ∗ and chighp ∗
are minimum and maximum permissible values for molecular property p. Finally, cp,j is constructed
as a vector by applying thermometer encoding [12] to the sampled scalar bounds clowp,j and chighp,j .

3.4 Pretraining GFN with expert offline trajectories
Bengio et al. [1] employ replay buffer-based off-policy training for GFlowNets to generate novel
molecules. However, such online off-policy methods can suffer from high variance [13, 14] and and
a lock-in of suboptimal trajectories, particularly in sparse reward settings, where the agent struggles
to adequately explore rare, high-reward regions of the state space, resulting in slow convergence
and suboptimal performance. To mitigate these challenges, we propose leveraging the vast amounts
of readily available inexpensive and unlabelled molecular data to perform a hybrid online-offline
off-policy pretraining of A-GFN. This data provides valuable expert trajectories and the molecular
properties derived from this data can provide inexpensive extrinsic rewards, giving a better starting
point for exploration. We form our training batches by integrating offline expert trajectories from
the ZINC dataset (DZINC) with online updates (τ = τonline ⊕ τoffline). τoffline are generated
from these molecules, x ∈ DZINC by sampling deleterious actions {deleteNode, deleteEdge,
removeNodeAttribute, removeEdgeAttribute} according to a conditional backward policy PB

as τoffline ∼ PB(. | x, cp; θ). Likewise, online trajectories are created by sampling constructive
actions {addNode, addEdge, addNodeAttribute, addEdgeAttribute, stop} from conditional
forward policy PF as τonline ∼ PF (. | cp; θ). With these trajectories and the molecular property
rewards as defined in sec 3.1, we train a prior GFlowNet (Gθ) until convergence in rewards using an
maximum likelihood estimation augmented trajectory balance loss (eq.7).

4 Finetuning
In this section, we investigate the methodology for utilizing the pre-trained A-GFN model (Gθ) and
its subsequent adaptation to downstream drug discovery tasks based on harder reward functions.
To fine-tune the model, the pre-trained parameters of Gθ serve as the initialization for task-specific
adaptation. This initialization enables the model to retain useful structural priors from pretraining,
thus improving sample efficiency and convergence speed during fine-tuning. In particular, we retrain
Gθ by integrating task-specific reward Rext. This modifies eq.3 as

R(x|cp1
, ..., cp|P |) =

∏
p∈P

Rp(x)×Rext(x) (4)

Such a reward formulation ensures that the GFlowNet receives a high reward for generating molecules
that simultaneously follow the desired molecular properties and are highly suitable for the downstream
task. It should be noted that Zθ in eq 1 is a global scalar that estimates the normalization constant for
the unnormalized reward function R(x)

(
i.e, Zθ =

∑
x∈X R(x)

)
. Thus, to enable Zθ to generalize

to the new R(x), we inject noise into the pretrained A-GFN model’s parameters, a common strategy
in pretrain-then-finetune approaches [15, 16].

5 Experiments
We evaluate A-GFN’s effectiveness during both pretraining and fine-tuning using comprehensive
metrics such as novelty, diversity, uniqueness, success rate, validity, L1-distance, and number of
modes. Full details are provided in appendix C.

For pretraining, we compare the performance of A-GFN against fragment-based GFlowNet, condi-
tioned on the same molecular properties. Our results show that A-GFN significantly outperforms
fragment-GFN in exploring drug-like chemical space across multiple objectives. For fine-tuning, we
benchmark the pre-trained A-GFN against A-GFN trained from scratch (task-trained A-GFN) on
several downstream drug discovery tasks. Following the task setup in [17], we focus on the following
finetuning objectives:
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Table 1: Comparing pretraining A-GFN to pertaining a fragment-based GFlowNet for same molecular
property conditionals. Pretraining was performed on Nvidia A100-40G GPUs.

Method N_modes Diversity Success % L1-dist (↓) Uniqueness Novelty Validity
Scaffolds

(n=200)

Time

(GPU-hours)

TPSA
Num

Rings
SAS QED

Fragment

GFlowNet
0 0.002 50.00 0.00 1.50 0.00 0.71 0.001 0.97 0.99 113

514.0

A-GFN 1252 0.88 45.09 0.03 0.49 0.24 0.67 0.96 1.0 1.0 196

Property Optimization: The goal here is to generate molecules that maximize or minimize a speci-
fied physicochemical, structural, or binding property while ensuring diversity among the generated
molecules. In this unconstrained optimization setting, we compare the fine-tuned A-GFN to the
task-trained A-GFN and other state-of-the-art methods for unconstrained molecule generation. For
fairness, we only include atom-based generative methods in the baselines, excluding fragment-based
approaches.
Property Targeting: In this task, the objective is to generate molecules that adhere to predefined
molecular property ranges while being structurally distinct from the training (pretraining) set.
Property Constrained Optimization: This task requires the generation of molecules that simultane-
ously meet both property optimization and property targeting criteria i.e. molecules must lie within
the specified property ranges while also maximizing or minimizing the targeted property. Due to
space constrainsts, finetuning results are moved to appendixD.2.

5.1 Pretraining
A-GFN pretraining setup: To create a versatile foundation for a range of downstream molecular
generation tasks, we train our A-GFN using a hybrid online-offline off-policy strategy. For our
pretraining, we utilize ZINC250K, a curated subset of the ZINC database, which consists of 250,000
commercially accessible drug-like compounds drawn from over 37 billion molecules available in
ZINC [18]. The primary goal during pretraining is to optimize the A-GFN for generic yet critical drug-
like properties: TPSA, QED, SAS, and the number of rings. The desired ranges for these properties
are enumerated in Tab.2. These properties are chosen based on their established relevance in guiding
molecular design towards compounds with desirable pharmacokinetic and pharmacodynamic profiles,
following the framework of [19]. By optimizing for these properties, we aim to equip A-GFN with the
capability to generate molecules that strike a balance between drug-likeness and structural diversity.
We restrict atom types to a core set commonly found in drug-like molecules: C, S, P,N,O, F , and
implicit hydrogen (H). This ensures that the generated molecules are synthetically relevant and
pharmacologically plausible, avoiding rare or exotic atom types that are less likely to lead to viable
drug candidates. For benchmarking fragment-based GFlowNets, we adapt the purely online training
setup proposed in [1], conditioning it on the same molecular properties as A-GFN. To align with our
A-GFN setup, we generate a fragment vocabulary from the BRICS decomposition of ZINC250K,
selecting the 73 (following [1]) most common fragments. This equips the fragment-based GFlowNet
with a diverse and representative set of building blocks for molecular generation. Through pretraining,
we observe that A-GFN effectively adapts to the specified property ranges while maintaining high
molecular diversity and uniqueness. All molecules generated by A-GFN are valid, adhering to
chemical rules, and novel, as they do not replicate any molecules in the ZINC250K dataset (Fig.2).
For the same set of property conditionals, A-GFN demonstrates superior chemical scaffold exploration
compared to the fragment-based GFlowNet, covering nearly twice as many distinct scaffolds (Tab.1).
While the fragment-based method has a higher success rate and better control over specific molecular
properties, A-GFN excels in uniqueness and novelty, making it a more powerful tool for exploring
uncharted chemical space in drug discovery. This highlights the model’s capacity to explore novel
regions of chemical space while adhering to fundamental molecular design principles.

6 Conclusion
In this work, we introduced Atomic GFlowNets (A-GFN), an extension of the GFlowNet framework
that leverages atoms as fundamental building blocks to explore molecular space. By shifting the
action space from predefined molecular fragments to individual atoms, A-GFN is able to explore a
much larger chemical space, enabling the discovery of more diverse and pharmacologically relevant
molecules. To address the challenges posed by the vastness of this atomic action space, we propose
a pretraining strategy using datasets of drug-like molecules. This off-policy pretraining approach
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conditions A-GFN on informative molecular properties such as drug-likeness, topological polar
surface area, and synthetic accessibility, allowing it to effectively explore regions of chemical space
that are more likely to yield viable drug candidates.

Our experimental results demonstrate that pretraining A-GFN with these expert trajectories leads to
improved diversity and novelty in the generated molecules. Furthermore, we show that fine-tuning
A-GFN for specific property optimization tasks offers significant computational efficiency compared
to training from scratch.
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Appendix

A Related Works
A.1 GFlowNet

GFlowNets were introduced by Bengio et al. in 2021 [1] as a framework for training energy-based
generative models that learn to sample diverse candidates in proportion to a given reward function.
Unlike traditional Reinforcement Learning (RL) methods, which focus on maximizing rewards
through a sequence of actions, GFlowNets aim to generate samples with probabilities proportional
to their associated rewards. This distinction allows GFlowNets to explore a broader solution space,
facilitating the discovery of novel, high-quality, and diverse objects across various domains. Recent
works have been conducted along a multitude of directions, some focusing on theoretical aspects, such
as connections to variational methods [20, 21]), and some focused on improved training methods
for better credit assignment and sample efficiency [10, 22]. Due to its flexibility, GFlowNets have
also been applied successfully to different settings such as biological sequences[23], causal discovery
[24, 25], discrete latent variable modeling[26], and computational graph scheduling [27].

A.2 Unsupervised pretraining in RL and GFlowNets
Pretraining models in machine learning has virtually become the default way to obtain powerful
models [28, 29]. Specifically, unsupervised pretraining in reinforcement learning (RL) has emerged
as a promising strategy to enhance data efficiency and improve agent performance across various
tasks. Recent works have explored different methodologies to leverage unsupervised interactions
with the environment before fine-tuning on specific objectives. For instance, Liu and Abbeel (2020)
introduced Active Pre-Training [30], a reward-free pre-training method that maximizes particle-
based entropy in a contrastive representation space, achieving human-level performance on several
Atari games and significantly enhancing data efficiency in the DMControl suite. Similarly, Mutti et
al. [31] addressed unsupervised RL in multiple environments, proposing a framework that allows
for pre-training across diverse scenarios to improve the agent’s adaptability. Additionally, the
Unsupervised-to-Online RL framework [32] was developed, which replaces domain-specific offline
RL with unsupervised pre-training, demonstrating that a single pre-trained model can be effectively
reused for multiple downstream tasks, often outperforming traditional methods. Similarly, In the
context of GFlowNets, recent advancements have introduced unsupervised pre-training strategies,
such as the outcome-conditioned GFlowNet [33], which enables reward-free pre-training by framing
the task as a self-supervised problem. This approach allows GFlowNets to learn to explore the
candidate space and adapt efficiently to downstream tasks, showcasing the potential of unsupervised
pre-training in enhancing the performance of generative models in molecular design.

A.3 Goal-Conditioned and Multi-Objective Gflownets
Recent advancements in GFlowNets have focused on goal-conditioned and multi-objective frame-
works, enhancing their applicability in complex generative tasks. Goal-conditioned GFlowNets
enable the generation of diverse outputs tailored to specific objectives, improving sample efficiency
and generalization across different goals, as demonstrated by [23] and further refined through methods
like Retrospective Backward Synthesis [34] to address sparse reward challenges. Roy et al., [35],
impose hard constraints on a GFlowNet model by employing focus regions as a goal-design strategy
which makes it comparable to a form of goal-conditional reinforcement learning [36]. Additionally,
the development of multi-objective GFlowNets [3] allows for simultaneous optimization of multiple
criteria, providing practitioners with greater control over the generative process and the ability to
explore trade-offs between competing objectives.

A.4 Molecule Generation
To contextualize our approach, we provide a brief review of prior research that utilized atom-
based vocabularies in molecular generative modeling. Reinforcement learning (RL) studies optimal
decision-making methodologies to maximize cumulative rewards. Given the shared notion of object-
constructing Markov decision policies between GFlowNets and RL, we focus on the latter literature
for molecule generation. For a comprehensive review of methods in molecule generation, we
point the readers to [37]. Recently, RL has been frequently employed in de novo design tasks due
to its capability to explore chemical spaces beyond the compounds present in existing datasets.
Moreover, it allows for targeted molecule generation for constrained property optimization. Early
works in this domain focused on the auto-regressive generation of SMILES within an RL-loop
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for molecular property optimization[38, 39, 40]. MolDQN[41] employs deep Q-Networks and
multiobjective molecular properties for scalarization of rewards to generate 100% valid molecules
without pretraining on a dataset. You et al.[17] and Atance et al.[42] have employed graph neural
networks, trained on offline molecular datasets, to generate molecular graphs. They simultaneously
applied policy-gradient reinforcement learning to ensure that the generated molecules adhere to
specified property profiles.

B Conditionals and Rewards

When higher values of a molecular property p or task, within desired range cp = (clow, chigh) are
preferred, preference_direction is set to d⃗ > 0 and the corresponding reward is as defined in eq.2.
Similarly, when lower values are preferred,

Rp(x|cp, d⃗ < 0) = reward(px | cp, d⃗ < 0) =


exp

(
− (clow−px)

λ

)
if px < clow

0.5 ∗ exp
(
− (px−chigh)

λ

)
if px > chigh

−0.5∗(px−clow)
(chigh−clow) + 1 otherwise

(5)

When there is no preference i.e. d⃗ = 0, the reward is defined as

Rp(x|cp, d⃗ < 0) = reward(px | cp, d⃗ < 0) =


exp

(
− (clow−px)

λ

)
if px < clow

exp
(
− (px−chigh)

λ

)
if px > chigh

1 otherwise

(6)

The rate parameter λ is set for each property individually- λQED=λSAS=λNumRings = 1, and
λTPSA=20.

Table 2: Task desired property ranges for different fine-tuning objectives. The QED, SAS, and Num
Rings conditional ranges are [0.65, 0.8, 0], [1,3,0], and [1,3,1] respectively across all experiments
where the ordering is [clow,chigh,d⃗]

Task Finetuning Objective TPSA Task Range

Mol.Wt.

Property Optimization [60,100,0] [100,800,-1]

Preserved Property Constrained Optimization [60,100,0] [302,800,-1]

DRA Property Constrained Optimization
[100,120,0] [340,800,-1]

[40,60,0] [300,800,-1]

logP

Property Optimization [60,100,0] [-5,6,-1]

Preserved Property Constrained Optimization [60,100, 0] [1.65,5,-1]

DRA Property Constrained Optimization
[100,120,0] [1.5,5,-1]

[40,60,0] [2.4,5,-1]

LD50

Property Optimization [60,100,0] [2,6,-1]

Preserved Property Constrained Optimization [60,100,0] [2,6,-1]

DRA Property Constrained Optimization
[100,120,0] [1.68, 4.4,-1]

[40,60,0] [2,6,-1]
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Table 3: Comparing the effectiveness of finetuned atomic-GFlowNet over atomic-GFlowNet trained
from scratch for TPSA property targeting objective.

Adjusted Range Method N_modes Diversity Success % L1-dist (↓) Uniqueness Novelty Validity
Time

(GPU-hours)

TPSA
Num

Rings
SAS QED

TPSA ∈ [100,120]

A-GFN

Task Trained
0 0.01 24.71 0.01 1.5 0.62 2.40 0.01 1.0 1.0

73.0

A-GFN

Finetuned
254 0.60 46.30 0.07 1.50 0.01 1.23 0.50 1.0 1.0

TPSA ∈ [40,60]
A-GFN

Task Trained
0 0.39 46.83 0.01 1.5 0.00 1.35 0.04 1.0 1.0

10.0

A-GFN

Finetuned
616 0.83 55.60 0.10 0.22 0.13 0.55 0.80 1.0 1.0

Table 4: Property constrained optimization for toxicity (LD50) task

Adjusted range Method N_modes Diversity Success % L1-dist (↓) Uniqueness Novelty Validity Time
(GPU-hours)

TPSA Num
Rings SAS QED Task

Preserved
A-GFN

tasktrained 0 0.37 57.91 0.02 1.2 0.01 1.56 0.74 0.24 0.24 1.0 24.0

A-GFN
finetuned 682 0.61 55.16 0.02 0.30 0.11 3.68 0.49 0.99 1.0 1.0 24.0

TPSA ∈ [100, 120]
A-GFN

tasktrained 0 0.75 28.95 0.20 1.49 0.40 2.789 0.73 0.99 0.99 1.0 24.0

A-GFN
finetuned 308 0.70 38.52 0.30 1.49 0.05 4.06 0.67 0.96 1.0 1.0 24.0

TPSA ∈ [40, 60]
A-GFN

tasktrained 0 0.04 20 0.48 1.5 0.039 2.38 0.61 0.002 0.002 1.0 24.0

A-GFN
finetuned 493 0.63 47.61 0.36 0.09 0.07 2.68 0.47 0.70 1.0 1.0 24.0

C Evaluation Metrics

In line with earlier works [43, 17], we employ following set of metrics to ensure a robust comparison
across different generative methods.
Validity: A molecule is considered valid if it successfully passes RDKit’s sanitization checks. Note
that in the proposed method, masking makes this trivially 1.
Diversity: For a set of generated molecules, diversity is defined based on the Tanimoto similarity of
Morgan Fingerprint representation of molecules.

Diversity = 1− 2

N(N − 1)

∑
1≤i≤j≤N

|Mi ∩Mj |
|Mi ∪Mj |

Uniqueness: The ratio of distinct canonicalized SMILES strings (without stereochemistry) to the
total number of generated molecules, after filtering out duplicates and invalid structures.
Novelty: The ratio of unique generated molecules, that are not present in the pretraining ZINC
dataset, to the total number of generated molecules.
Time: For each task, a fixed time budget is allotted to A-GFN for fine-tuning and task-training. Other
baseline methods are allowed to run for time needed to run their default configuration.
N_Modes: This metric quantifies the number of distinct, high-reward molecular modes identified by
generative model. A mode is defined as a molecule whose reward exceeds a threshold, typically set
at the 75th percentile of the reward distribution achieved by the best-performing model for the task.
For a molecule to be counted as a new mode, its Tanimoto similarity to any previously identified
mode must be less than a specified threshold (typically 0.7), ensuring that only sufficiently diverse
molecules are counted.
Normalized L1-dist: This measures how far a generated molecule’s properties deviate from their
target ranges. For each property, the L1 distance is calculated by taking the absolute difference
between the generated property value and the 10th percentile value in desired range, and then
normalized by the respective property range to ensure comparability across properties. This allows us
to assess how well the generated molecules meet multi-objective constraints in a unified metric.
Success Percent: For a set of N generated graphs {G}Ni=1 and conditionals Ctask for given task, we
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define success percentage as

Stask =
1

N

N∑
i=1

(
1

|Ctask|
∑

c∈Ctask

Ic(Gi)

)
× 100

where, Ic(G) counts the molecules within desired conditional ranges and defined as

Ic(G) =


I (|c(G)− clow| ≤ 0.1 · |clow|) , if preference_direction(c) < 0

I (|c(G)− chigh| ≤ 0.1 · |chigh|) , if preference_direction(c) > 0

I (clow ≤ c(G) ≤ chigh) , if preference_direction(c) = 0

where, for any considered task, c(G) is the the value of the conditional property c for the molecular
graph G, clow and chigh are the lower and upper bounds of c, preference_direction(c) indicates
whether lower values (< 0), higher values (> 0), or values within a range (= 0) are preferred.

preference_dir_rew.png

Figure 1: Visual representation of reward as a function of preference_direction.

D Experiments

D.1 Regularized Loss Balancing for Exploration and Synthesis Feasibility
The primary allure of molecular generative models with large explorative capacities such as A-GFN
is their ability to navigate the near-infinite possibilities of chemical structures. On the other hand,
ensuring that generated molecules lie close to the chemical space feasible for synthesis, particularly
within the constraints of make-on-demand (MOD) libraries such as ZINC, is crucial for synthesis and
in vitro validation in drug discovery. To balance these two seemingly conflicting goals, we introduce
a regularization term in the pretraining objective. Specifically, we combine the exploration objective
with a Maximum Likelihood Estimation (MLE) loss over the offline dataset, leading to the following
regularized loss function: L = λ1LTB + λ2LMLE (7)

where, LMLE = − log(PF (. | x, cp))∀x ∈ DZINC

LTB encourages exploration of the chemical space, LMLE is the distributional learning loss term
ensuring proximity to MOD libraries, and λ1, λ2 are hyperparameters controlling the trade-off
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between exploration and adherence to the MOD space (Tab.5). With the online and offline trajectories
described in sec3.4 and molecular property rewards in sec3.1, we optimize the prior A-GFN (Gθ) by
minimizing Eq.7 until convergence in reward.
D.2 Fine-tuning
Fine-tuning setup We split the fine-tuning tasks’ objectives as property optimization, property
targeting, and property constrained optimization. The primary distinction between these three
setups is in terms of the corresponding conditionals and reward function. For the tasks where some
small labeled dataset is accessible, we investigate the benefits of offline data on fine-tuning atomic-
GFlowNets. Similar to GCPN [17], we consider two structural tasks, molecular weight (mol.wt.),
and logP (partition coefficient for drug’s water to octanol concentration [44]). In addition, we also
consider other standard drug-discovery tasks where rewards are based on empirical models[45] such
as the LD50 (toxicity) task of [46]. For each task and objective pair, we aim to show that fine-tuning
a pretrained GFlowNet achieves the task’s objectives more quickly than training a new GFlowNet
from scratch. We now define each objective in detail.
D.2.1 Property Optimization
In this task, the goal is to generate novel molecules that minimize specific physicochemical properties.
While previous works have commonly benchmarked their models on QED optimization [47, 41, 17],
we exclude QED from our evaluation, as our pretrained A-GFN is already optimized for this metric.
Instead, we focus on mol.wt. and logP—two critical properties in drug discovery. To further challenge
the models, we set the target property ranges to be slightly below the minimum values found in the
Zinc250K dataset, with logP in the range [-5, -4.5] and molecular weight in the range [100, 110]. The
success percentage is calculated based on the proportion of generated molecules that fall within these
strict property ranges. The low success percentages across all methods reflect the challenging nature
of the task (Tab.6). However, the fine-tuned A-GFN shows a relatively higher success rate compared
to other methods, combined with a lower-L1 distance from the target ranges. This indicates that even
in cases where exact matches are not achieved, the fine-tuned A-GFN generates molecules that are
close to the desired property values. A-GFN’s ability to sample from these "out-of-domain" chemical
spaces—where molecules fall outside the property ranges in MOD datasets like Zinc250K—suggests
that fine-tuned A-GFN excels in generating diverse molecules that could extend the scope of current
chemical libraries. Moreover, the high diversity, novelty, and validity of the molecules generated by
A-GFN indicate its capacity to produce a broad spectrum of unique, structurally valid compounds,
essential for mitigating structural redundancy in drug candidates. Fine-tuning further enhances these
aspects, highlighting A-GFN’s potential for property-driven molecular design.
D.2.2 Property Targeting
Here, we generate molecules that satisfy specific molecular property constraints, demonstrating the
model’s capacity for fine-tuning and adaptation to new objectives. Compared to training A-GFN
from scratch, fine-tuning a pretrained A-GFN leads to significantly faster convergence, even when
property ranges are altered. In particular, we focus on modifying the TPSA property while keeping
the constraints for other molecular properties the same as those used in pretraining.

To evaluate the model’s ability to generalize to new property constraints, we alter the TPSA range
from its pretraining interval of [60, 100] to both lower [40, 60] and higher [100, 120] intervals. Our
experiments demonstrate that the fine-tuned A-GFN consistently outperforms the model trained
from scratch in terms of convergence speed and overall performance. This is particularly evident
in the number of distinct high-reward molecular modes discovered (N_modes), molecular diversity,
and success percentage, all of which show substantial improvements after fine-tuning (Tab.3). The
ability of the fine-tuned A-GFN to adapt to modified property constraints highlights the robustness of
the pretrained Gθ model, which has not merely memorized specific property ranges but has learned
a more generalizable sampling strategy. This adaptability is crucial in real-world drug discovery
applications, where molecular property requirements often shift during the drug discovery process.

D.2.3 Property Constrained Optimization
This comprehensive benchmarking task aims to generate molecules that minimize a target prop-
erty (e.g., mol.wt., logP, or toxicity) within a predefined range, while maintaining the drug-like
characteristics encoded during pretraining. We evaluate two key scenarios: conditionals-preserved
fine-tuning and Dynamic Range adjustment (DRA). In the conditionals-preserved fine-tuning setup,
we retain the same conditional property ranges (cp) used during pretraining, setting the task’s
preference_direction to -1, which directs the model to minimize the target property. The desired
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Table 5: Pretraining and finetuning setups and corresponding hyperparameters

Hyperparameter Pretraining
Values

Finetuning
Values

FT w/data
Values

max_num_iter 500,000
bootstrap_own_reward FALSE

random_seed 1,428,570
beta 96 64

OOB_percent 0.1
zinc_rad_scale (λ) 1
gfn_batch_shuffle FALSE

reward_aggregation mul
sampling_batch_size 2048 1024
training_batch_size 64

learning_rate 1.00e-04
online_offline_mix_ratio 0.5

num_workers 8 2
gfn_loss_coeff (λ1) 0.04 - 0.04

MLE_coeff (λ2) 20 - 20
num_emb 128

num_layers 8
num_mlp_layers 4

num_heads 2
i2h_width 1

illegal_action_logreward -512
reward_loss_multiplier 1

weight_decay 1.00e-08
num_data_loader_workers 8

momentum 0.9
adam_eps 1.00e-08
lr_decay 20,000

Z_lr_decay 20,000
clip_grad_type norm

clip_grad_param 10
random_action_prob 0.001
random_stop_prob 0.001

num_back_steps_max 25
max_traj_len 40
max_nodes 45
max_edges 50

tb_p_b_is_parameterized TRUE
num_thermometer_dim 16

sample_temp 1
checkpoint_every 1,000 500
Z_learning_rate 1e-3
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top_pretrainedmols.png

Figure 2: Some randomly chosen successful molecules from the pretrained A-GFN.
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Table 6: Comparing fine-tuned A-GFN with other baselines for logP and molecular weight property
optimization task.

Task Method N_modes Diversity Success %
L1-dist (↓)

task
Uniqueness Novelty Validity

Time

(GPU-hours)

logP

GCPN 154 0.91 2.54 0.45 1.0 1.0 1.0 40.0

Reinvent 28 0.90 0.34 0.41 0.93 0.99 0.99 4.0

A-GFN

Task trained
928 0.89 13.02 0.17 1.0 1.0 1.0 20.0

A-GFN

Finetuned
1199 0.87 16.67 0.19 0.99 1.0 1.0 20.0

Molecular

Weight

GCPN 223 0.92 4.02 0.14 1.0 1.0 1.0 40.0

Reinvent 1 0.88 0.02 0.33 0.97 0.99 0.99 4.0

A-GFN

Task trained
9 0.93 0.88 0.40 1.0 1.0 1.0 8.0

A-GFN

Finetuned
1157 0.94 6.58 0.05 0.95 1.0 1.0 8.0

Table 7: Comparing the effectiveness of finetuned A-GFN over A-GFN trained from scratch for
conditional preserved finetuning.

Task Method N_modes Diversity Success % L1-dist (↓) Uniqueness Novelty Validity
Time

(GPU-hours)

TPSA
Num

Rings
SAS QED Task

Molecular

Weight

A-GFN

Task Trained
0 0.92 15.71 0.33 1.50 1.96 2.32 0.14 0.95 1.0 1.0

24.0

A-GFN

Finetuned
340 0.71 43.09 0.06 0.75 0.12 0.99 0.04 0.62 1.0 1.0

A-GFN

Finetuned

w/ data

963 0.86 35.52 0.03 0.39 0.41 0.94 0.08 1.0 1.0 1.0 24.0

logP

A-GFN

Task Trained
0 0.96 20.32 0.64 1.18 1.98 2.59 0.48 0.75 1.0 1.0

1.0

A-GFN

Finetuned
1286 0.86 41.20 0.04 0.45 0.31 0.49 0.20 1.0 1.0 1.0

A-GFN

Finetuned

w/ data

1080 0.87 43.47 0.05 0.49 0.28 0.65 0.31 0.98 1.0 1.0 1.0

ranges for these task properties are set between the 25th percentile of the ZINC dataset and a prede-
termined maximum threshold (see Tab.7 and 4 for specifics). The fine-tuned A-GFN significantly out-
performs the A-GFN trained from scratch, achieving superior results within the same computational
budget. In the dynamic range adjustment scenario, we modify one of the pretraining conditionals
(TPSA) by shifting its range from 60 ≤ TPSA ≤ 100 to both lower (40 ≤ TPSA ≤ 60) and higher
(100 ≤ TPSA ≤ 120) values. In this case, fine-tuned A-GFN again surpasses its scratch-trained
counterpart, demonstrating faster convergence and higher success rates (Tab.8). We also explore a
hybrid online-offline fine-tuning approach, where A-GFN leverages offline task-specific data with
the desired cp, similar to its pretraining setup. In most tasks, hybrid fine-tuning shows comparable
performance to fully online fine-tuning, with notable exceptions in more complex tasks like logP
optimization when 100 ≤ TPSA ≤ 120; it is plausible that in such a case grounding the model
in data stabilizes early learning when rewards are low. In this challenging case, the goal was to
generate molecules with logP≈1.5 while maintaining the conditional properties outlined in Tab.2.
The inherent difficulty of this task is underscored by the fact that only 0.002% of molecules in the
ZINC250K dataset meet these stringent criteria. Despite the challenge, A-GFN fine-tuned with a
small offline dataset of expert trajectories achieve a respectable success rate and uncover diverse
modes in the chemical space. This underscores the potential of hybrid online-offline fine-tuning to
unlock otherwise inaccessible regions of the chemical landscape, offering a promising strategy for
tackling difficult-to-sample molecular spaces.
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Table 8: Comparing the effectiveness of finetuned A-GFN over A-GFN trained from scratch for
dynamic range adjustment property constrained optimization finetuning.

Task
Adjusted

range
Method N_modes Diversity Success % L1-dist (↓) Uniqueness Novelty Validity

Time

(GPU-hours)

TPSA
Num

Rings
SAS QED Task

Molecular

Weight

TPSA ∈ [100, 120]

A-GFN

Task Trained
0 0.94 16.80 1.71 1.5 1.87 2.48 0.21 0.88 1.0 1.0

16.0

A-GFN

Finetuned
873 0.79 51.70 0.16 0.34 0.10 0.59 0.06 0.94 1.0 1.0

A-GFN

Finetuned

w/ data

401 0.87 34.70 0.23 0.34 0.36 0.88 0.09 1.0 1.0 1.0 16.0

TPSA ∈ [40, 60]

A-GFN

Task Trained
0 0.93 11.88 0.72 1.50 1.87 2.02 0.20 0.89 1.0 1.0

16.0

A-GFN

Finetuned
1034 0.82 57.06 0.10 0.26 0.15 0.66 0.04 0.91 1.0 1.0

A-GFN

Finetuned

w/ data

256 0.87 38.14 0.09 0.35 0.49 0.41 0.09 1.0 1.0 1.0 16.0

logP

TPSA ∈ [100, 120]

A-GFN

Task Trained
25 0.74 16.64 0.47 1.5 0.62 0.94 0.30 0.84 1.0 1.0

72.0

A-GFN

Finetuned
1 0.02 20.08 0.09 1.5 0.11 2.17 0.04 0.01 1.0 1.0

A-GFN

Finetuned

w/ data

1309 0.86 35.73 0.32 0.26 0.30 1.37 0.26 1.0 1.0 1.0 24.0

TPSA ∈ [40, 60]

A-GFN

Task Trained
0 0.65 27.50 1.00 1.50 0.02 0.86 0.36 0.35 1.0 1.0

24.0

A-GFN

Finetuned
257 0.60 58.0 0.03 1.14 0.03 0.87 0.07 0.17 1.0 1.0

A-GFN

Finetuned

w/ data

1253 0.89 46.29 0.13 0.61 0.28 0.50 0.39 0.91 1.0 1.0 28.0
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