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Abstract

Protein language models (pLMs) have emerged as state-of-the-art tools for gen-
erative protein sequence design. pLMs however do not inherently design new
sequences with function beyond what occurs in nature, demonstrating a misalign-
ment with the protein engineering objective of redesigning a protein sequence with
enhanced function. In the field of natural language processing, Reinforcement
Learning with Human Feedback (RLHF) aligned the large language model Chat-
GPT towards preferred responses via supervised fine-tuning (SFT) and proximal
policy optimization (PPO). We adapt SFT and PPO for the functional alignment of
pLMs using experimental data and call this method Reinforcement Learning with
Experimental Feedback (RLXF). We use RLXF to align ESM-2 and a generative
variational autoencoder to design 5 mutant variants of the oxygen-independent
fluorescent protein CreiLOV. We find a greater fraction of designs from aligned
ESM-2 were active and at least half as bright as CreiLOV with in vivo fluorescence
assays. We present RLXF as a versatile method to functionally align pLMs using
experimental data for protein sequence redesign.

1 Introduction

pLMs have emerged as a state-of-art tool for generative protein sequence design. These models
utilize transformer-based architectures [, [2, 3} 14, S]] to learn complex evolutionary and structural
dependencies from natural protein sequences [} 4] and structures [5} 16} [7, 8]]. This allows pLMs
to construct rich representations of functional and structural protein design constraints [9, 10, [11]
learned via masked language modeling (MLM) [} 5L (7} (12} |13} 14 [15] or casual language modeling
(CLM) [16} 17,18} 19, [20] pre-training objectives. Recently, pLMs designed novel and functional
GFP variants [3]], lysozyme variants [16], and peptide binders [21, 22]], amongst others. While the
generation of functional GFP and lysozyme variants far in sequence identity from natural training
examples is a remarkable stride towards de novo protein design, the function of these variants
remained within the distribution of natural sequences. These results suggest pLMs are misaligned
with an important protein engineering objective: redesigning protein sequences with enhanced
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function [23]]. Thus, there is a need for a computational workflow that leverages experimental data to
align pLMs for generative protein redesign.

Reinforcement learning with human feedback (RLHF) [24}25] aligned large language models like
ChatGPT towards human-preferred responses and away from offensive or harmful outputs, without
catastrophic forgetting of pre-training knowledge [26} 27, 28]]. Remarkably, RLHF outperformed
supervised fine-tuning (SFT) alone [26} 25], allowed targeted and iterative enhancements of model
responses [27, 28], and reduced compute demands by approximately 1000-fold compared to tradi-
tional reinforcement learning [24]]. Our method Reinforcement Learning with Experimental Feedback
(RLXF) is adapted from the RLHF workflow [26] and is guided by an ensemble of reward models
trained with deep mutational scanning (DMS) data (Figure 1).
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Figure 1: Reinforcement Learning with Experimental Feedback (RLXF). (a) RLXF consists of
pre-training ESM-2 with natural protein sequence data [4], briefly supervised fine-tuning ESM-2
towards experimentally validated designs functionally similar to CreiLOV, and aligning ESM-2 using
PPO guided by an ensemble of reward models trained with CreiLOV DMS data. (b) PPO iteratively
updates ESM-2 weights N times each epoch to become more likely to generate brighter and diverse
sequence designs. Backpropagation occurs through the probabilities from the aligned model for
amino acids sampled by the aligned ESM-2 model found in the numerator of the probability ratio
term. Probabilities from the pre-trained model for amino acids sampled by the aligned model are in
the denominator. The total reward term consists of a normalized predicted log fluorescence score
from our ensemble of reward models, a pairwise Hamming distance term to encourage sequence
diversity, and a Kullback-Leibler divergence penalty (Dgy) to prevent drastic updates to ESM-2
weights that result in forgetting knowledge gained during pre-training. PPO loss is clipped with the
epsilon (€) term to stabilize training.

We align the pLM ESM-2 [4] and a generative protein sequence variational autoencoder (VAE),
trained with a method previously shown to be capable of designing novel, diverse, and functional
luciferases [29]], to redesign the flavin-binding fluorescent protein CreiLOV [30, 31]. CreiLOV is
an attractive target as a reporter protein for studying hypoxic/anaerobic environments such as gut
microbiomes, tumor environments, and high-density fermentations [32] that the ubiquitous oxygen-
dependent green fluorescent protein (GFP) cannot. Designing a more fluoresent CreiLOV variant
would create a more practical reporter protein as CreiLOV is significantly less fluorescent than GFP.



2 Methods

We describe methods in the supplementary methods.

3 Results

We trained an ensemble of multi-layer perceptron reward models with 6,925 sequences containing
1-4 mutations from a CreiLOV DMS dataset [33] to predict the log mean fluorescence of CreiLOV
variants (Table S1). The ensemble of reward models achieved a Spearman correlation of 0.93 for
a test set containing 5 mutant variants of CreiL OV, indicating an ability to guide the alignment of
ESM-2 and the VAE during PPO (Figure S1).

The VAE was pre-trained on a multiple sequence alignment of curated natural sequences related to
CreiLOV (Figure S2-S3). The VAE could reconstruct CreiLOV and generate sequence designs similar
in sequence identity to CreiLOV, suggesting the VAE did not require SFT to initialize parameters for
alignment.

Pre-trained ESM-2 can generate sequence designs similar in sequence identity to CreiLOV (Figure
S4).

We supervised fine-tuned ESM-2 to maximize the likelihood of the best mutations in the DMS
dataset using pairs of prompts (CreiLOV variants with beneficial amino acid mutations masked) and
responses (CreiLOV variants with beneficial amino acid mutations unmasked) (Figure S5).

Alignment with RLXF improved the likelihood of ESM-2 and the VAE to design CreiLOV variants
with greater predicted log fluorescence than pre-trained models (Figure 2a-b, Figure S6-S7). Not
only did RLXF shift the distribution of model sequence designs toward brighter designs, aligned
models learned to avoid mutating flavin-binding residues and extrapolated beyond the mutational
regime of wet lab experimental training data, suggesting effective exploration and exploitation of
CreiLOV sequence design space (Figure 2c, Figure S8).

When sampling 1000 designs from each model, aligned ESM-2 generated design with the greatest
maximum predicted log fluorescence and the aligned VAE generated designs with the greatest
mean, median, and minimum predicted log fluorescence. The win rate of all models improved after
alignment (Table 1).

Metric Pre-trained ESM-2 SFT ESM-2 Aligned ESM-2 Pre-trained VAE  Aligned VAE
Mean 3.9735 4.0041 4.0036 4.0381 4.0878
Median 3.9898 4.0151 4.0143 4.0380 4.0949
Max 4.1006 4.1578 4.1592 4.1123 4.1248
Min 3.6266 3.7027 3.7027 3.9066 3.9786
Win Rate vs. Pre-trained ESM-2 - 0.623 0.620 0.740 0.955
Win Rate vs. SFT ESM-2 0.377 - 0.854 0.646 0.891
Win Rate vs. Pre-trained VAE 0.260 0.354 0.352 - 0.902

Table 1: RLXF aligns models to design 5 mutant variants with enhanced predicted fluorescence.

We validated designs from ESM-2 with E. coli-based fluorescence assays (Figure 3). We found that
a greater fraction of designs from aligned models compared to pre-trained models were active and
at least half as bright as CreiLOV. However, we were unable to design a sequence brighter than
CreiLOV with the current implementation of SFT and PPO.

Interestingly, we found that increases in the top 10% recall metric correlated more strongly with
improved generative performance of models than the widely used Spearman correlation metric (Table
S2). This suggests the top 10% recall metric better indicates the functional alignment of pLMs for
generative protein redesign.

4 Discussion

In this work, we propose RLXF to deploy a pLM aligned with SFT and PPO for the optimization
of protein sequences with in vivo fluorescence beyond what occurs in nature. Our method provides
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Figure 2: In silico evaluation of aligned models.
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Figure 3: In vivo fluorescence assay data from pre-trained and aligned ESM-2.



an alternative to training new pLMs with intensive compute resources and large databases. Given
that common pre-training objectives do not always scale with model size [J5,[34], our method also
provides an alternative to creating new pre-training tasks [35} [34].

We chose PPO rather than other policy optimization methods, such as direct preference optimization
used in related studies [, [1, 136} 137]], because PPO excels at complex generative tasks [38, [39].
The in vivo fluorescence of our designs and the increasing number of studies using reinforcement
learning techniques may signify a shift in protein engineering paradigms towards supplementing
the knowledge already present in pLM representations with experimental data for domain-specific
tasks. While our method is sensitive to hyperparameter selection during SFT and PPO, Optuna [32]
provided an automated and efficient manner to optimize hyperparameters for stable alignment. We
may be able to reduce the experimental data required to align pLMs with RLXF by deploying a VAE
as a reward model, as our VAE appeared to learn local evolutionary patterns specific to CreiLOV
functional requirements during pre-training.

The aligned VAE quickly converged on a few mutations during alignment (R5E, P35K, P§2K, and
G115A/S) while ESM-2 did not. Granted, the brightest designs from ESM-2 often had non-polar
amino acids substituted with positively charged amino acids. We hypothesize this observation comes
from differences in ESM-2 and VAE pre-training and model size. The VAE is pre-trained with
an MSA containing local evolutionary information while ESM-2 is trained on protein sequences
sampled across nature [4]. This biases ESM-2’s per-residue likelihoods towards general trends across
evolution rather than family or domain-specific mutations.

Alignment responses may scale with model size [5]. However, it is not clear if this is the result of
larger pLMs learning additional general protein design constraints during pre-training or the increase
in model size preventing rapid over-fitting to local maxima during alignment. Interestingly, we found
that aligning ESM-2 8M was significantly more challenging than aligning ESM-2 35M. In addition,
the predicted log fluorescence of sequence designs from pre-trained ESM-2 models increases with
model size up to ESM-2 650M (Figure S9). We hypothesize that larger pLMs than the ESM-2
35M we aligned in this study can more effectively explore complex sequence-function mappings,
often called a protein fitness landscape, to design protein sequences with the greatest functional
enhancements. In addition, RLXF can be adapted for iterative, multi-objective functional alignment
of pLMs, perhaps to explore vast design landscapes using a self-driving lab [40] to efficiently obtain
experimental data.

We hypothesize we were unable to design a variant brighter than CreiLOV as a result of pre-
training knowledge lost during SFT. The single mutant logit space from the supervised fine-tuned
ESM-2 revealed supervised fine-tuned ESM-2 could no longer reconstruct CreiLOV (Figure S10).
Interestingly, ESM-2 still learned several beneficial mutations during SFT and PPO to increase the
fraction of designs from ESM-2 that were active and at least half as bright as CreiLOV.

We are investigating these hypotheses to design variant sequences brighter than CreiLOV and further
establish guidelines for the functional alignment of pLMs.
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6 Supplementary Methods

6.1 Data Curation for Reward Models and VAE

We used data to train reward models from an extensive CreiLOV DMS dataset [33]]. The training
split contains 2,204 single mutants (92.6% coverage), 176 double mutants, 978 triple mutants, and
3,565 four mutation variants. We curated validation and test sets using 75/25 data splits for 9,603 five
mutation variants.

We curated 260,349 natural sequences related to CreiLOV from the protein database UniRef90 [41]
with the Hidden-Markov model homology search tool Jackhmmer [42] to obtain a multiple-sequence
alignment (MSA) [43] 44} 145] containing proteins related to CreiLOV with a maximum of 2 iterations
(N=2). We removed sequences less than 75% of the length of CreiLOV [45], removed sequences
with an amino acid repeating 10 times in a row, and removed positions of the MSA not corresponding
to CreiLOV [29]. We reweighted the remaining 243,682 sequences with neighbors classified as
having a Hamming distance/length of sequence greater than 0.8 to reduce phylogenetic bias from
uneven sampling [45] 46} 47]. We withheld 100 sequences from the reweighted MSA to later assess
VAE overfitting to the training set as a pseudo-test set given that these sequences are unlabeled. We
randomly sampled the remaining 243,582 sequences with a 90/10 split for the training and validation
sets.



6.2 Training Reward Models

We trained 100 multi-layer perceptrons with fixed training, validation, and test data splits to predict the
log mean fluorescence of CreiLOV variants in a supervised manner using a mean squared error (MSE)
loss objective. Each MLP in the ensemble was initialized with a different seed. Input sequences were
one-hot encoded. Hyperparameters for the ensemble of multi-layer perceptron reward models are
included in Section 6.8 of the supplementary methods.

6.3 VAE Pre-training

The VAE is pre-trained by maximizing a modified version of the Evidence Lower Bound (ELBO)
that effectively minimizes the Kullback-Leibler divergence between the variational approximation
and the true posterior distribution [45]:

L(¢,0;%) = Ey, (apx)[log po(x[2)] — BDk1(q4(2[x)|Ip(2)) ey

The first term can be considered a reconstruction loss that is computed using cross-entropy between
an input one hot-encoded sequence and output likelihoods. The second term is a Kullback-Leibler
divergence term (D) with the prior distribution p(z) of N'(0,I)). 3 is the weight for the KL
divergence term.

The VAE essentially receives batches of one-hot encoded sequences from the reweighted MSA,
compresses the one-hot encoded sequences into a regularized latent space during encoding, and
reconstructs these natural sequences from the latent space during decoding. Hyperparameters were
selected by a grid search of 673 combinations are included in Section 6.8 of the supplementary
methods.

6.4 Supervised Fine-tuning ESM-2

We briefly finetune ESM-2 35M in a supervised manner with the top 512 scoring variants in the
training set, using the standard masked language modeling (MLM) training objective. We chose
ESM-2 35M to make our method practical to those without intensive compute resources.

For input into ESM-2, we masked the mutations relative to wild type CreiLOV for all 512 sequences.
This strategy is also referred to as instruction tuning in the literature.

During training, we minimize the cross-entropy between this preference data, i, and ESM-2 predic-
tions, j:
N M

Lep = —% DD wilog(pyy) (@)

i=1 j=1

We conduct 1,000 trials of hyperparameter optimization using the Optuna Tree-Parzen Estimator
(TPE) sampler and a custom PyTorch callback to terminate trials if model parameters became non-
finite (i.e., NaN or infinity) after each training batch. We utilized two NVIDIA GeForce RTX 4090
GPUs (48 GB of VRAM). Hyperparameters selected are included in Section 6.8 of the supplementary
methods.

6.5 Policy Proximal Optimization

Our PPO implementation utilizes two copies of SFT ESM-2 or the pre-trained VAE weights. One copy
remains frozen while the aligned model has trainable parameters. In agreement with reinforcement
learning terminology, we refer to a model as a policy in this section.

Proximal policy optimization relies on the minimization of a clipped surrogate objective function
often called a clipped PPO loss:

LOLIP(9) = &, [_ min (rt(e)At, clip(r(0),1 — €, 1 + e)At)} 3)

The probability ratio r;(6) is between the trainable policy 7y and the frozen policy 7y, , .
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r¢(0) = “

Ay is the advantage estimate. The hyperparameter e establishes a pessimistic bound on model updates,
preventing excessively large model updates to help balance exploration and exploitation. We estimate
A; using the total reward R(x,y) similar to [25]] with sequence prompts x to models and sampled
sequence designs y:

R(z,y) =r9(z,y) +vH(y) — BDkL 5)

The total reward R(x,y) consists of three components: a normalized predicted log mean fluorescence
term 79 (2, y) from our ensemble of reward models, a weighted pairwise Hamming distance term
~+H (y) between sampled sequence outputs to encourage the generation of diverse sequences, and a
weighted Kullback—Leibler divergence penalty Dy between the trainable and frozen policies.

(6)

7.‘.trainab]e T
DKLIOg[ iy )]

7.(-frozen (y | .T)

For ry(z,y), we normalized the 5th percentile predicted log fluorescence from the ensemble of
reward models relative to CreiLOV or pre-trained designs (See section 6.8). When aligning ESM-2,
we masked each position of CreiLOV one-at-a-time and input the sequence with one mask into the
fixed ESM-2 model to generate the frozen log probabilities for single mutations prior to training. This
time-consuming calculation required a forward pass for each position of CreiLOV but does not need
to be repeated during alignment. For each epoch with PPO, we calculated new log probabilities for
masked and mutated positions with the trainable ESM-2 policy. We used this method to simplify and
expedite the calculation of Dg; each epoch. When aligning the VAE, we considered the likelihood
matrices (21 x L with 21 referring to the 20 amino acids and gap tokens and L being the length of
CreiLOV) from the trainable and frozen policies for Dy .

Each PPO epoch involves the following steps:
1. Recursively identify the number of masks or noise to generate sequences with an average
batch Hamming distance of 5 from CreiLOV.
2. Generate log probabilities for amino acids with the frozen policy.
3. Generate log probabilities for amino acids with the trainable policy.

4. Sample log probabilities from the trainable policy to obtain sequence designs with an average
batch Hamming distance of 5 from CreiLOV.

. Calculate the total reward R.
. Calculate probability ratio r;(0).
. Calculate the clipped PPO loss objective function.

0 3 N W

. Update trainable policy weights.

9. Repeat steps 3, 6, 7, and 8 for N — 1 more steps to complete a trajectory.
For ESM-2, we iteratively masked the CreiLOV sequence to identify the number of masks to generate
sequences with an average batch Hamming distance of 5 from CreiLOV. For VAE alignment, we

recursively applied noise to the latent representation of CreiLOV to generate sequences with an
average batch Hamming distance of 5 from CreiLOV.

6.6 Computing in silico Evaluation Metrics

We utilized several techniques from literature to calculate top 10% recall and Spearman correlations
for models across alignment with RLXF. These metrics are commonly used to evaluate the zero-shot
predictions of models [48].

We calculated masked and mutant marginal scores as described in [9]]. The masked marginal score is
defined as:

11



Masked Marginal = Z logp(x; = " |x_nr) — logp(z; = i |x_r)] @)
ieM

where M is the set of mutated positions, :1:;’“" is the mutant amino acid at position i, a:;%“t is the
wildtype amino acid at position ¢, and z_,; represents the sequence with masks at the mutated
positions. The mutant marginal score is similarly calculated as:

Mutant Marginal = Z logp(z; = x}"|2™") — log p(a; =z |2™)] 8)
ieM

where 2™ is the full mutant sequence.

We calculated pseudo-perplexity scores as described in [4,/49]]. The pseudo-perplexity score is defined
as:

L

1

Pseudo-perplexity(x) = exp {_L E log p($i|$j;£i)} ®
i=1

where L is the length of the sequence, and p(z;|x;;) is the probability of amino acid x; at position i
given all other amino acids in the sequence.

We calculated log ratio as described in [45)43]]. The log ratio is defined as:

p(l'MutantW)

log
p (xwildtype | 9)

(10)
where x refers to mutant or wildtype sequence and € refers to the pre-trained VAE parameters.

6.7 In vivo Characterization of RLXF Designs

All designs were codon optimized for expression in E. coli [50] and ordered from Twist Bioscience
as clonal genes, in which all design inserts were integrated into the pET-28a(+) expression vector.
100 ng of each design, in addition to wild type and empty plasmid controls, was transformed into
chemically competent BL21 E. coli aliquots. 100 uL of transformation mix was plated on LB plates
supplemented with 50 pg/mL of kanamycin, and grown at 37°C overnight. Individual colonies were
picked and inoculated in 5 mL LB broth supplemented with kanamycin, and grown overnight at 37°C,
shaking at 225 rpm, overnight. In a 96-well optical bottom plate, overnight cultures were diluted
1:100 in 200 pL of LB+kanamycin. Using an Agilent BioTek Synergy H1 plate reader, the cultures
were grown to an ODg of at least 0.4, at 37°C with shaking at 225 rpm, before being induced with
0.5 mM of isopropyl 3-D-1-thiogalactopyranoside (IPTG). Upon induction, the plate was incubated
at 37°C with orbital shaking, while concurrently measuring ODggo and fluorescence emission at
495 nm in 30 minute intervals for 8 hours. For fluorescence excitation and emission, the minimum
bandwidth of 9 nm was used, the gain was set at 142, and the Z-position was set to 4.75 mm. To
obtain the final normalized fluorescence values for each design, the final raw fluorescence readings
were normalized by the corresponding ODggg. The normalized empty plasmid control value was
subtracted from all other normalized fluorescence values to account for background signal, and all
experimental designs were then normalized against wild type values to obtain the final fluorescence
reading relative to wild type. Sequences for which cells did not grow were removed from subsequent
analysis. Consequently, we could not obtain data for 2 pre-trained ESM-2 designs, 4 greedy aligned
ESM-2 designs, 3 pre-trained VAE designs, and 1 unconditional aligned VAE design. Efforts are
currently underway to obtain replicates of the experimental data reported in this manuscript, as well
as further in vitro characterization of the best designs including quantum yield assays of the purified
ten brightest designs across all models evaluated.

6.8 Model Architecture and Hyperparameter Details
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Reward Model Hyperparameters

Loss MSE
Learning Rate 1x10°6
Batch Size 128
Epochs 2000
Dropout 0.1
Patience 400
Number of Models 100
Hidden Layer Dim. 400
Activation ReLU
Optimizer Adam
Embedding Type One-Hot

Table 2: Hyperparameters for each multi-layer perceptron reward model.

Pre-trained VAE Hyperparameters

Learning Rate 1x 1074

Batch Size 32

Epochs 1000

Patience 100

Weighted D1, Cyclical Annealing Schedule
Number of Cycles 1

Embedding Type One-Hot

1st Convolutional Layer 21 input channels, 21*16 output channels
2nd Convolutional Layer 21*16 input channels, 21 output channels
Kernel size 17

Padding 1

Fully Connected Layer Dimensions 400

Latent Space Dimensions 64

Optimizer Adam

Activation ReLU, LeakyReLU

Table 3: Hyperparameters identified by grid search to train VAE. ReLLU activations were applied to
fully connected layers. LeakyReL U activations were applied to convolutional layers.

SFT ESM-2 Hyperparameters

ESM-2 Version 35M
Learning Rate 0.0401
Learning Rate Multiplier 0.9830
Learning Rate Multiplier Factor 0.9664
Batch Size 36
Epochs 2

Initial Number of Unfrozen Layers 27
Number of Layers to Unfreeze Each Epoch 10
Maximum Number of Unfrozen Layers 82
Training Positional Embedding True
Weights for Cross Entropy Loss Norm. Log Fluorescence Values (0-1)
Weight Decay 0.0010
Gradient Clipping Threshold 1
Optimizer Adam
Warm Restart Cosine Annealing
Scheduler Cosine Annealing
Quantization fpl6

Table 4: Hyperparameters for SFT ESM-2 that were identified using Optuna.
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RLXF-Aligned ESM-2 Hyperparameters

Learning Rate

Learning Rate Multiplier

Learning Rate Multiplier Factor
Batch Size

Increment to Increase Batch Size
Maximum Batch Size

Epochs

Iterations

Initial Number of Unfrozen Layers
Number of Layers to Unfreeze Each Epoch
Maximum Number of Unfrozen Layers
Training Positional Embedding
Fitness Advantage

Fitness Batch Norm.

Batch PPO Loss Norm.

Init. Dy, Weight

D KL Welght

Pairwise HD Averaging Factor
Number of Reward Models
Epsilon

Weight Decay

D1, Backpropagation

Gradient Clipping Threshold

Gradient Clipping Threshold Factor per Epoch

Initial Number of Masks
Exponential Moving Average
Optimizer

Warm Restart

Learning Rate Scheduler
Quantization

5x 1074
0.9487
0.9835

12
3
20
159
3
36
15
82
False

Rel. to Pre-trained Ouputs

Max
Mean
1x 108
1x1077
60.4553
100
0.2512
3.1x1073
False
1.5727
1.2230
5
True
Adam
Cosine Annealing
Cosine Annealing
fpl6
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Table 5: Hyperparameters for aligning SFT ESM-2 with PPO that were identified with Optuna.



RLXF-Aligned VAE Hyperparameters

Learning Rate

Learning Rate Multiplier
Learning Rate Multiplier Factor
Batch Size

Increment to Increase Batch Size
Maximum Batch Size

Epochs

Iterations

Initial Number of Unfrozen Layers
Number of Layers to Unfreeze Each Epoch
Amino Acid Sampling

Fitness Advantage

Fitness Batch Norm.

Batch PPO Loss Norm.

Initial Dg; Weight

Dx1. Welght

Pairwise HD Weighting Factor
Epsilon

Weight Decay

Dy, Backpropagation

Gradient Clipping Threshold

Gradient Clipping Threshold Factor per Epoch

Target Hamming Distance from CreiLOV
Exponential Moving Average

Optimizer

Warm Restart

Learning Rate Scheduler

7x 1074
0.8821
0.9718

29

9

64

27

4

6

0

Max Likelihood
Rel. to CreiLOV Fitness

Max
Mean

1x 108

1x 1077
89.8218
0.1826

2.9920 x 1076
False
2.7783

2
5
True
Adam
Cosine Annealing
Cosine Annealing
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Table 6: Hyperparameters to align the VAE with RLXF identified with the Optuna.



7 Supplementary Tables and Figures

Number of Mutations  Count Data split

0 2 Training split
1 2,204 Training split
2 176 Training split
3 978 Training split
4 3,565 Training split
5 9,603 Val./Test splits
6-15 151,085 Not used

Table S1: Distribution of mutations across data splits for the CreiLOV DMS dataset used to train the
ensemble reward model.
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Figure S1: Ensemble of reward models accurately rank fluorescence of withheld sequences with 5
mutations relative to CreiLOV. (a) The ensemble of reward models predict the log fluorescence of
test set amino acid sequences with 5 mutations relative to CreiLOV. (b) Mean multiple- squared error
loss curves across reward model training.
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Figure S2: Distribution of sequences in the curated MSA used to pretrain the convolutional VAE
before and after reweighting sequences to account for phylogenetic biases.
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Figure S3: Training curves during pre-training of the VAE showing cross-entropy loss, D, and the
combined reconstruction loss.

17



Model

Method

Spearman Correlation

Top 10% Recall

Reward Model

Pre-trained VAE
Aligned VAE
Pre-trained ESM-2
SFT ESM2
Aligned ESM2
Pre-trained ESM-2
SFT ESM2
Aligned ESM2
Pre-trained ESM-2
SFT ESM2
Aligned ESM2

Median Predicted Log Flu-

orescence
Log Ratio

Log Ratio
Pseudo-perplexity
Pseudo-perplexity
Pseudo-perplexity
Mutant Marginal
Mutant Marginal
Mutant Marginal
Masked Marginal
Masked Marginal
Masked Marginal

0.933

0.344
0.345
0.689
0.659
0.679
0.746
0.667
0.681
0.759
0.667
0.682

0.705

0.162
0.170
0.332
0.490
0.444
0.365
0.477
0.444
0.365
0.485
0.444

Table S2: Model performance according to various in silico metrics
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