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Abstract
Electron cryomicroscopy (cryo-EM) is a popular experimental technique to recover
the 3D structure of macromolecular complexes, such as proteins, using extremely
noisy images that contain particles posed in unknown orientations. We propose
a new semi-amortized approach to the ab-initio reconstruction problem. In early
stages, when uncertainty is high, poses are estimated using auto-encoding, followed
by auto-decoding as uncertainty decreases. A multi-head encoder is adopted
for amortization to infer multiple plausible poses for each image, encouraging
exploration of pose space, while flexible auto-decoding iteratively update poses
per-image using stochastic gradient descent. Empirical results on synthetic datasets
demonstrate that our method is able to handle multi-modal pose distributions,
and the use of auto-decoding yields faster and more accurate pose convergence
compared to baselines. We also show that on experimental data our approach
achieves reconstruction with higher resolution than the current state-of-the-art.

1 Introduction
During a cryo-EM experiment, a particle stack of 104–107 images of a target bio-molecule are
acquired by an electron microscope, from which the goal is to reconstruct the unknown 3D structure
[1]. This ab-initio reconstruction task presents some challenges. First, the pose of the particle in each
observation is unknown and needs to be estimated. Second, to prevent radiation damage, the electron
exposure is limited leading to a poor signal-to-noise ratio (SNR). This obscures high-resolution details
in images, complicating pose and structure estimation. Third, structures are often non-rigid, thus
accounting for structural variability is crucial to achieve high-resolution reconstruction [2, 3, 4, 5].

Recent advancements in method development have centered on deep learning. CryoDRGN [4]
introduced an image encoder-volume decoder architecture to model continuous heterogeneity with
known poses. CryoDRGNv2 [6] improved on using a hierarchical pose search, comprising grid search
followed by branch-and-bound (BnB), akin to cryoSPARC [7]. On the other hand, cryoPoseNet [8]
and cryoAI [9] use amortized inference through CNNs to efficiently estimate poses without orienta-
tion matching. However, these amortized methods may struggle to capture multi-modal posterior
distributions in early reconstruction stages, and their reliance on a global encoder can slow pose
convergence, making them less accurate than approaches like cryoSPARC [7] and cryoDRGNv2 [6]
with explicit per-image pose search. For a more comprehensive review of prior work, see Supp. A.

We present a novel method for ab-initio homogeneous reconstruction that handles multi-modal pose
distributions with a tailored encoder and accelerates pose optimization using semi-amortization [10].
Unlike cryoPoseNet and cryoAI, which produce one or two pose estimates, we adopt a multi-head
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Figure 1: Our semi-amortized method consists of two stages: (i) an auto-encoding stage where
a multi-head encoder maps the input image to the pose candidate set {ϕ1, . . . ϕM}, followed by
computing projections by slicing through the volume decoder in Fourier space based on the predicted
pose set. The projection with the minimum error is used in the final loss. (ii) an auto-decoding stage
where pose parameters are stored in axis-angle representation per-image. The same volume decoder
is used to obtain projections, and the reconstruction loss is computed for a single projection.

CNN-based encoder to predict multiple candidate poses for each input image. This design accounts
for pose uncertainty and encourages pose exploration during early stages of reconstruction. For
structure decoding, instead of computationally expensive implicit models, as in cryoDRGN and
cryoAI, we use an explicit parameterization enabling faster 3D reconstruction. For training, inspired
by multi-choice learning [11, 12, 13], we use a "winner-takes-all" loss in which the decoder is queried
to obtain 2D projection for all predicted poses, and the one with the lowest reconstruction error is
selected to determine the loss. Also, as higher resolution details emerge, the pose posterior becomes
uni-modal, allowing the pose search to focus on the most likely mode. At this point, we propose to
switch to auto-decoding where poses are iteratively refined using stochastic gradient descent (SGD).
This explicit per-image pose optimization yields accelerated convergence compared to solely relying
on amortized inference, which depends on potentially sub-optimal encoder predictions.

Through comprehensive analysis on synthetic datasets, we validate that semi-amortized inference
noticeably accelerates the convergence of poses and our multi-head encoder can handle multiple
modes in the pose posterior. Moreover, our method quantitatively and qualitatively outperforms
cryoSPARC [7], cryoAI [9], and cryoDRGN [6] on a real experimental dataset.

2 Methodology

We propose a semi-amortized approach to ab-initio cryo-EM reconstruction by mixing pose auto-
encoding and auto-decoding. Initially, we adopt amortized inference (Fig. 1, auto-encoding) where
a multi-head encoder outputs a set of pose guesses to handle the pose uncertainty. Once the pose
posterior becomes less uncertain, we circumvent sub-optimal encoder predictions by switching to
direct optimization (Fig. 1, auto-decoding) yielding arguably more accurate poses. We couple our
pose estimation module with an explicit volumetric decoder representing the 3D structure in the
Hartley space [4]. The explicit model enables faster evaluation of projections compared to implicit
neural representations [14, 15, 16], significantly reducing the reconstruction time (see Supp. D). We
provide the detailed mathematical formulation of the cryo-EM reconstruction problem in Supp. B.

2.1 Multi-choice Auto-encoding

Due to low SNR and near-symmetries in biological structures, there exist several equally-plausible
poses for each image early in reconstruction, rendering naive optimization or search methods prone
to local minima. To account for uncertainty, we build upon cryoAI [9] and extend the encoder to
return multiple plausible poses. Formally, given the image Ii ∈ RH×W , M poses are obtained as,

ϕi = (Ri,j , ti,j) = Hθj (Fi) , Ri,j ∈ SO(3) , ti,j ∈ R2 (1)
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where image-specific intermediate features Fi ∈ RC×H×W are extracted by VGG16 [17], and then
supplied to M separate fully-connected predictor heads, Hθj , 1 ≤ j ≤ M , yielding the pose set
{ϕi,1, . . . , ϕi,M}. To optimize the encoder-decoder, inspired by multi-choice learning [11, 12, 13],
we use the “winner-takes-all” loss. The negative log-likelihood of the observed Fourier image Îi
conditioned on the 3D Fourier volume estimate V̂ with pre-computed CTF ĝi and predicted pose ϕi,j

is given as

Li,j = − 1

2σ2

∑
ω

[ĝi · (P̂[Ri,j , ti,j ]V̂ )(ω)− Îi(ω)]
2 , (2)

where P̂ is the slicing operator and σ2 is the noise variance. The minimum is then selected as the
final loss for the corresponding image, i.e., Li = minj Li,j . Interestingly, this loss encourages each
head to specialize in pose estimation over localized regions with minimal overlap across heads (see
Supp. F). Also, cryoAI [9] can be viewed a special case of this formulation; it assigns two poses to
each image by input augmentation, and selects the best one with a symmetrized loss. In contrast, our
approach augments the output of the encoder with multiple heads, each providing a pose estimate.

2.2 Switching from Auto-encoding to Auto-decoding
Unlike in early stages when high uncertainty encourages pose exploration, in later stages, as higher
frequency details of the structure emerge, the variance of the pose posterior tends to decrease,
becoming unimodal. At this point, the gap between the amortized and variational posterior is mainly
determined by the error in the pose estimate (predicted mean), prioritizing accuracy over exploration.
However, a feed-forward network, as a globally parameterized function of input images, may be too
restrictive with limited prediction accuracy, rendering amortization as a barrier to further refinement
of the 3D structure. In prior work [10, 18, 19, 20], a similar issue called the amortization gap has been
discussed which measures the KL-divergence between the true and predicted variational posteriors.

To address this issue, we adopt a semi-amortized inference scheme [10] comprising two stages. First,
the encoder predicts a set of pose candidates using a multi-head architecture. In the second stage,
rather than amortized inference, pose parameters are directly optimized for each image using SGD.
To initialize poses for the i-th image, we choose the one with the lowest reconstruction loss from
the set of candidates {ϕi,1, . . . , ϕi,M}, namely ϕ∗

i = ϕi,s such that s = argminj Li,j . Subsequently,
the pose and structure are optimized by coordinate descent using the negative log-likelihood as the
objective function. Please see Supp. C for more details on pose optimization.

3 Experiments
Datasets. We compare our method with amortized methods of cryoAI [9] and cryoDRGN [6],
as well as cryoSPARC [7] on both synthetic and real datasets. We simulate two synthetic datasets
using PDB deposited atomic models of heat shock protein (HSP) [21] (1.5 Å) and pre-catalytic
spliceosome [22] (4.33 Å), each comprising N = 50, 000 noisy CTF-corrupted projections of size
L = 128 with SNR = 0.1. To simplify the study, it is assumed synthetic particles are centered and
we omit estimating translation parameters. We also adopt as a real benchmark of 80S experimental
dataset [23] (EMPIAR-10028) containing 105,247 images of length L = 360 with pixel size 1.34 Å.
Following prior work [6, 9], we downsample the images to L = 128 (3.76 Å) and randomly split the
data into two halves and run the reconstruction methods independently on each.

Implementation details. During auto-encoding, we use encoders with M = 7 and M = 15 heads
for reconstruction on synthetic and real datasets, respectively, with Adam [24] to optimize encoder
and decoder with learning rates 0.0001 and 0.05. Once switched to direct optimization (after 7 epochs
for synthetic and 15 epochs for real data), we reduce the decoder learning rate to 0.02 and allocate a
new optimizer for pose parameters with learning rate 0.05. We use a batch size of 64 and train for the
same number of epochs (20 for synthetic and 30 for real data). We use the public cryoAI codebase,
cryoSPARC v4.4.0 [7] with default settings, and run the CryoDRGN in homogenous ab-initio setting.

3.1 Results
We first qualitatively compare reconstructions obtained by our method with cryoAI, cryoDRGN,
and cryoSPARC (Fig. 2, left). We found that cryoAI fails to estimate translation parameters for 80S
dataset. Hence, for this method, we preprocess images to be well-centered, whereas our method and
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Figure 2: Qualitative and quantitative comparison of our semi-amortized method with cryoAI [9],
cryoDRGN [6] and cryoSPARC [7]. (Left) Final 3D reconstructions on two synthetic datasets and
one experimental data are depicted using ChimeraX [25]. (Right) FSC curves are visualized for
quantitative comparison. The red dashed lines show the standard threshold levels of 0.5 and 0.143 to
report the resolution (in angstroms) for synthetic and real data, respectively. Our method achieves
higher resolution on the Spliceosome and HSP datasets, and it is competitive with the state of the art
on EMPIAR-10028 datasets. See additional results on Spike Protein in Supp. E.

Figure 3: Resolution as a function of log time.

Method HSP Spliceosome

CryoSPARC [7] 6.23 / 1.05 1.41 / 1.36
CryoAI [9] 45.83 / 61.86 2.85 / 2.61
Ours 3.27 / 0.97 0.68 / 0.61

Table 1: Estimated rotation accuracy quantified as
mean/median errors in units of degrees. CryoAI
has greater error on the HSP dataset due to conver-
gence to local minima, resulting in inaccurate pose
estimates.

others are fed with off-centered particles. Both our method and cryoSPARC capture high-frequency
details of the 3D structure on all datasets, whereas reconstructions by amortized methods, cryoAI and
cryoDRGN, are inferior on HSP and 80S datasets. In particular, on HSP, cryoAI gets stuck in local
minima as it fails to handle high uncertainty in poses caused by symmetries in this structure.

For quantitative comparison, we plot the gold-standard Fourier Shell Correlation (FSC) [26] (Fig. 2,
right). FSC obtained by our method outperforms cryoSPARC as well as amortized methods of cryoAI
and cryoDRGN on all datasets. Also, our method achieves higher or competitive resolution compared
to others. We also report the mean and median errors in estimated poses on synthetic datasets in Table
1, showing that our method outperforms others. Moreover, the resolution-time plot in Fig. 3 shows
that our semi-amortized method achieves a high-resolution reconstruction significantly faster than
cryoAI. Our semi-amortization scheme accelerates the improvement in the resolution and the explicit
decoder is more computationally efficient than an implicit MLP. In Supp. D we provide a detailed
ablation study that shows our method is ∼ 6x faster and uses ∼ 5x less memory compared to cryoAI.

3.2 Semi-Amortized vs. Fully Amortized
To show the advantage of auto-decoding, we compare our semi-amortized method with a fully-
amortized baseline on the Spliceosome dataset. After 7 epochs of auto-encoding, we split the
reconstruction into two: one continues with pose encoding, while the other switches to direct pose
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Figure 4: Comparison of fully- vs. semi-amortized methods in pose optimization on the Spliceosome
dataset. (Left) We plot the mean pose error versus optimization epoch. Switching from amortized
inference to direct optimization using our method (blue) leads to faster pose convergence compared
to fully-amortized inference (red). (Right) We visualize the approximate log posterior for three
particles as a view-direction distribution on a unit sphere. The neighborhood of the mode of interest
is visualized using Gnomonic projection. The black dot marks the initial point of optimization.

CryoAI Multi-head

Figure 5: Comparison of the performance of our multi-head encoder (M = 4) with the cryoAI
encoder on the challenging HSP [21] dataset. (Left) The approximate log posterior of view direction
is visualized on the unit sphere with highlighted areas showing modes of the distribution. CryoAI
and multi-head encoders provide two and four pose estimates, respectively, which are marked with
colored dots on the sphere, with the corresponding projections illustrated below. CryoAI fails to
find the correct mode while our method is able cover multiple modes. (Right) With our multi-head
encoder, the reconstruction converges to a much higher resolution compared to cryoAI.

optimization. The mean pose error (Fig. 4, left), reveals that with transition to direct optimization,
pose error drops rapidly. However, the fully-amortized baseline shows slow convergence, highlighting
the superiority of auto-decoding in later reconstruction stages. We further investigate the trajectory of
pose estimates overlaid on the optimization landscape (Fig. 4, right). Poses from direct optimization
(blue dots) show stable convergence to the optimal point, while those from the encoder (red dots) often
oscillate. Auto-decoding is more flexible and achieves more stable convergence than auto-encoding
with potentially sub-optimal pose prediction. See Supp. G for more examples.

3.3 Multi-Modal Pose Posterior
Lastly, we examine the performance of our multi-head encoder vs. cryoAI encoder in handling the
pose uncertainty on HSP dataset. We run our method with M = 4 heads. In the provided example,
Fig. 5 left (see Supp. H for additional examples), the approximate posterior distribution over view
direction is visualized for both cryoAI and the multi-head encoder. Our multi-head encoder identifies
the correct mode while cryoAI selects an incorrect one. Our encoder also captures other posterior
modes, offering improved exploration of pose space compared to cryoAI’s limited predictions. This
also leads to faster convergence and higher-resolution reconstructions (Fig. 5, right). In Supp. F, we
investigate how each head specializes in pose prediction for non-overlapping regions of SO(3).

4 Conclusion
In this paper, we propose a new semi-amortized approach to ab-initio cryo-EM reconstruction. We
develop a multi-head encoder to estimate a set of plausible candidates to handle pose uncertainty. As
the uncertainty is reduced, we switch to auto-decoding which iteratively refines poses using SGD
per-image. Our results show that the multi-head encoder is able to capture multiple modes of the pose
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distribution, and our flexible auto-decoding accelerates convergence of poses and reconstructions. Our
method outperforms cryoAI on experimental data and achieves competitive results with cryoSPARC.

Limitations and Future work. We assume that the 3D structure is rigid while it is often flexible
and deform within the sample. As a direction for future work, our semi-amortized method with
multi-head encoder can be extended to include heterogeneity as a latent variables as well. Moreover,
developing a well-defined heuristic to decide on relative length of two stages of auto-encoding and
auto-decoding is an interesting direction to explore in the future.
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Supplementary Material
Improving Ab-Initio Cryo-EM Reconstruction with

Semi-Amortized Pose Inference

A Related work

Cryo-EM reconstruction. Methods for cryo-EM reconstruction can be categorized as either
homogeneous or heterogeneous. Homogeneous techniques [7, 8, 9] assume a rigid structure while
heterogeneous ones [4, 6, 5, 27] allow for conformational variation. We focus on homogeneous
reconstruction, but our optimization framework could be extended to heterogeneous data as well.

Early reconstruction techniques rely on common-lines [28, 29, 30] or projection mapping [31, 32]
to select optimal poses. Other works [33, 34] frame the reconstruction problem in the context of
maximum a posteriori (MAP) estimation, and jointly reconstructs poses and structure via expectation
maximization (EM). We compare our approach to cryoSPARC [7], a state-of-the-art method that uses
stochastic gradient descent and a branch-and-bound search [35] for ab initio reconstruction and pose
estimation. Like these methods, our auto-decoding stage directly optimizes pose of every image.

More recently, amortized inference techniques have been proposed for pose estimation [36, 8, 9, 27].
These techniques avoid explicit per-image pose optimization; instead, they train an auto-encoder
or variational one [37] to associate each particle image with a predicted pose [8]. One challenge is
that the auto-encoders can become stuck in local optima during training [8]. To address this issue,
cryoAI [9] produces two pose estimates per image coupled with a symmetrized loss function that
penalizes the best one. We build on this concept by adopting a multi-head neural architecture as the
encoder to output multiple plausible pose candidates and avoid local optima.

Multi-choice learning (MCL). Inspired by scenarios where a set of hypotheses needs to be
generated to account for uncertainty in the prediction task, MCL [11] was introduced in a supervised
setup to learn multiple structured-outputs with SSVMs [38]. Their motivating question was: can
we learn to produce a set of plausible hypotheses? To address this, they define an“oracle” loss in
which only the most accurate output pays the penalty. This loss is minimized even if there is only a
single accurate prediction in the set. The early follow-up work [39, 12] uses the same loss to learn a
deep CNN ensemble composed of M heads with a shared backbone network. Importantly, they show
that the ensemble-mean loss hurts prediction diversity across different heads, while training with the
“oracle“ loss yields specialized heads. Variations have since been proposed to mitigate hypothesis
collapse or overconfidence issues in MCL by modifying the loss or applying learnable probabilistic
scoring schemes [40, 41, 42, 13]. MCL has been used to mitigate the ambiguity in several tasks
including image segmentation [43], optical-flow estimation [44], trajectory forecasting [45], human
pose and shape estimation [13, 46]. In our work, we use the “oracle” loss in context of auto-encoder
which supervises the pose encoder indirectly through projections provided by the decoder.

B Problem Definition

The image formation model for cryo-EM is often well-approximated using the weak-phase object
model [47]. This model assumes the 3D structure is an unknown density map, V : R3 → R≥0,
represented under a canonical orientation. Cryo-EM images, {Ii}Ni=1, are approximated as ortho-
graphic projections of the 3D map that are oriented and shifted by unknown rotation Ri ∈ SO(3)
and in-plane translation ti = (tx, ty) ∈ R2. Formally,

Ii(x, y) = [gi ⋆ (StiPRi
V )](x, y) + n(x, y) , (3)

where PRi(·) is the linear operator computing the integral along the optical axis, z, over the input
density map rotated by Ri, and S is the shift operator. The projection is convolved with the image-
specific point-spread function (PSF), gi, and corrupted by additive noise n. It is common to assume
that n follows a zero-mean white (or colored) Gaussian distribution.

By the Fourier slice theorem [48], the Fourier transform of a projection is equal to a central slice
through the density map’s 3D Fourier spectrum. Consequently,

Îi(ωx, ωy) = ĝiŜti(P̂Ri
V̂ )(ωx, ωy) + n̂(ωx, ωy) , (4)
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where Î and V̂ denote the 2D and 3D Fourier transforms of the image and the density map. The slice
perpendicular to the projection is computed by (P̂Ri V̂ ). The translation by Sti becomes a phase
shift operator Ŝti , and convolution with gi is equivalent to element-wise multiplication with, ĝi, the
contrast transfer function (CTF). The noise n̂ remains zero-mean Gaussian.

Under this model, given the structure V̂ , the negative log-likelihood of observing image Îi with noise
variance σ2 and poses (Ri, ti) is

L = − 1

2σ2

∑
ωx,ωy

[ĝiŜti(P̂Ri
V̂ )(ωx, ωy)− Îi(ωx, ωy)]

2 . (5)

Ab-initio reconstruction methods [7, 8, 9, 6] solve jointly for the unknown structure V̂ and poses
(Ri, ti). They often follow an Expectation-Maximization (EM) [49, 33] procedure in which the
E-step aligns images with the structure yielding pose estimates (Ri, ti), and then in the M-step
the volume V̂ is updated by minimizing the negative log-likelihood in Eq. 5. Since errors in pose
estimates lead to blurry reconstructions, accurate pose estimates are crucial to finding high-resolution
structures. As discussed above, poses are either optimized through search and projection matching
[7, 6] or estimated by an encoder network [9, 8, 27].

C Pose Optimization

For the auto-encoding stage, we follow cryoAI and design the convolutional backbone to output the
six-dimensional representation commonly referred to as S2S2. To compute the rotation matrix from
this representation, the 6D vector is split into two 3D vectors and normalized, denoted as v1, v2 ∈ R3.
We then compute the cross product between them, v3 = v1×v2, yielding a new unit vector. Selecting
v1 and v3 as the first and third columns of the target rotation matrix, we compute ṽ2 = v3×v1, which
is another unit vector orthogonal to both v1 and v3. Then, R = [v1, ṽ2, v3].

Once switched to direct optimization, we change parameterization to axis-angle representation.
During auto-decoding, we alternate between five iterations of pose SGD updates and one iteration
of volume update. To update poses, we keep the volume fixed and optimize for the negative log-
likelihood (Eq. 5) with respect to the pose parameters. We define the new pose estimate based on the
current one as follows:

Rt+1 = RδRt (6)

where Rδ is an infinitesimal rotation matrix perturbing the current estimate. The perturbation matrix
Rδ is parameterized by axis-angle representation. By a single vector ω ∈ R3, one can represent
both the axis ||ω|| and the angle 0 < ω

||ω|| < π for any given rotation. Using Rodrigues formula, the
perturbation matrix Rδ(ω) can be parameterized as a function of ω. To find the optimal ω, one can
initialize it with zero vector, and then use automatic differentiation [50] in pytorch to compute the
gradient with respect to ω and make updates using Adam [24]. However, a naive implementation of
the function Rδ(ω) would lead to numerically unstable calculations of the partial derivative ∂Rδ

∂ω . In
fact, there is a singularity at the zero vector, and the partial derivative involves terms that are unstable
around the origin. Formally, the derivative of i-th column of the rotation matrix Rδ with respect to
the vector ω is [51, 52],

∂R
(i)
δ

∂ω
=−

(
e(i) ⊗ ω + [e(i)]×

) sin(∥ω∥)
∥ω∥

+ [(ω · e(i))I + ω ⊗ e(i)]

(
1− cos(∥ω∥)

∥ω∥2

)
+ (ω ⊗ ω)

(
(ω · e(i))2 cos(∥ω∥)− 2 + ∥ω∥ sin(∥ω∥)

∥ω∥4

)
+ [(ω × e(i))⊗ ω]

∥ω∥ cos(∥ω∥)− sin(∥ω∥)
∥ω∥3

.

where ⊗ and × are tensor and cross products, respectively. e(i) is the i-th standard basis in 3D and
[v]× denotes the cross product matrix for the vector v. In all four terms, there are scalars such as
sin(∥ω∥)

∥ω∥ or 1−cos(∥ω∥)
∥ω∥2 that evaluate to 0

0 at zero angle ω = 0. Similar to [51], for ||ω|| ≪ 1, we
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Table 2: The reconstruction time per epoch, GPU memory, and number of parameters for different
methods averaged across three runs. GPU memory is recorded separately for the encoding and
decoding modules. Also, two numbers provided for semi-amortized method corresponds to auto-
encoding and auto-decoding stages, respectively. In CryoAI-explicit, the implicit decoder of CryoAI
is replaced with an explicit decoder. Since we store rotations in 3D representation during direct
optimization, the number of parameters of pose module is N × 3 with N denoting number of images
in millions.

Model Time (s) GPU Mem. (GB) # Params (M)Encoding Decoding

Semi-Amortized 99.76, 81.61 1.17, - 2.22, 0.35 13.01, 4.29 +N×3
Fully-Amortized 99.75 1.17 2.22 13.01
CryoAI-explicit 142.40 2.32 0.75 9.05
CryoAI 622.39 2.78 14.05 5.09

substitute these terms with their numerically robust Taylor expansion, for instance,

sin(∥ω∥)
∥ω∥

= 1− ||ω||2

6
+O(||ω||4) ,

1− cos(∥ω∥)
∥ω∥2

=
1

2
− ||ω||2

24
+O(||ω||4) .

We implement a differentiable and numerically stable version of the function Rδ(ω) in pytorch and
use it in our pose estimation module.

D Structure Decoder and Ablation Study

Recent works [9, 4] use coordinate networks [15, 16, 14] to implicitly model the Fourier representation
of the 3D structure. Instead, we couple the pose estimation module with an explicit parameterization
of the structure in the Fourier domain. The explicit representation is less computationally expensive
than an MLP to evaluate and update. Also, this choice is motivated by the fact the implicit decoder
needs to be queried multiple times for each image with the multi-head encoder.

We parameterize the volume using the Hartley representation [4]. The Fourier and Hartley transforms,
respectively denoted as F (ω) and H(ω), are related as

H(ω) = R[F (ω)]− I[F (ω)], (7)

where ω denotes the frequency coordinate and R and I are the real and imaginary part, respectively.
The Hartley representation is real-valued, and so more memory efficient to use than storing complex-
valued Fourier coefficients. To account for high dynamic range of the Hartley coefficients, we assume
the Hartley field is decomposed into mantissa, m(ω) and exponent e(ω) fields [9] as,

H(ω) = m(ω)× exp(e(ω)). (8)

This decomposition restricts the range of values for m(ω) and e(ω) and makes the reconstruction
less sensitive to the initialization of the field.

We perform an ablation study on the decoder, detailed in Table 2, as well as a comparison with
baselines in terms of reconstruction time per epoch, GPU memory usage, and number of parameters.
As our method consists of two stages, we report numbers for each stage separately. In the first
stage, the encoder has H=7 heads, while in the second stage, it is replaced with a pose module
with size depending on the number of particles (N ). To facilitate comparison, we include another
baseline, cryoAI-explicit, in which the implicit decoder is replaced by an explicit one as in our method.
The explicit and implicit decoders have 4.29 and 0.33 million parameters, respectively. Despite a
larger decoder, our method is 6x faster and uses 5x less memory compared to cryoAI. Importantly,
swapping the implicit decoder with an explicit one (cryoAI-explicit) significantly drops time and
memory, indicating that the implicit decoder is a major computational and memory bottleneck. Yet,
cryoAI-explicit uses 2x more GPU memory for encoding and is 1.5x slower than our method as
it performs early input augmentation and runs the entire encoder twice per image. Our method, by
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CryoSPARC CryoAI Semi-AmortizedCryoDRGN

Figure 6: Qualitative and quantitative comparison of reconstructions of our semi-amortized method
with cryoAI [9], cryoDRGN [6] and cryoSPARC [7] on Spike dataset. (Left) Final 3D reconstructions
are depicted using ChimeraX [25]. (Right) FSC curves are visualized for quantitative comparison.
The red dashed lines show the standard threshold levels of 0.5 and 0.143 to report the resolution (in
Angstrom) for synthetic and real data, respectively.

augmenting the encoder head, saves memory and time during pose encoding. Finally, the amortized
baseline, which uses an explicit decoder coupled with a multi-head encoder (H=7), uses more memory
in decoding (negligible vs implicit decoder) and runs slower than the direct optimization stage of the
semi-amortized method.

E Additional Results on Spike Protein

We further compare our method with others on an additional synthetic dataset based on SARS-CoV-2
Spike protein [53] (2.13 Å). We follow the same procedure to simulate projections PDB deposited
atomic models and create a dataset of N = 50, 000 noisy CTF-corrupted projections of size L = 128
with SNR = 0.1. The qualitative comparison of reconstructions obtained by our method with cryoAI,
cryoDRGN, and cryoSPARC is provided in the left of Fig. ??. For quantitative comparison, the
gold-standard Fourier Shell Correlation (FSC) is visualized (Fig. 2, right).

We also inspect the benefit of semi-amortization for Spike dataset (Fig. 7, left). Similar to results ob-
tained by Spliceosome and HSP, as our method switches to direct pose optimization, the error in pose
drops quickly, whereas the fully-amortized baseline exhibits slow convergence. This clearly shows
the superiority of auto-decoding compared to auto-encoding during the later stages of optimization.

In Fig. 7, we also visualize and compare the trajectory of pose estimates of auto-decoding and
auto-encoding approaches. Poses obtained by auto-decoding (blue dots) show stable convergence to
the optimal point (highlighted area) whereas those inferred by auto-encoding (red dots) frequently
oscillate. In fact, the encoder is a globally parameterized function which might be too restrictive,
yielding sub-optimal pose predictions. Therefore, poses inferred in an amortized fashion might fail to
consistently converge to the optimal point. On other hand, direct optimization during auto-decoding
is intuitively more flexible as it is performed separately and locally for each image, exhibiting more
stable convergence.

F Specialization of Encoder Heads

A natural question about the multi-head encoder is: how each head does take part in pose encoding
process? To address this, using the synthetic datasets, we conduct an experiment with our multi-head
architecture (M = 4) and visualize the performance of each head on different regions of SO(3)
space. In particular, as before, we define a uniform grid on the unit sphere using HEALPix [54] and
assign images to their corresponding cells based on the view-direction. Now, for all images end up in
the same cell, we compute the average rotation error and visualize it separately for each head. As
shown in Fig. 8, all heads actively participate in pose estimation and they are able to specialize in
prediction of poses for images with certain view-direction. A similar result has been provided in prior
work on MCL [39, 12], to show that minimizing the error made by the best prediction (“oracle” loss)
encourages diversity in deep ensembles. In our problem, by optimizing a “winner-takes-all” loss, the
whole burden of pose estimation is no longer on a single network but it gets divided between multiple
heads as separate predictors.
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Figure 7: Comparison of fully- vs. semi-amortized methods in pose optimization on Spike dataset.
(Left) The mean geodesic distance between predicted poses and ground-truths is shown across epochs.
Switching from amortized inference to direct optimization by our method (blue) leads to faster pose
convergence compared to fully-amortized inference (red). (Right) For qualitative comparison, the
approximate log posterior for three particles is visualized as a view-direction distribution on a unit
sphere. After Gnomonic projection, the neighborhood of the mode of interest is visualized. Black
dot cross the initial point of optimization.
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Figure 8: Average rotation error visualized over the unit sphere for different heads of our multi-head
pose encoder (M = 4). The sphere is uniformly divided into cells using HEALPix [54] and based
on their ground-truth view-direction, images are assigned to corresponding cells. For each cell, the
average rotation error is visualized, showing diverse behavior of different heads across the space.
Blue and red colors show low and high error regions, respectively. Error ranges from zero to 180
degrees.

G Semi-Amortized vs. Fully-Amortized Convergence

To validate the advantages of direct pose optimization in our semi-amortized method, we further
show more qualitative examples of paths taken by pose estimates over the optimization landscape
during reconstruction in Fig. 9. For both methods, optimization start from the same point marked by
black dot in the vicinity of the distribution mode. It will then continue in paths colored in blue and
red for semi-amortized and full-amortized methods, respectively. We observe in all examples that
iterative updates by stochastic gradient descent demonstrate a stable convergence toward the optima
while poses obtained by amortized inference show unstable behavior around the mode.

H Visualizations of the Multi-Modal Pose Posterior

Through more examples (Fig. 10), we demonstrate that cryoAI fails to handle ambiguity in pose
estimation on HSP dataset. The visualization shows that pose estimates by cryoAI become stuck
in incorrect modes whereas our pose encoder with multi-head architecture is able to return a pose
candidate that captures the correct mode.
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Figure 9: Using four examples per dataset, the behavior of fully-amortized and semi-amortized
pose inference methods are compared. Two rows correspond to Spike and Spliceosome datasets,
respectively. Each plot shows the approximate log pose posterior, marginalized over in-plane rotations
represented as a heat map on a uniform grid over the unit sphere S2. Gnomonic projection to 2D is
also applied, followed by zooming on the proximity of the mode of interest. Black dot is the starting
point while blue dots and red dots show poses estimated by fully- and semi-amortized methods,
respectively.

I Videos

In the supplementary package, using ChimeraX [25] we provide videos that show reconstructions
obtained by semi-amortized method, cryoAI and cryoSPARC on all synthetic and experimental
datasets. In these 3D visualizations, we rotate the structure to show the resolved structure from
different views.
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CryoAI Multi-head

Figure 10: The approximate log posterior of view-direction visualized on the unit sphere with
highlighted areas showing modes of the distribution. CryoAI [9] and our multi-head encoders provide
two and four pose estimates, respectively, which are marked with colored dots on the sphere (the
order of poses is arbitrary). The corresponding projections are also illustrated. CryoAI cannot identify
the correct mode of pose distribution.
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