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Abstract

Simulation-based inference has been successful in the analysis of cryo-electron mi-
croscopy, particularly for estimating biomolecular conformations from individual
images. However, the latent representations learned during training contain more in-
formation, which can support or complement the predictions learned in supervised
mode. Here, with images of hemagglutinin, we demonstrate that the simulated and
experimental data representations can be modeled as a low-dimensional smooth
manifold. We identify the (non-linear) directions of variation of the main param-
eters of interest, and link physical parameter values to the experimental images.
By using state-of-the-art manifold learning, we provide accurate visualizations of
the data, quantitative supporting evidence to validate the neural predictions with
insights into physical properties of the latent representation.

1 Introduction

Cryogenic electron-microscopy (cryo-EM) is a structural biology technique for imaging individual
biomolecules at atomic resolution. In a cryo-EM experiment, a biomolecular sample is imaged with
a transmission electron microscope, and the resulting data is processed to yield a large dataset of
unlabeled 2D images with one molecule per image (particles). Reconstruction algorithms [1] can
estimate the 3D structure of the biomolecule from the 2D particles. In many cases, biomolecules
coexist in different conformational states in the sample.

Machine learning methods, including diffusion maps [2] and deep-generative models [3, 4, 5], have
become central in cryo-EM for reconstructing heterogeneous conformations of biomolecules [6, 7].
These methods project the high-dimensional conformational space on to a low-dimensional latent
representation, but these latent spaces lack physical interpretability [8]. Applying physical constraints
during training [9] or comparing to ground truth data [10] can help mitigate some of these issues.
However, extracting physical information from the featurized images remains challenging due to
non-linear feature mapping, low signal-to-noise ratio (SNR) and uncertainty in pose assignment,
which can be confused with conformational changes.

Recent simulation-based techniques from integrative structural biology [11] and probabilistic machine
learning [12] hold great promise for analyzing cryo-EM data. CryoSBI [13] uses simulation-based
inference [14, 15] (SBI) to infer conformations and uncertainties from cryo-EM particles by training
a latent representation and normalizing flow with simulated cryo-EM experiments. The trained
networks can be quickly evaluated on large experimental particle datasets. Because the training
is only done with simulated data, a key feature of cryoSBI is that it enables linking of physical
properties of the molecules and the experiment to experimental data. We hypothesize that the
representations learned by the neural network are near low dimensional manifolds inside the latent
space. The objective of this work is to study the geometry of the data using manifold learning
techniques [16, 17, 18, 19]. First, we will seek to ascertain whether the learned representations
correspond to well-behaved low-dimensional manifolds, and second, whether these are parameterized
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Figure 1: Schematic workflow for learning the surrogate posterior with cryoSBI. Parameter samples
are drawn from the prior to simulate synthetic cryo-EM images. These images are then used to
approximate the posterior by jointly training a summary network and a normalizing flow.

by generative variables important in predicting the posterior over the conformation. Our analysis
quantitatively validates the latent space of cryoSBI and leads to a general computational workflow
both for interpreting latent spaces of cryo-EM heterogeneity analysis methods and more broadly for
learned summary statistics in simulation-based inference.

2 CryoSBI and Latent Spaces

CryoSBI [13] is a new method to quantify the probability that a given image I depicts a molecular
conformation θ. We assume to have a set of structures, e.g. from molecular simulations or Alphafold
[20], which we expect to find in the sample. For simplicity, we also assume that θ is a one-dimensional
parameter, and we aim to infer the conformation θ of the molecule observed in the image, i.e., compute
the Bayesian posterior p(θ|I). The posterior quantifies how compatible θ is with the observed image
I .

To model the image formation process, one must consider experimental details such as microscope
aberration, noise, and random orientation of the molecule. To simulate a cryo-EM image, one samples
conformations from the prior θi ∼ p(θ), and imaging parameters from ϕi ∼ p(ϕ) and then generates
a synthetic image Ii ∼ p(I|θi, ϕi) using a forward model of the imaging process (Appendix A.1),
accumulating a data set of simulated images and ground truth parameters D = {θi, ϕi, Ii}Ni=1. The
nuisance parameter vector ϕi includes random orientations, a wide range of defocus values, center
translations, and SNRs.

Feature Latent Representation and Neural Posterior Estimation. CryoSBI follows the Neural Pos-
terior Estimation framework [21, 22], jointly training a latent representation network Sψ(·) to extract
summary statistics and a normalizing flow qφ(·) as surrogate model of the posterior qφ(θ|Sψ(I)) ≈
p(θ|I). This is done by maximizing the average log-likelihood L(φ,ψ) = 1

N

∑N
i=1 log qφ(θi|Sψ(Ii))

of the posterior probability under the training samples D (Appendix A.2). In principle, after training
Sψ should i) compress images to predict the relevant features and ii) enable efficient comparison of
simulated images to ‘nearby’ experimental images. For example, the latent representation should
distinguish images due to conformation, SNR and projection direction, as these are the primary exper-
imental factors determining how precisely we can estimate a molecular configuration from a single
image. In practice, while the feature representation for Neural Posterior Estimation - and cryoSBI-
offers powerful inference capabilities, it is not immediately interpretable, making it challenging to
check for model misspecification [23].

Hemagglutinin Dataset. The CryoSBI latent space we analyze here corresponds to the hemagglutinin
dataset considered in ref. [13]; it consists of latent representations of the simulated and experimental
images. CryoSBI training was performed as in [13] using cryo-EM simulations by sampling the priors
(Appendix A.3). After training, we valuated a simulated dataset Ds consisting of Ns = 100, 000
feature vectors with i-th datapoint xi = Sψ(Ii) ⊆ R256, nuisance parameters ϕi, ground-truth
conformation parameter θi, posterior mean θ̂i and width σi of the posterior qφ(·|xi), so that Ds =
{θ̂i, σi, θi, ϕi, xi}Ns

i=1. The experimental dataset De consists of Ne = 271558 tuples{x̃i, θ̂i, σi} with
x̃i = Sψ(Ĩi), for whitened single particle-images {Ĩi}Ne

i=1 from EMPIAR 10532 [24], where θ̂i, σi
are the inferred posterior parameters (note that the experimental images have no ground truth θ or ϕ).
We denote the representations learned by Sψ , Xs = {xi}Ns

i=1 and X = {x̃i}Ne
i=1.
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Figure 2: Estimation of the intrinsic dimension ds (blue) and de (red) of the manifolds Ms and Me,
respectively, using the correlation dimension (a), doubling dimension at R=12 (b), and Eigengap (c)
methods. Note that for (b) and (c), we plot the distribution of the local estimates of d, while for (a)
the prediction is global. The results suggest that 2 ≤ ds ≤ de ≤ 6.

3 Geometric Analysis of the CryoSBI Latent Space

Now, we proceed to study the shape of the data cloud Xe, under the hypothesis that it is low-
dimensional, i.e. near a smooth manifold Me. The simulated data Ds support the interpretation of
Me, but some aspects of its geometry will also be considered, in particular the low dimensionality
hypothesis. In the following, we will determine the intrinsic dimensionality of the datasets, assess
how well the simulated data covers the experimental space, and uncover the physical interpretation of
the latent representations. The data preprocessing, consisting of removing outliers, and resampling
the data to avoid large variation in density is described in Appendix A.4.

Are the data low dimensional? We estimate the intrinsic dimension of the experimental and
simulated data (de and ds, respectively). Due to the challenges of reliably estimating dimensions for
noisy data, we employ three different methods for greater accuracy. Two of these methods leverage
the rate of growth of the volume of a ball of radius R in a manifold with intrinsic dimension d,
which is ∼ Rd. The correlation dimension [25] uses the number of neighbors Ne(x) of radius R of
x ∈ R256, which satisfies logNe(x) ≈ d · logR+ const, allowing us to estimate d as the slope of a
regression line. Similarly, following [26], we use N2R(x)

Ne(x)
≈ 2d as a local statistic to estimate d, called

doubling dimension2. The third method, Eigengap, is that of ref. [27]. This method locally estimates
the intrinsic dimension d by finding the largest gap between two consecutive eigenvalues in the local
covariance matrix. We implement a variation of this method, by combining it with the neighborhood
scale selection of ref. [28]. This method and the doubling dimension give local estimates of d around
a point x. A global d is then selected by majority vote; we modify this by using smoothed histograms
for the former and softmax for the latter. In Figure 2 we present the results of the estimation using
these methods. All three methods indicate that the data have low intrinsic dimension. This is partly
due to the neural network training algorithm that is optimized for predicting a low-dimensional
function p(θ|I). We find a dimension near 2 for the simulated data and slightly higher dimension for
the experimental data. The discrepancy, where 2 ≤ de ≤ 6, with a peak near de = 5, is likely due
to experimental noise and dependencies not captured by the simulated noise model (see also Figure
3, (a)). Based on the estimated intrinsic dimensions, this suggests that the manifold assumption is
supported by the data.

Does the simulated data cover the experimental data well? For this, we first estimate the data
densities pe and ps in R256 by kernel density estimators (KDE) [29] p̂e and p̂s. The bandwidths
he = 0.34 and hs = 0.48 are obtained by cross-validation. While it is known that KDE is poor in
high dimensions, the method is adaptive, meaning that it will work when the intrinsic dimension
is low, as in this case. We use samples of size 17000 for fitting p̂e,s. We do not expect pe to equal
ps, but we would like to confirm that ps is predictive of the experimental data. Thus, on two held
out datasets X test

e and X test
s , with |X test

s | = |X test
e | = ntest = 3000, we calculate the negative

log-likelihoods (i.e., cross-entropies) − 1
ntest log p̂r,s(X test

r,s ) (in Table 1) and the Kullbach-Leibler

2Note that this estimate depends on R (Appendix Figure 1).
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divergences DKL(pe||ps) = 97.6, DKL(ps||pe) = 1824.9. These show that the simulated data can
predict the experimental data well; meanwhile, the experimental data does not completely cover the
simulated data. For further analysis, we retain in Xs only the samples that are near the experimental
data. The hypothesis that we can infer what generative parameters best describe the experimental
data, is so far supported since we can, for most experimental x̃ ∈ Xe, find enough near-by synthetic
x ∈ Xs to perform this prediction in a robust manner.

− 1
n log pmodel(X test)

X test
e X test

s

pe 84.9 2005.7
ps 182.5 180.8

Table 1: Test data negative log-
likelihoods under pe and ps.

Modeling the low dimensional cryo-EM images manifold. We
use a suite of manifold learning techniques [16, 28, 17, 30] to
map the neural representations Xe ⊆ R256 down to much lower
dimensional embeddings Φe, which we here interpret geometri-
cally and in the following section from the physical point of view,
in relation to the simulated data Xs. We use Diffusion Maps [16]
with a kernel width parameter ϵ selected by the method of ref.
[28] to compute the low-dimensional embedding Φe ∈ Rd of Xe;
similarly we compute Φs for the filtered Xs data (see Appendix
Figure 2). The Diffusion Maps embedding is based on the eigen-
decomposition of the Laplacian matrix L [16], and in a first stage we compute it up to the m’th
non-zero eigenvalue, for m = 20, and denote these coordinates with Φ1:m ∈ Rn, with n = |Xe|. The
analysis of the principal eigenvalues of L, which are slowly growing and well above 0 (Appendix
Figure 3), indicates that the manifold Me is connected, that is, there are no isolated clusters and
no outliers for the postprocessed data. However, the presence of clusters as high-density regions
in the data is not precluded by this analysis, and Figure 3, (c), as well as Appendix Figure 4 map
a sample from the original pe into Me. Next, we perform IES [17] to select d = 3 independent
and low-frequency coordinates from Φ1:20. We use these coordinates, denoted Φe, to visualize and
interpret the experimental data. As shown previously, d = 3 is likely close to the true intrinsic
dimension of Ms and Me, meaning we can expect to capture most of the relevant structure of the
experimental data by analysing these Φe coordinates. We apply Riemannian Relaxation [30] to push
Φe closer to being isometric to Xe. The resulting embedding is shown in Figure 3. We perform
similar steps with the simulated data Xs (Appendix A.5).

Physical interpretation of the experimental data manifold In the absence of ground truth gener-
ative parameters for the experimental data, we have to find alternative ways to determine whether
Sψ is a good predictor for the true conformational parameter θ, and the noise level, an important
nuisance parameter. While this can be done with a manually labeled test set, we focus on indirect
geometric methods that don’t require scientific labeling. We first use a statistical method, TSLasso
[18] to interpret the embedding Φe. Afterwards, we support its results and expand the analysis with
visualizations. TSLasso searches for the optimal interpretation of an embedding in a dictionary
F = {fk : Me → R, k = 1 : p} of (smooth) potential coordinate functions on Me. Here, each
fk ∈ F represents one of the simulation parameters (the conformation θ or one of the nuisance
parameters in ϕ), hence |F| = 10 = p. TSLasso recovers a subset fS of F which parametrizes
Me, by selecting d functions whose gradients "most economically" span the tangent spaces of the
manifold at a sample of the data. Since the functions fk are unknown on the experimental data, we
infer them by interpolation (Appendix A.6), obtaining θ̃ and ϕ̃ for the experimental data. We also
estimate the gradients ∇fk (Appendix A.7). TSLasso is run 20 times using random subsets of 500
data points. We find that fS almost always consists of conformation θ, SNR, and one of the rotation
coordinates in ϕ/ϕ̃ (albeit not always the same one). The full results are presented in Appendix A.7.
For completeness, we apply the same algorithm to the simultated data. Our results show that this
combination of functions parametrizes both Ms and Me. We have confirmed statistically, without
any visualization, that the two parameters θ and SNR inferred from nearby simulated data, vary
smoothly along the experimental data manifold Me (as well as along Ms), therefore, supporting the
neural network predictions for Xe. The visualizations are shown in Figure 3 (b) and (d).

4 Discussion

In summary, our study of the latent embedding representations of hemagglutinin cryo-EM data from
cryoSBI, has revealed that these live near a well-behaved low dimensional manifold in R256 space
where the simulated images cover (almost entirely) the experimental ones. Therefore, we can use
the simulated data (on which we have full control) to interpret the experimental data in the latent
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(a) Φe colored by de estimated by the
eigengap method.

(b) Φe colored by θ̃ (left) and θ̂ (right).

(c) A sample from the origi-
nal experimental image distri-
bution pe mapped into the es-
timated manifold Me by in-
terpolation (blue) vs Φe (or-
ange).

(d) Φe colored by ˜SNR (left) and posterior width σ (right), with
example particles corresponding to indicated regions.

Figure 3: Diffusion Maps embedding Φe in d = 3 dimensions. (a) Φe colored by local de. The
highest intrinsic dimension is in regions with medium SNR, while high SNR regions have de ∈ [3, 4].
(b) Φe colored by the predicted conformation from manifold interpolation θ̃ and the conformation
estimated posterior mean θ̂. (c) Difference in density between the sample from pe (blue) and the
sample used to compute Φe (orange). pe is much denser in the low SNR regions. (d) Φe colored by
the interpolated SNR and posterior width σ.

space. Furthermore, we have identified the physical and geometrical features that explain the different
directions in the latent space.

We presented visualizations (e.g., by postprocessed Diffusion Maps embedding) that accurately
display the data shape by being almost isometric. We are also excited by the possibilities of replacing
visual analysis with quantitative measures, and principled algorithms in creating and validating
low dimensional models of cryo-EM data. Examples of such tasks include detecting the intrinsic
dimensionality, interpreting the manifold by physical coordinates, measuring the smoothness of
functions over the data manifold (not included here, but straightforward via the Laplacian operator),
detecting if clusters exist, and measuring local distortion [31].

From the methodological point of view, we present a pipeline for analyzing, exploring and visualizing
high dimensional data presumably living near a smooth manifold. The pipeline components integrate
state of the art geometric algorithms and theoretical results. However, we note that we do not
propose to replace the trained neural network predictor with (a variant of) the methods presented here.
Typically, dimension reduction methods do not outperform a neural network trained in supervised
mode. What our method offers is interpretability of the latent representations and a connection of the
experimental data to the physical simulator.

At the same time, we acknowledge that the data might not align perfectly with the manifold hypothesis.
Our current understanding does not yet enable us to predict, comprehend, or control how finer-scale
data structures— e.g., what we consider "noise"—affect geometric algorithms, which should be a
matter of further investigation.
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A Appendix

A.1 Cryo-EM image formation forward model

We simulate cryo-EM particles from 3D molecular structures with the forward model of [32, 33].
The electron density ρ(X) of a given structure X is approximated as a Gaussian mixture model with
centers on the positions of theCα atoms, and standard deviations γ. Then, we apply a rotationRq with
quaternion q and projection Pz onto the z−axis to ρ(X), then convolve with a point-spread function
(PSF), which incorporates the microscope defocus and aberration. The PSF is more straightforward
to apply in Fourier space, where the convolution becomes a point-wise multiplication with the
Fourier transform of the point-spread function, known as the Contrast Transfer Function (CTF).
The CTF is defined as CTFA,b,∆z(s) = e−bs

2/2
[
A cos(π∆zλes

2)−
√
1−A2 sin(π∆zλes

2)
]
,

with reciprocal radius component s = 2π/
√
x2 + y2, amplitude A, b-factor b, defocus ∆z and

electron wavelength λe. After applying the point-spread function, we translate the image by τ and
add Gaussian noise with variance σ2

noise = σ2
signal/SNR, where σ2

signal is the variance of the signal
and SNR is the signal-to-noise ratio. The variance of the signal σ2

signal is computed by applying a
circular mask with a predefined radius on the noiseless image and then calculating the mean squared
intensity. The image formation forward model is then

I(x, y|ϕ, ρ) = PSFA,b,∆z ∗ (PzRqρ(X) + τ ) + ϵ, ϵ ∼ N (0, σ2
noise) , (1)

where ∗ denotes convolution. The imaging parameters utilized for simulating cryo-EM images in
CryoSBI are the Gaussian mixture width γ, quaternion q, translation τ, noise level σnoise, and PSF
parameters A, b,∆z, with ϕ = {γ, q, τ, A, b,∆z, σnoise}.

A.2 CryoSBI feature latent network and conditional density estimation

The latent network SΨ follows a ResNet-18 architecture [34] as implemented in ref. [13], with
modifications for grascale image input and 256-dimensional feature vector output. For the density
estimator qφ, e implement a Neural Spline Flow (NSF) [35] with the same architecture and training
as utilized in ref. [13], and likewise generating each batch of synthetic images on demand in training.

A.3 CryoSBI priors for hemagglutinin

All data processing and SBI procedures for Hemagglutinin data were carried out as in ref. [13],
with experimental hemagglutinin images obtained from EMPIAR 10532 [24]. The conformations
from hemagglutinin were obtained from a normal mode analysis on atomic structure built from a
3Å reconstruction (PDB id: 6wxb), resulting in 20 conformations indexed by RMSD displacement
θi, i = 1, . . . , 20. The conformation prior p(θ) was taken as a uniform distribution over the possible
conformational displacements {θi}, and the logarithm of the SNR was sampled from a uniform
distribution values between log 10−1 and log 10−3. The prior on the quaternions q was chosen
so that rotations Rq were sampled uniformly in SO(3) [36]. The other imaging parameters were
sampled from uniform distributions in each parameter within bounds chosen in ref. [13]. All nuisance
parameters comprising ϕ were assumed independent and sampled independently from their respective
priors.

A.4 Data Pre-processing

We begin by randomly sampling Ne = Ns = 50000 data points from De and Ds. This is not a
requirement and it was done to reduce the computational load. Our next step is to compute, for each
xi ∈ Xs and x̃i ∈ Xe, the number of neighbors Ns(xi), Ne(x̃i) within various radii R. We pick
a radius R that gives an approximately uniform distribution over the number of neighbors in both
datasets. We use R = 7.5 and R = 9.0 for the experimental and simulation data, respectively.

We remove points with low-connectivity, very likely outliers, by removing all entries from De and
Ds that have Ne(xi), Ne(x̃i) < 8. This leaves us with Ne = 40846 and Ns = 36783. These are the
datasets that are used for the coverage analysis between the simulated and the experimental data.
Because our objective is to analyze Me, we also remove all entries in Xs that are not within R = 7.5
of some experimental data point. After this step, Ns = 26051 entries remain in Xs.
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As shown in [16] , one can remove the biases due to non-uniform sampling density when estimating
the Laplace-Beltrami operator ∆M. However, this result is asymptotic, and assumes that the sampling
density does not vary too much. For real data, it is recommended to avoid large variations in data
density, for instance by resampling as we do. There is another practical reason to remove large
density variations: this allows one to do reliable manifold estimation with a single kernel width ϵ.
Empirically we found support for this practical advice;we obtain better results when we subsample
the data in such a way that we encourage the sample to be as uniform as possible over Me. In order
to do this, we take the remaining data entries in De and Ds, and sample 20000 data points from each
using a distribution over the data entries proportional to 1/N7.5(x̃i) and 1/N9.0(xi), respectively for
the experimental and simulated sets. As shown in Appendix Figure 4, this has the secondary effect of
sampling less from the noisy, low SNR, and likely uninformative regions of the manifold. Thus, the
embeddings obtained from these samples are encouraged to capture the true geometries of Me and
Ms, while reducing potential side-effects due to density variations over the manifolds.

We use the method of [28] to estimate kernel width parameters ϵe, ϵs and cutoff radii Re, Rs that
maximize the Laplacian Matrix’s L ability to preserve the geometry of the data. We use Re

ϵe
= Re

ϵs
= 3

and find the optimal radii to be Re = 17.0 and Rs = 15.0. We remove all entries from De and Ds
whose degrees in the kernel matrices, computed with the widths and radii above, are in the bottom
5-th percentile. This is meant to improve the stability of the eigen-decomposition performed by
the Diffusion Maps algorithm. The remaining 19000 data points will be used for computing the
Diffusion Maps embeddings Φs and Φe. We re-estimate ϵe, ϵs, Re, Rs on these final datasets and
obtain Re = 16.5 and Rs = 13.5 which will be used for computing L.

A.5 Diffusion Maps Embedding Details

We compute the Diffusion Maps embeddings [16], denoted Φs and Φe, using the neural representa-
tions learned by Sψ , Xs = {xi}Ns

i=1 and Xe = {x̃i}Ne
i=1. Here, and for the remainder of the appendix,

Ns = Ne = 19000, and Xe,Xs(and associated De,Ds) are those obtained after the pre-processing
steps in Appendix A.4.

Diffusion Maps is based on the eigen-decomposition of the Laplacian matrix L from which we
keep the first m non-zero eigenvectors in increasing order of their eigenvalues, Φs ∈ Rn×m and
Φe ∈ Rn×m. We use m = 20 in our experiments. For both Φs and Φe we find that only the
first eigenvalue is 0 and that the spectrum increases slowly. This indicates that both Ms and Me

are smooth and connected. In Appendix Figure 3, we display the non-zero eigenvalues of the
two decompositions. In conjunction with the results from the Main Text and Appendix Figure 4,
this provides strong evidence that the neural representations learned by Sψ are well-behaved low
dimensional manifolds.

Next, we perform IES [17] to select three independent and low frequency coordinates from Φs and
Φe. Briefly, IES(Independent Eigencoordinate Selection) selects a subset S of the m coordinates
of a smooth embedding Φ(M) such that ΦS(M) is also a smooth embedding striking a balance
between having low frequency and having rank consistently close to d, the intrinsic dimension of the
manifold M. In our experiments we use |S| = 6. Since we don’t know the intrinsic dimension d, but
we estimate it to be between 2 and 6, we perform IES for all 3 ≤ d ≤ 6 and select the coordinates
which appear most often across all runs for different d’s. We obtain coordinates Se = {0, 1, 3} for
the experimental data and Ss = {0, 1, 5} for the simulated data. We use these coordinates to visually
analyze the embeddings. Since Ms and Me are low-dimensional we fully expect to capture most of
the geometric structure by only analyzing these three coordinates. In Figure 3 we display the IES
selected coordinates for Φe, while in Appendix Figure 2 we display those for Φs.

Finally, we apply Riemannian Relaxation [30] to push the embeddings closer to being isometric
to their respective neural representations. To do this, Riemannian Relaxation starts from the initial
embeddings Φe and Φs, and iteratively modifies them via gradient descent with respect to a loss
function which penalizes local distortions in the estimated pull-back metric at points in the embedding
space. In Appendix Figure 5, we display "relaxed" versus "unrelaxed" versions of Φe and Φs. We note
that Riemannian Relaxation is an optional step in our framework that can aid the visual interpretation
of the data. In our experiments we use d = 3, ϵorth = 0.5, and run Riemannian Relaxation until
convergence.
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A.6 Estimating the parameters of the experimental data by interpolation

In this section, we explain how we infer the generative parameters θ̃ and ϕ̃ for the experimental data
and how we embed a new sample from Xe into the embedding space Φe as in Appendix Figure 4.
This is done via Nadaraya-Watson Kernel Regression [12] in the neural embedding space. More

specifically, for every x̃i ∈ Xe, we estimate the conformation θ̃i =
∑

xj∈Xs
K(x̃i,xj)θj∑

xj∈Xs
K(x̃i,xj)

. Similarly, we

obtain estimated nuisance parameters ϕ̃i. To embed a new point x̂i ∈ Xe in the embedding space Φe,

we compute the c-th coordinate of Φe(x̂i) as Φe(x̂i)c =
∑

x̃j∈Xe
K(x̂i,x̃j)Φe(x̃j)c∑

x̃j∈Xs
K(x̂i,x̃j)

.

A.7 TSLasso Details

TSLasso [18] is an algorithm which recovers a subset fS of F = {fk : M → R, k = 1 : p},
where each fk ∈ F represents a potential smooth coordinate function of a manifold M. It does
so by finding the subset fS ⊆ F whose gradients, which must be either estimated or analytically
computable, "most economically" span the tangent spaces of the manifold. More specifically, using
a sample of points x ∈ M, TSLasso first estimates the tangent spaces TxM, then it projects the
gradients ∇fk(x) onto these estimated tangent spaces, and finally it attempts to reconstruct a basis of
TxM using a linear combination of the projected gradients. To force a sparse representation of the
tangent spaces over the whole sample, TSLasso regularizes the magnitudes of the linear coefficients
Bk with the penalty being applied separately for each k = 1 : p. To select fS ⊆ F with |S| = d, a
series of Group Lasso problems is solved for different regularization strengths λ until exactly d linear
coefficients Bk are non-zero.

In our experiments, each fk ∈ F will represent one of the simulation parameters(the conformation
θ or one of the nuisance parameters in ϕ), giving us p = |F| = 10. We use |S| = d = 4 For
the experimental data, we infer these value as in Appendix A.6. We run TSLasso 20 times using
samples of size 500. Each run samples points in Xs(or Xe) which have SNRs(or inferred SNRs
for the experimental data) in the top q-th percentile over all points. We perform the experiment for
q ∈ {0, 5, . . . , 90, 95}. We find that fS almost always consists of conformation θ(or θ̃), SNR(or
inferred SNR), and at least one of the quaternion rotation parameters in ϕ(or ϕ̃). The full results and
regularization paths are presented in Appendix Figure 6. Our results show that this combination of
functions parametrizes both Ms and Me.

We use a simple procedure to estimate the gradients ∇fk. We describe the procedure for the simulated
data and note that for the experimental data we use the same procedure but the inferred values of
the fk’s instead. For each point x ∈ Xs, we perform weighted local PCA using the same kernel
matrix used for Diffusion Maps. We select a local basis around x, U(x) ∈ R256×d′ , consisting
of the eigenvectors corresponding to the largest d′ eigenvalues obtained during PCA. Let Nx be
the set of neighbors of x in the kernel matrix and let w(x′) represent, for each x′ ∈ Nx, the
entry K(x, x′) in the kernel matrix. We create a matrix ∆x(x) ∈ R256×|Nx|, where each column
corresponds to w(x′)(x′−x). We also create a vector ∆fk(x) ∈ R|Nx| where each entry corresponds
to w(x′)(fk(x′) − fk(x)). Then we solve for y ∈ Rd′ as the weighted least squares solution in
∆fk(x) = [∆x(x)

TU(x)]y. Here y represents an estimation of the gradient ∇fk(x) in the local
coordinates U(x). Then, we obtain our estimation as ∇fk(x) = U(x)y. In our experiments we use
d′ = 10.
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B Appendix Figures

(a) Doubling Dimension

Appendix Figure 1: Estimation of the intrinsic dimension ds (blue) and de (red) of the manifolds Ms

and Ms, respectively, using the doubling dimension for different radii R.

(a) Φs colored by θ (left) and θ̂ (right). (b) Φs colored by SNR (left) and σ (right).

(c) Φs colored by ds estimated
by the Eigengap method.

Appendix Figure 2: Diffusion Maps embeddings Φs in d = 3 dimen-
sions; the plots are rotated to best display the embedding. The three
coordinates we display are selected by IES. In (a), for data points with
high SNR (the leftmost points), the conformation and posterior mean
agree over the embedded points and vary smoothly across the y-axis. In
(b), the SNR and posterior width agree over the embedded points and
vary smoothly across the x-axis. In (c), the highest intrinsic dimension
is in regions with medium SNR. For data with high SNR (the left most
points), the intrinsic dimension ds drops due to the lack of noise; for
the noisiest data (lower right of embedding), ds drops again, as noisy
images become more similar to each other.
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Appendix Figure 3: The spectrums of the experimental (red) and simulated (blue) eigen-
decompositions of the Laplacian matrix L obtained during Diffusion Maps. The smoothness of the
spectrum and having only one 0 eigenvalue (not displayed) indicates that both Ms and Me are
smooth connected manifolds.

(a) The Φe embedding.
(b) A random sample from pe embed-
ded into the Φe space using kernel
interpolation.

(c) The Φe embedding(orange) and
a random sample from pe(blue) em-
bedded into the Φe space using ker-
nel interpolation.

Appendix Figure 4: In (b), we display a random sample from pe, the density on Me, which we
embed into the Φe space (a) using the kernel interpolation method presented in Appendix A.6. We
observe that this sample has no gaps and no clusters. In (c), we display the difference in density
between the sample from pe (blue) and the sample used to compute Φe (orange). This is due to the
resampling method described in Appendix A.4 that aims to mimic a uniform distribution over Me.
We note that pe is much denser in the low SNR regions (see Figure 3). By sampling less from this
noisy and uninformative region, we encourage Φe(orange) to better capture the geometry of Me.
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(a) Φe before(left) and after(right) Riemannian Relaxation.

(b) Φs before(left) and after(right) Riemannian Relaxation.

Appendix Figure 5: Diffusion Maps embeddings Φe (a) and Φs (b) before and after Riemannian
Relaxation. The embeddings have been slightly rotated to emphasize the effect of the relaxation. Rie-
mannian Relaxation tends to produce smoother embeddings with less curvature and more uniformly
distributed points.

(a) TSLasso results for experimental data.

(b) TSLasso results for simulated data.

Appendix Figure 6: The regularization paths of each fk ∈ F obtained over 20 runs of TSLasso for
the experimental (a) and simulated (b) data. Each subplot corresponds to one function fk ∈ F , with
the name and the selection rate in fS being indicated in the sub-title. The x-axis represents the value
of λ, the strength of the sparsity regularization, while the y-axis represents the average magnitude of
Bk, the linear coefficents. Each run consists only of points in the top q-th percentile over all points
in terms of SNR. We perform the experiment for q ∈ {0, 5, . . . , 90, 95} with the lines going from
blue to red as q increases. A continuous (dotted) line indicates that fk was selected (not selected,
respectively) in that run. We find that fS almost always consists of conformation θ (or θ̃), SNR (or
inferred SNR), and at least one of the quaternion rotation parameters in ϕ (or ϕ̃).

.
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