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Abstract

We propose PLAID (Protein Latent Induced Diffusion), a paradigm for gener-
ating all-atom structure and sequence of protein domains, by learning diffusions
over the compressed latent space of pre-trained sequence-only input protein folding
models. Since only sequence training data is required during generative model
training, we augment the usable training dataset by 102× to 104× compared to
other sequence-structure generative models. Further, this enlarges the annota-
tions available for controllable generation, and we demonstrate compositional
conditioning on function and organism, including a rich vocabulary of 2219 Gene
Ontology functions. Samples exhibit cross-modal consistency, while possessing
desired properties as measured by conditional Fréchet inception distance (FID).
The PLAID paradigm avoids strong priors and massive imbalances from struc-
ture databases, scales readily with data and compute, and enables controllable
generation of all-atom protein structures and sequences.

1 Introduction

Figure 1: PLAID generates all-atom structure
with high naturalness despite not requiring
structure during diffusion training.

Existing protein structure and sequence genera-
tion methods often treat sequence and structure as
separate modalities, and most methods are either
backbone-only, or require alternating between fold-
ing and inverse-folding steps for all-atom genera-
tion. For models capable of designing structure, the
architectures and data representations (e.g., many
equivariant architectures) are often not flexible and
cannot leverage rapid progress in hardware-aware
mechanisms for more scalable large language mod-
els. Evaluations often focus on characterizability
and designability, with limited progress towards con-
trol of properties that can be experimentally tested
in the wet lab. Structure generation methods that
rely on experimentally-resolved structure databases
are biased towards proteins that can be crystallized,
whereas sequence-based databases have better rep-
resentation across the viable protein distribution as
traversed by evolution.

∗Correspondence: amyxlu@berkeley.edu

Machine Learning for Structural Biology (MLSB) Workshop at the 38th Conference on Neural Information
Processing Systems (NeurIPS 2024).



Generation Outputs Conditioning Training

Seq-
uence

Side
chain

coords.

Backbone
coords.

GO
Term Organism

Does not
require

structure

Co-
generates
without

predictor

All
protein
families

MultiFlow ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓
Protparadelle ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

ProteinGenerator ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓
AbDiffuser ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

RFDiffusion ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
Genie ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

PLAID (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison between model capabilities for selected co-generation models [6; 4; 7; 8] and
backbone-only structure diffusion models [1; 9]. By defining the data distribution p(x) as sequence,
we gain more paired protein and annotation labels {x, c} (e.g., GO terms).

Towards resolving these challenges, we introduce Protein LAtent Induced Diffusion (PLAID), a
latent diffusion model capable of sequence and all-atom structure generation, while requiring
only sequence data during training. Since we can use sequence databases for all-atom generation,
we augment the size of usable training data by a factor of 102× to 104×, as compared to previous
methods trained on non-synthetic data [1; 2; 3; 4], increases the availability of annotations for
controllable generation, and allows us to focus on protein domains, portions of the protein with
evolutionarily-conserved sequences that may have functional significance [5]. As a motivating
demonstration, we examine two axis of compositional control: species of origin using 3617 organism
taxons, and protein function using 2219 Gene Ontology terms.

2 Related Work

Denoising Diffusion Models and Latent Diffusion Diffusion models [10; 11; 12] approaches
the generative modeling task of approximating the data distribution pθ(x) by training a denoiser to
remove iteratively added noise; during inference-time sampling, one starts from noise, and uses the
denoiser to remove noise, until we arrive back at the data distribution, as defined by the training data.
During training, models can be made conditional using classifier-free diffusion [10] by replacing the
conditioning variable c with a null variable ∅ with some probability puncond. 2

Multimodal Sequence-Structure and All-Atom Generation “All-atom generation" is the task of
generating structure for amino acid side chains, as compared to “backbone only", which only includes
carbon backbone atoms, and thus does not require the sequence to be defined. All-atom generation
can be viewed as multimodal generation problem, where the 1D protein sequence and 3D protein
structure are jointly produced.

Traditionally, computational protein design relies on Rosetta [13] to “pack" the side chains after
backbone design. Early protein structure diffusion works followed the traditional approach by
targeting the backbone-only setting [1; 2; 14; 9]. Some recent works have addressed this problem, but
most require alternating between sequence and structure generation steps, and relies on a separately
trained structure-prediction or sequence-prediction model. ProteinGenerator [7] uses diffusion on
the one-hot encodings of sequences, and at each step, uses RosettaFold [15] to predict structure.
Protpardelle [4] instead performs diffusion over structure, and at each step, uses ProteinMPNN [16]
to predict sequence. Multiflow [6] takes a similar approach of sampling directly from the joint
distribution rather than iterating between cross-modality prediction steps, but are unable to place the
sidechain atoms. A tabular comparison can be found in Table 1. While the currently presented model
does not perform conditioning by motif scaffolding and secondary structure, these information can

2The role that the training data plays in defining the data distribution pevolutionary(x) is an important motivator
in this work. By restricting usable training data to structure datasets, the resulting model can only sample from
pθ(xstructure), which only provides a small fraction of evolutionary diversity, is biased towards crystallizable
proteins, and limits quantity of functional annotations that are available.
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Figure 2: Overview of PLAID. (A) Training. PLAID performs diffusion in the ESMFold [3] latent
space, to learn a representation of the joint distribution of protein sequence and structure using only
sequence inputs. This embedding is compressed by frozen autoencoder weights [17]. (B) Inference.
To obtain both sequence and structure at inference time, we first sample x̃′ ∈ RL

2 ×32, then decode
back to x̃ ∈ X , which can be mapped back to sequence and structure with frozen decoders. (C)
Database sizes. Drawn-to-scale comparison of the size of sequence databases (UniRef90 and Pfam)
compared to structure-only datasets like the PDB. (D) Latent space noise schedule. Visualization of
how a cosine noise schedule (orange, bottom) maps to corruptions (blue, top) in sequence (measured
by per-token similarity, left) and structure (measured by backbone TM-score, right) spaces. Without
the per-channel normalization and compression step, noise perturbations in the latent space do not
map to a meaningful disruption in the sequence and structure space.

be gleaned from sequence data and conditioning capabilities can be readily extended in future work.
Finally, to the best of our knowledge, no prior work has addressed all-atom generation of structure
and sequence without requiring structural inputs to the generative model architecture.

3 PLAID: Protein Latent Induced Diffusion

3.1 Capturing the Joint Distribution of Sequence and Structure

Throughout this work, sequence is denoted as s while structure is denoted as Ω. The latent space
of ESMFold [3] is denoted as x ∈ RL×1024, with the valid space of protein sequence and structure
abstractly denoted as x ∈ X . The compressed latent using the CHEAP [17] autoencoder h(x) is
denoted as x′ ∈ RL

2 ×32.

We begin with the motivation that sampling directly from p(s,Ω) without implicitly factorizing
it into p(Ω)p(s|Ω) (e.g. Protpardelle [4]) or p(Ω)p(s|Ω) (i.e. ProteinGenerator [7]) circumvents
the difficulty in all-atom generation of knowing which side chain atoms to atoms place, since one
can choose a latent manifold where the residues are not explicitly specified. Furthermore, avoiding
iterative predictions across modalities and reliance on the prediction model is computationally cheaper,
and closer to the underlying nature of protein data.

To characterize this joint distribution, we look to the latent space of protein folding models. This
has the advantage of making use of the information captured in these models; as prediction models
become increasingly multimodal and become capable of modeling structure complexes involving
structure, nucleic acid, and small molecules [18; 19], being able to capture and diffuse in the latent
space can easily be adapted to simultaneously generate more modalities. In this work, we choose
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ESMFold because it is capable of predicting from sequence the all-atom structure, a capability that
has seen more progress in prediction than generation.

Latent Space Compression Previous work [17] provides a way to characterize p(s,Ω) by com-
pressing the latent space of ESMFold [3], which predicts structure from single-sequence inputs.
Figure 2A illustrates the pipeline during training, and Figure 2B describes how to obtain sequence
and structure from latent. The encoder uses the same architecture and training procedure as in
CHEAP [17], but is trained on Pfam to ensure in-distribution performance, and compresses inputs
from x ∈ RL×1024 to x ∈ RL

2 ×32.

Reducing input size with an autoencoder alleviates computational costs for high resolution image
modeling [20]. An issue with naively following a latent diffusion paradigm for protein generation is
that the noise in the latent space may not map back the same way in the sequence and structure space.
Figure 2C shows that without the normalization and compression post-processing steps in CHEAP,
noise added in the latent space does not affect sequence and structure until the final timesteps in
forward diffusion, despite using a cosine schedule (SNR and log-SNR curves shown below), meaning
that the denoising task would be trivial for most sampled timesteps.

Architecture We use a Diffusion Transformer [21] (DiT) for the denoising task, which can be
more flexibly finetuned for new input types than many equivariant networks in protein diffusion
literature diffusion [22] and make use of rapidly growing research in hardware-aware speedups
for Transformers during both training and inference [23; 24; 25], and found in early experiments
that proportioning available memory to a larger DiT model was more helpful than using triangular
self-attention [26]. We train our models using the xFormers [27] implementation of [28] which
provided a 55.8% speedup with a 15.6% reduction in GPU memory usage in our inference-time
benchmarking experiments compared to a vanilla implementation using PyTorch primitives.

3.2 Data and Training Details

Choice of Sequence Database The general paradigm in PLAID can be used on any sequence
database, ranging from UniRef90 (193 million sequences) to metagenomic dataset such as BFD (2.5
billion sequences). We use Pfam because it provides more annotations for in silico evaluation, and
because protein domains capture the range of functions well. More information can be found in
Appendix A.

Function and Organism Conditioning Gene Ontology (GO) is a structured hierarchical vocabulary
for annotating gene functions, biological processes, and cellular components across species [29; 30].
We examine all Pfam domains for which there exists a Gene Ontology mapping, of which there are
2219 total. All Pfam sequences are annotated with the full protein from which it was derived and
the organism it came from in a 5 letter code. We examine all unique organisms in Pfam and find
3617 organisms. Models are trained with classifier-free guidance [31] with an unconditional dropout
probability of puncond = 0.3). The model evaluated here has 2 billion parameters, trained for 800K
steps.

Diffusion Training We use the discrete-time diffusion definition proposed in Ho et al. [10], using
1000 timesteps. Additional strategies are used to stabilize training and improve performance: min-
SNR reweighting [32], v-diffusion [33; 34], self-conditioning [35; 36], and a Sigmoid noise schedule
[37].

4 Results

Despite having never seen structures in its training data, PLAID generate structures with complex
folds, such as TIM barrel patterns and beta strands, as seen in Figure 3C. Following prior work
[1; 4; 6], we sample 100 proteins of lengths {100, 200, 300}. Cross-consistency (ccRMSD, ccTM) is
unique to the setting where one samples directly from p(s,Ω) (similar to Co-design 1) in Multiflow;
however, since PLAID is an all-atom model, RMSD is measured for all atoms rather than Cα
atoms only. Self-consistency (scRMSD, scTM) comes from existing literature in backbone-only
generation, and measures designability (which is less relevant in the case of multimodal generation,
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Figure 3: PLAID generates high quality and complex folds without structural training data. (A,
B) Naturalness, cross consistency, and self-consistency. (C) Visual examples of samples, including
TIM barrel-like (left) and beta sheets-like (right) folds. (D) Conditional generation by GO terms.

since ccRMSD serves a similar function). For structure construction for self-consistency, we use
OmegaFold [38], another single-sequence structure predictor.

Figure 3A shows naturalness evaluations on samples. The pLDDT is returned naturally by the
ESMFold decoder. The perplexity is evaluated under the autoregressive model, RITA XL [39].
Samples achieve good pLDDT and perplexity despite having not seen structures during training.
Similarly, both cross-consistency and self-consistency metrics are strong, with 36% of generations
achieving ccRMSD less than 2Å distance. Figure 3C provides a visual inspection. Figure 3D shows
conditional generation results by GO terms; we choose a random subset of GO terms for which there
are more than 512 samples in our holdout validation set, and compute the Frechet Inception Distance
(FID) in the normalized and compressed latent space. For reference, the FID between a random
tensor x̃ ∼ N (0, 0.3) has an FID of 3.62 in this space.

5 Discussion

We proposed PLAID, a paradigm for multi-modal, controllable generation of proteins by diffusing in
the latent space of a prediction model that maps single sequences to the desired modality; in this work,
we examine all-atom generation of structure and sequence, and find that we can generate complex,
high quality all-atom folds without using any structures during training. The performance is limited
by the accuracy of the frozen decoder that is taken from the original prediction model. ESM3 [40]
has shown that there is room for improvement in structure prediction from ESMFold [3], which both
means that there are inefficiencies in the model that are propagated to PLAID, and that improved
performance is scientifically achievable. Furthermore, since the structure decoder is deterministic, it
is unable to sample different conformations in its current form. One way to achieve conformational
diversity is to diffuse in the latent space of a generative model that returns a distribution over structural
conformations instead. These limitations will be addressed in future work.
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Appendix

A Data

Approximately 46.7% of the dataset (N=24,637,236) is annotated with a GO term. Using the publicly
available mapping as of July 1, 2024, we take a count of all GO occurences; for each Pfam entry with
multiple GO entries, we pick the one with the fewest GO occurences to encourage more descriptive
and distinct GO labels.

B Sampling

Inference-time sampling hyperparameters provides the user with additional control over quality
and sampling speed trade-off. PLAID supports the DDPM sampler [10] and the DDIM sampler
[41], as well as the improved speed samplers from DPM++ [42]. We find that using the DDIM
sampler with 500 timesteps using either the sigmoid or cosine schedulers works best during inference,
and reasonable samples can be obtained using the DPM++2M-SDE sampler with only 20 steps.
Experiments shown here uses DDIM sampler with the sigmoid noise schedule at 500 timesteps.

Note that the performance bottleneck is found mostly during the latent sampling and structure
decoding (which depends on the number of recycling iterations [26; 3] used); however, these two
processes can be easily decoupled and parallelized, which cannot be done in existing protein diffusion
methods. Furthermore, it allows us to prefilter which latents to decode using heuristic methods,
and decode only those latents to structure, which would boost performance for nearly the same
computational cost. We do not empirically explore this in this paper to provide a fair comparison,
and because the filtering criteria would vary greatly by downstream use.

C Additional Figures
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Figure 4: FID across sampling (reverse diffusion) timesteps for the DDIM [41] sampler and the
DPM++2M [42] sampler. For both, sample quality decreases steadily over time before plateauing.
DPM++2M can achieve low FID results with only 10% of the original number of steps, but final
results are still slightly worse.

Figure 5: ESMFold pLDDT and TM-Scores on the complete Rocklin mini-proteins dataset and the
CATH dataset, as a gauge for how ESMFold performs on different distributions, and what sorts of
settings are most in-distribution for the ESMFold structure decoder.
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Figure 7: Left: Understanding length generalization for ESMFold to understand how and why
sampler quality changes at different timesteps, and whether or not pLDDT is a trustworthy evaluation
metric, by running ESMFold over the CATH [43] dataset. Length is an important determinant of
model "hallucination"; for shorter sequences, ESMFold can be quite confident yet wrong. (Right:)
Understanding which length cutoff to use during training. We use a cut off of 512 based on the
findings here, since 512 would allow us to see full domains for most sequences in the dataset, while
still having manageable GPU memory needs.
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