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Abstract

We present a novel approach for embedding contact information in Alphafold to
predict structures of disulfide-rich peptides (DRPs) with experimental disulfide
connectivity. While AlphaFold generates accurate DRP structure prediction in
most cases, it sometimes fails at predicting the specific connectivity pattern of the
multiple disulfide bonds. Here, we take advantage of the principles of sequence
coevolution to directly embed specific connectivity patterns within the MSA by
mutating highly conserved cysteines in subsets of the MSA. This approach can
be used to incorporate experimental disulfide connectivity patterns from mass
spectrometry into DRP structure prediction. Lastly, after minimization of predicted
structures by molecular dynamics, we find that predicted DRP structures with
native connectivity display favorable peptide properties compared to non-native
connectivities, suggesting our approach may be useful for determining the native
connectivity of DRPs from sequence alone.

1 Introduction

Disulfide-rich peptides (DRPs) are a class of short peptides characterized by the presence of multiple
disulfide bonds that provide stability and protection from proteolysis (1H3). DRPs are used by
various organisms as toxins, host defense peptides, and peptide hormones and commonly target
ion channels and receptors with high potency and often exquisite subtype selectivity. They are
an appealing therapeutic modality because of the intrinsic druglike properties including stability,
favorable pharmacodynamics and established bioactivity.

Structural characterization of these peptides can be challenging as they are often recalcitrant to
crystallization, too small for cryo-electron microscopy, and disulfide connectivity is difficult to
determine by NMR. Mass spectrometry-based methods can be used to determine native disulfide
connectivity (2,4} 15), but not a three dimensional structure. Molecular dynamics simulations can be
used for ab initio folding of DRPs (6! [7), but even small peptides require computationally intensive
timescales of simulations (micro- to milli-second) with current computing strategies. Developing
methods for DRP structure prediction from sequence and MS-derived connectivity data would enable
high-throughput models for biotechnology applications such as peptide-protein docking or protein
engineering to improve properties such as stability or target affinity.

AlphaFold can also be used to predict cyclic peptide and DRP structure as was demonstrated
recently (8H11). AlphaFold performs best on shorter peptides with high secondary structure, but
also works well on DRPs. AlphaFold, however, can sometimes incorrectly predict the native
disulfide connectivity of DRPs and thus provide incorrect structural models for the applications above.
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Figure 1: AlphaFold predicts non-native connectivities in DRPs. (A) In roughly 15% of our DRP
dataset, AlphaFold predicts the incorrect connectivity. These incorrect predictions are either due to
(B) different connectivity patterns or (C) insufficient connectivity. Connectivity patterns indicate
which cysteines in the sequence form disulfides such that "1-3, 2-4" indicates that the first cysteine in
the sequence forms a disulfide with the third, and the second with the fourth.

Modifying AlphaFold has been a successful strategy for numerous applications, such as predicting
alternative conformations (12| [13), predicting structures of head-to-tail cyclized peptides (9), and
using experimental constraints in protein structure prediction (14). Thus, we developed a method to
incorporate disulfide connectivity data into AlphaFold structure predictions.

A key component of this work is the use of MSAs as input to AlphaFold, which provide data for
learning epistasis caused by structural proximity, also known as protein sequence coevolution (15H17).
Structure prediction methods that relied on statistical models of sequence coevolution to generate
pairwise distance constraints, like EVFold (18) and GREMLIN (19), were precursors to the use of
sequence information in deep learning protein structure prediction models (20H25)), such as in the
EvoFormer block of AlphaFold (L1). In this work, we artificially generated sequence coevolution
signals in the input MSA of AlphaFold to give the impression of coevolution between distinct pairs
of cysteines in DRPs, guiding AlphaFold to predict the specified disulfide connectivity.

2 Results

2.1 AlphaFold predicts non-native connectivity patterns for DRPs

We first tested a set of 624 DRPs (Supplemental Information) with two or three disulfides to
determine the accuracy of AlphaFold (Fig. [TA). AlphaFold performed well at predicting the structures
based on RMSD in the vast majority of examples but in many cases disulfide connectivity patterns
were predicted incorrectly (Fig. [IB) or insufficiently (meaning not all cysteines formed any disulfides,
Fig. [T|C). Of the 624 DRPs, 93 ( 15%) had incorrect connectivity predicted in at least 3 out of 5
predictions from AlphaFold. In many cases, the RMSD of non-native connectivity models is lower
than examples with native connectivity, suggesting RMSD is an insufficient metric to evaluate folding
accuracy of DRPs. In DRPs with two disulfides, 13 out of 47 incorrectly predicted structures had
insufficient disulfide formation, while the remaining 35 had incorrect pairing. In DRPs with three
disulfides, 12 out of 46 had insufficient disulfide formation, while 34 had incorrect pairing. These
results comport with another study benchmarking AlphaFold on peptide structure prediction (8§)).
MSA depth was a factor in the accuracy of the prediction (connectivity for all peptides with MSA
depths larger than 283 was predicted accurately), suggesting novel peptides would present more
challenges for accurate structure prediction with AlphaFold.

2.2 Artificial coevolution in MSAs can enforce disulfide connectivity

Sequence coevolution can be detected from MSAs and used to provide proximity information in
AlphaFold. In the case of DRPs the cysteine residues are highly conserved in MSAs, which means
they do not provide information on the pairwise connectivity of cysteines as all cysteines show equal
coevolution with each other. To provide connectivity restraints in the form of sequence coevolution,
the MSA can be altered such that pairs of cysteines in subsets of sequences were conserved while
others were randomly mutated (Fig. ZA-B). Thus, one can provide experimental connectivity data
from MS to constrain the AlphaFold output.
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Figure 2: Schematic of artificial coevolution to direct disulfide connectivity in DRPs. (A) The
conservation of cysteine residues (yellow) in MSAs of DRPs makes it challenging for AlphaFold
to predict the native connectivity of DRPs as all pairs of cysteines show equal coevolution. (B) In
contrast, by mutating residue positions in subsets of the MSA, artificial coevolution can be embedding
in the MSA, providing data for AlphaFold to predict the native connectivity. (C) Schematic showing
the different MSA subsection methods used. The MSA was either broken into N or N+1 subsections
(where N is the number of disulfides), or the MSA was repeated N times (N alignments).
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Figure 3: Artificial coevolution approaches improve RMSD and native connectivity of DRPs.
(A) Different cysteine replacement methods and MSA sectioning methods show different extents
of improvement in the distance between SG atoms of native cysteine pairs. This improves DRP
connectivity prediction overall compared to AlphaFold or using the native cysteine pairs as constraints
in AlphaLink (14). AlphaFold predictions with artificial coevolution of native disulfide connectivity
show lower SG atom distance (B) and overall lower RMSD (C) compared to non-native connectivities.

Using a test dataset of 48 DRPs with two or three disulfides (Supplemental Information) enriched
for examples where AlphaFold failed to predict the experimental connectivity (33 incorrect, 15
correct), we determined whether embedding connectivity using artificial coevolution (AlphaFold-AC)
improves predictions. Several methods to embed the pairwise coevolutionary signals by subsetting
(or multiplying) the MSA in different ways (Fig. 2JC) and mutating the non-paired cysteines to
different subsets of amino acids were tested. Breaking up the MSA into N+1 equally-sized subsets
(where N is the number of disulfides) and mutating the non-paired cysteines to any amino acid as
opposed to just hydrophobic or just small amino acids was the best method for embedding the desired
connectivity into DRP structure predictions in our dataset (Fig. [3). This strategy greatly decreased
the sulfur-sulfur distance of the native connectivity (SG-SG distance) to nearly the known disulfide
bond distance of 2.05 Aand less than the disulfide bond cutoff in the PYyMOL (3 A) in the majority of
cases. There were only 8 DRPs for which the mean SG-SG distance was over 4 A, which all had
MSAs with depths under 10 sequences, suggesting embedding artificial coevolution requires enough
sequence diversity. In summary, we rectified the connectivity in 25 out of 33 AlphaFold predictions
using our approach.



For a three-disulfide peptide, there are 15 potential connectivities, only one of which is native. To test
whether this method could distinguish native vs. non-native connectivity, we predicted structures
using the non-native disulfide connectivity as well (Fig. 3B). Even in non-native connectivities, these
constraints resulted in decreased SG-SG average distances, but were still significantly larger than
native connectivities, suggesting this approach may be helpful in determining the native connectivity
of a DRP.

2.3 Comparison to other methodology

We also explored other approaches to providing connectivity constraints to AlphaFold, namely
AlphaLink (14) and relative positional encoding in ColabDesign (9} 26| [27). AlphaLink requires
restraints provided as mean+standard deviation for the residue-residue C-c«v distance. Using a distance
of 5.6+0.7 A for the native connectivity had minimal, if not negative, impact of the desired disulfide
bond distance for our test set (Fig. [JA). This model was trained on synthetic crosslinking data meant
for larger distances than disulfides which may explain why this approach failed, though could be
optimized using a similar training scheme on disulfide bonds.

The relative positional encoding of DRPs followed the framework of cyclic peptides, where a relative
position of 1 was used between cysteines involved in a particular disulfide pair (Fig. STA). Then, the
Floyd algorithm (28}, 27) was used to fill in the remaining pairwise distances and then sign corrected
for directionality. We also included a disulfide loss function described by (29). While this method
positioned the correct cysteines in close proximity, the predicted structures contained severe clashes
(Fig. S§IB). Further optimization of the loss functions for DRP structure prediction in ColabDesign
would hopefully resolve these issues, as recently suggested (27)). It is important to note that these
methods are based on cyclic peptides, regardless of the presence of additional disulfides, suggesting
that relative position encoding is especially useful for these cases but is less so for non-cyclic DRPs.

2.4 Peptide properties may help distinguish native vs. non-native connectivities

Our method succeeds at positioning desired cysteines in near disulfide-bonding range, but sometimes
fell outside the scope of real disulfide bond lengths. Thus, Rosetta’s Disulfidize mover and FastRelax
were used to form the desired disulfides and these models were subsequently used in Gaussian-
accelerated Molecular Dynamics (GaMD) simulations to further minimize the predicted structures
for 25 ns. We then compared peptide properties of predicted DRP structures at each stage of this
process: modified AlphaFold, after disulfidization, after MD equilibration, and after 25 ns of GaMD
simulation (Fig. [d). The radius of gyration did not differentiate native vs. non-native connectivities
from AlphaFold, but interestingly, peptides with native connectivies had a lower radius of gyration
on average after disulfidization, equilibration and simulation. Rosetta energy was lowest after
disulfidization, most likely because the Rosetta energy score functions were used to do a FastRelax
of the disulfidized peptide. In the other steps, Rosetta energy was lower in peptides with native
connectivities. The mean surface-accessible surface area was noticeably decreased in the AlphaFold
prediction, yet did not differentiate native and non-native connectivities in other steps. Lastly, the
helical content seemed to be greater, while coil content and sheet content were lower, in the native
connectivity. While overall these trends are modest, they suggest that peptide properties may be
useful in determining the native connectivity of DRPs.

3 Discussion

In this study we used the principles of protein sequence coevolution to artificially alter MSAs at
cysteine positions to constrain AlphaFold predictions of DRPs with defined disulfide connectivity.
This approach, though simple, is quite effective at improving structure prediction and also illustrates
that the MSA input to AlphaFold’s EvoFormer blocks provide data to learn residue proximity
information in a similar fashion to statistical models of sequence coevolution. In addition, providing
the native disulfide connectivity pattern (as opposed to non-native connectivity) in our approach is
more likely to result in a predicted structure that has the desired connectivity and in favorable peptide
properties (Rosetta energy, radius of gyration, coil content) compared to non-native connectivity
predictions. These results suggest that native connectivity might be effectively predicted by comparing
predicted structures with all connectivities in a deep learning framework, though further work is
required to demonstrate this.
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Figure 4: DRP structure predictions with native connectivity have improved peptide properties.
Comparison of the DRP structure prediction properties (radius of gyration, Rosetta energy, mean
SASA, and coil, helical and sheet content) at different steps of the pipeline: after AlphaFold-AC
prediction AlphaFold-AC, after disulfidization with PyRosetta Disulfidized, after equilibration in
OpenMM Equilibrated, and after a 25 ns GaMD production run Simulated.

We compared other methods for directing interactions in AlphaFold (9, 14} 27) to our approach.
Artificial coevolution was straightforward to implement and successful at providing connectivity
constraints for DRPs to AlphaFold. The other approaches may prove to be equally or more successful
at this task if specifically oriented to this problem (27), though was not as successful in our hands
with admittedly limited effort.

Others have successfully manipulated MSAs to modify AlphaFold predictions (12} [13)). These efforts
have focused on 'row-wise’ manipulations of MSAs, while this study focuses on ’column-wise’
manipulations that embed artificial coevolution directly. Our results demonstrate these manipulations
can also successfully modify AlphaFold predictions in intended ways. The extent to which artificial
coevolution can modify AlphaFold predictions should be explored further, though we believe more
discretion should be placed on this approach than row-wise approaches, as it involves mutating real
protein sequences, which could move MSA representations outside of the distributions of natural
protein sequences that were used to train AlphaFold.

4 Methods

Dataset DRP structures were collected from RCSB based on having two or three disulfides in a
peptide of less than 60 residues in length, resulting in a dataset of 624 DRPs. After running AlphaFold
on this set of peptides, we created a smaller dataset of 48 DRPs enriched in peptides whose native
connectivity was not predicted by AlphaFold for subsequent work. See[5.1]for list of PDB IDs.

Artificial coevolution in MSAs After running AlphaFold without any connectivity restraints,
MSAs were randomly subset into either N, N+1 or multiplied N times (where N is the number of
disulfides). In the case of N subsets, cysteines were maintained in each subset for one of the disulfides
in the peptide, while the other positions were mutated. In the case of N+1 subsets, one subset was
left as is without manipulation of the alignment. In the case of multiplying the alignment by N,
each multiplication was treated as its own subset as in the N subsets case. Positions were randomly
mutated to either any amino acid, only hydrophobic amino acids (A, C, E, I, L, M, V, W, Y) or small
amino acids (A, C, L, S, T, V). Then, this MSA was used to predict structures in AlphaFold without
templates following previous examples (|12).

Post processing and simulations of predicted DRP structure After AlphaFold-AC prediction,
we used the Disulfidize Mover in PyRosetta (30) to enforce the disulfide bonds, followed by a
standard FastRelax protocol to improve peptide geometry. We then used OpenMM (31) to run 25
ns of Gaussian-accelerated Molecular Dynamics (GaMD) of each peptide according to established
protocols (32} 33)).
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S Supplemental Information

5.1 Dataset

PDB IDs and chain ID of 624 DRPs with 4 or 6 cysteines. DRPs that were incorrectly predicted by
AlphaFold are highlighted in red. DRPs in the smaller dataset of 48 DRPs are underlined.

2B5PA | 6PI2.A | 5UIG.A
21H6.A | 6PI3.A | 2LDFA
2IH7.A | IWOO0.A | 6EIL.A
JLERA | 6QKFA | IHVW.A
20FLA | 2M2YA | ITT3.A
1G2G.A | 2M79.A | 2KM9.A
1IMI.A | IPGL.A | IFYG.A
20FJA | 1K64.A | IPIPA
2M62.A | 2MIPA | 2FQC.A
5T6T.A | IHVZA | 2LDE.A
IE74.A | 2LYE.A | 5ZNUA
1E75.A | 2LZLA | IMVI.A
1E76.A | 2M2G.A | 1FEO.A
IHY2.H | 2MD6.A | 1F3K.A
2aFZA | 1zLcA | 1YZ2.A
2G6U.A | 2ATG.A | ICNN.A
2JURA | 1T7HA | IWQC.A
IR8T.A | IKFPA | 1V4Q.A
2JUS.A | 6PIN.A | 1AV3.A
IGNA.A | 6PI0.A | 1FU3.A
IHQQH | 6PIPA | 5GSFA
2JUTA | 2NC7.A | 1TR6.A
INOTA | 2M77.A | 1IXTA
228.A | 2M78.A | 2FQA.A
2EW4.A | 2MZ6.A | 1OMC.A
IHXL.C | IMTQ.A | 2N5Q.A
2JUQA | 1IEN.A | 2NX6.A
IHJEA | 5UG3.A | 1WQD.A
2M61.A | 5UG5.A | IKCPA
3ZKTA | 5X1v.A | 1D5Q.A
2LU6.1 | 6IGKB | 6EFE.A
1B45.A | IEDN.A | IMCTI
IDG2.A | 1SRB.A | SWXE.A
2M3LA | 19i.A | 1DU9.A
6BX9.A | 2YEN.A | IWMS.A
IAOM.A | 2AIW.A | 1F281
ONAY.A | ITCG.A | 2NX7.A
IM2C.A | ITCH.A | IMCVI
IUYAA | 1GoLT | 2NAV.A
2LXG.A | ISMFI | 2KVX.A
IUL2.A | 4TTL.A | 2LETA
2EFZA | 1Q21.A | 2ETLA
GISED | 6MJD.A | 1I8Y.A
OMUH.A | 6CGX.A | 1PT4.A
2H8S.A | 2AK0.A | 1ZMH.A
IAKG.A | SUITHA | 4TTO.A
2L75.A | IWQE.A | INTU.A
2JMDQ.A | 6NUG.A | 21T8.A
IPEN.A | IORXA | 26X1.A
IEDPA | IJILPA | 2KHB.A
2GCZ.A | 2L09.A | IKAL.A
IMA2.A | 2LOCA | 2IWM.A
6AZA.A | 1AS5.A | 1IIZA

5WCV.A
IWM7.A
6DHR.A
2JLAM.A
ICTLA
1ACW.A
2MWO.A
2LUR.A
2K7G.A
2F2LA
1LUO.A
2BTC.I
2RTZ.A
2M90.A
6Q5Z.A
INBL.A
2F21.A
3E4H.A
6CGW.A
4TTN.A
3LVX.A
2PM4.A
4LBB.A
INBJ.A
6D3T.A
2MMS5.A
2MM6.A
3LOE.A
3H6C.B
IDF6.A
6CEG.A
3LO1.A
4LB7.D
4LBFA
3LO2.A
4DUO.A
IDFN.A
2MSO.A
1VB8.A
4LB1.D
IBH4.A
2MI9.A
IEYO.A
3LO4.A
4BFH.A
2KUK.A
2RTY.A
2NIS.A
5ZV6.A
2KCG.A
IMMC.A
2LIS.A
4B1Q.P

1EMX.A
2KHT.A
6CHC.A
3L06.A
2KUX.A
1I8X.A
2MNLA
1PQR.A
1ZUV.A
2HM6.A
IRMK.A
IW7Z.A
IPNH.A
2LU9.A
6D90.A
2GJ0.A
1ZA8.A
6D9P.A
6D8Q.A
1G26.A
6DSY.A
6DSR.A
2CK5.A
6D8S.A
ICMR.A
1SCY.A
6DST.A
2HM3.A
6D93.A
2ERLA
2HM4.A
1Q2K.A
2B38.A
2GWPA
ITOW.A
ON3PA
INTEA
SFZV.A
6MIV.A
3QTE.A
4RBW.A
1HOH.I
3I5W.A
4RBX.A
1PIV.A
1TVO.A
5CULA
1ZMPA
6DSH.A
1QK7.A
5CULA
1ZMQ.A
1CLV.I

4E86.A
1HP3.A
IGIPA
IEWS.A
2KILA
INIX.A
1C6W.A
6MM4.A
6BTV.A
IR02.A
SEPM.C
6DMQ.A
IMXM.A
2KY3.A
2M3J.A
1ZMM.A
OM7TT.A
2JTB.A
2MEL.A
6BRO.A
2ME7.A
2VUSI
IWSO.A
1QK6.A
2N2G.A
6GFT.A
2NALA
11E6.A
2MHI.A
1YPS.A
6DMM.A
2KTC.A
6MKS5.A
6KLM.A
ONSE.A
ITYK.A
SWE3.A
ILA4.A
S5WOV.A
1AG7.A
2MXO.A
2PO8.A
1S6X.A
1ZJQ.A
2A2V.A
2MQFA
2MXQ.A
2KIR.A
1126.A
1HA9.A
2PTA.A
4Z7PA
1C2U.A

2M50.A
INIY.A
ILMR.A
1ROO.A
5OLL.A
ILZY.A
IDIH.A
2M4Z.A
6AVS.A
5T4R.A
STLR.A
ONIN.A
2E2S.A
2K9E.A
2N60.A
2F91.B
ITSK.A
IRYG.A
IKGM.A
IMT7.A
ONSH.A
2MOL.A
IE4R.A
1C49.A
IRYV.A
IKIO.A
1W09.A
ST3M.A
IC4E.A
IFWO.A
1GLO.I
IWZ5.A
IMB6.A
ONLE.A
IMMO.A
1AZI.A
ONLFA
2RUO.A
1AZK.A
6CKD.A
1AZ6.A
ONLG.A
5X39.A
1351.A
5I2PA
ONLH.A
2LGS5.A
IKOZ.A
2NLP.A
2LG6.A
SWLX.A
ONLQ.A
2WH9.A

2PLZ.A
ONLS.A
6BUC.A
21TA
1E4S.A
ONLB.A
IPMC.A
1HOLI
ONLC.A
2XTT.A
ICBH.A
SIX.A
2NLD.A
2MPQ.A
ONSB.A
6ATL.A
2A9H.E
IKTX.A
JL2R.A
2LZX.A
2KAU.A
IMW7.A
2BMT.A
ILIR.A
4A0Q.D
OMLA.A
2MCR.A
IBKT.A
1E4Q.A
1BIG.A
2MLD.A
6GGZ.1
3$3X.D
IAXH.A
IM2S.A
1BGK.A
IRIEA
1HP2.A
IEAT.A
2K72.A
1PSB.A
IBAH.A
1JUS.A
2LQA.A
4AOR.D
6AUT.A
3TVII
1UT3.A
4DIZH
2CK4.A
IAGT.A
SIBT.Y
4BMFA

1BNB.A
IXSW.A
5XA6.A
2AXK.A
2LR5.A
1SCO.A
1EI0.A
ISXM.A
6ATN.A
2K2Y.A
2K2Z.A
SWOW.A
2MTS.A
6ATM.C
2HLG.A
IMTX.A
1HLY.A
2HIZ.A
1H20.A
6AVC.A
6AY7.A
INAW.A
ONZ3.A
6AYS.A
1ZFU.A
2LG4.A
INY8.X
6K50.A
6DRILA
6QIB.A
6K51.A
2LLD.A
ILMM.A
2M5X.A
1LAV.A
1ICA.A
2LIQ.A
2E3G.A
1HY9.A
2MIK.A
2KNLA
1FD3.A
INY9.X
2N9Z.A
IWQK.A
2LTS.A
2DCV.A
2DCW.A
2IR3.A
IWXN.A
2LMZ.A
3PIS.D
1D6B.A

1BSW.A
1HS0.A
3FP7.J
1BDS.A
2LN4.A
2E3EA
1POA.A
12U.A
2MN3.A
1I2V.A
10ZZ.A
2LXO0.A
ICIX.A
SIYH.A
2KMO.A
1P00.A
1KJ6.A
1G9P.A
2E3E.A
1EDO.A
1ABLA
10RL.A
1IMN.A
3C8P.A
2V9B.A
1CRN.A
1IMP.A
1CCM.A
3UE7.A
IATX.A
1AN1L.I
3UE7.B
2H9X.A
5LCS.A
3NIR.A
ISHLA
1YIB.A
ISHLA
1YIC.A
1CBN.A
SIPO.A
40ZK.A
IAHL.A
1APEA
2CQ7.A
2LWL.A
ON7LA
ITPM.A
1CTO.I
2SGFI
2NUO.I
1CT4.1
2SGPI

2M86.A
1SGYI
1SGPI
1IROR.I
1SGD.I
ONULI
1CSO.I
HIC.A
1CT2.1
2SGQ.I
1HIAL
1SGQ.L
1SGN.I
2MDO.A
1SGE.L
2NU2.I
2GKT.L
3C9A.D
3L33E
11Y5.A
3T62.D
1CA0.D
IKMA.A
2J0T.A
IFAK.I
4WXV.C
2KCN.A
2NBO.A
4U32.X
ISHP.A
3UOU.B
2F3C.I
1CGII
20V0.A
2ERW.A
10VO.A
INC2.A
5NX3.D
1CHO.I
1UUA.A
1UUB.A
IBRC.I
1CGLI
1TGS.I
5NX1.D
IMSB.A
1YKT.B
IDTK.A
3D65.1
1BUS.A
3L3TE
1EOF.I
50QS.A

2M99.A
5M4V.A
1ZJD.B
3BTD.I
ITSN.B
IKNT.A
ITFX.C
1AAPA
IBTLA
3BTQ.I
IFAN.A
1P2J.1
2FTM.B
IBPT.A
1BRB.I
1P2Q.B
2FI3.1
3P92.E
1BOC.A
4TPLI
1G6X.A
7PTLA
1T80.B
1TSM.B
3P95.E
1P2K.I
1LD5.A
1EJM.B
1LD6.A
INAG.A
IT7C.B
1AAL.A
4Y0Z.1
1JVS.A
3BTM.I
1P2LI
1TSL.B
3BYB.A
IDTX.A
2MO1.A
4U30.X



5.2 Relative positional encoding in ColabDesign

For relative positional encoding of DRPs, residue positions pairs linked through a disulfide were
annotated as having a distance of 1. The remainder of the relative positional encoding were filled out
using the Floyd algorithm.

A B AlphaFold prediction
. ~ &l ? Native with relative positional
o2l - encoding for DRPs
mi302 1 o 1 2s 4
<32 1 0 12 4

c w13 4321041 5

O ofiisia s 2 1 01 2SR 5

=~ RS s 2 1 oo a2 SRS 2

Om-554323210-1-2-3-3-2®

2. 5 32@2 512 1 0 125
ol s 32 3z 2 1 o 125
a3 2 3 S 2 1 0 228
g—32@2345433210~1»2
m NG5 2 SEMEENE 3 2 (39802 1 0 1
3—54345432@233210

0123456738 9101121314
position

Supplemental Figure 1: Relative positional encoding of DRPs in ColabDesign. (A) Example
of a relative positional encoding matrix of a DRP with 1-5, 2-4, 3-6 connectivity. Disulfide linked
positions are circled. (B) Comparison of a DRP structure and the output from using the relative
positional encoding for DRPs in the ColabDesign framework. The predicted structure includes many
steric clashes (orange), lacks the disulfide linkages and does not form the known secondary structure
elements.
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