
Uncovering sequence diversity from a known protein
structure

Luca Alessandro Silva1, Barthelemy Meynard-Piganeau1,2,3, Carlo Lucibello1, and Christoph
Feinauer1

1Department of Computing Sciences, Bocconi University, Milan, Italy
2Politecnico di Torino, Milan, Italy

3Sorbonne Université, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative
LCQB, Paris, France

Abstract

We present InvMSAFold, a method for generating a diverse set of protein sequences
folding into a single structure. For a given structure it defines a probability distribu-
tion over the space of sequences. This distribution captures second-order correla-
tions observed in Multiple Sequence Alignments (MSA) of homologous proteins.
Our innovation lies in generating highly diverse protein sequences while preserv-
ing structural and functional integrity. This approach offers exciting prospects,
particularly in directed evolution, by providing diverse starting points for protein
design.

1 Introduction

Inverse folding aims to predict amino acid sequences that fold into a given protein structure and
plays a fundamental role for example in the protein design pipeline of RFDiffusion [1]. Recent deep
learning approaches such as ESM-1F [2] or ProteinMPNN [3] achieve remarkable accuracies in this
task. However, instead of predicting a single ground truth sequence, it is often desirable to have a
model that is able to generate a variety of different sequences, for example starting from a source
sequence [4, 5] and taking different molecular environments into consideration [6]. Such approaches
allow to expand the sequence design space while preserving structural consistency, allowing for a
larger pool of sequence when selecting for additional properties like thermostability, solubility or
toxicity,

In this work, we present a method that is able to generate diverse protein sequences given a structure,
including sequences far away from the natural sequence. Our method is potentially applicable in
various domains. In drug discovery, for example, it would allow for the generation of large amount of
diverse candidates, enabling further selection optimized for properties like bioavailability. Similarly,
in biotechnology and enzyme engineering, it could facilitate the creation of enzymes with tailored
properties, such as improved stability and activity under varying conditions.

Recent architectures for inverse folding are based on encoder-decoder architectures, where a structure
is encoded and a sequence decoded. In our approach, we use the decoder instead for generating
the parameters of a pairwise probability distribution over amino acids in a sequence [7], motivated
by evidence that such pairwise models capture the relevant sequence statistics for generating novel
protein sequences [8] for a given structure. While we use MSAs of families of homologous proteins
when training, during inference we only use the structure of a protein in order to generate such a
pairwise model. The generated pairwise model itself is very light-weight and can be used for rapidly
generate a large diversity of sequences for the input structure.
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Figure 1: Left: Decoder architecture up to the outputting of the low-rank tensor V . Right: how V is
used to produce couplings and fields for the Potts model.

We show that the models we generate are able to create sets of sequences that capture the diversity of
the protein family better than other models and are able to find sequences far away from the natural
sequence that are predicted to still fold into the same structure.

2 Methods

In this Section, we describe the components of our architecture, InvMSAFold, and its training
procedure. InvMSAFold solves the inverse protein folding problem by mapping a structure X , given
as residue positions, into a probability distribution over sequences, pθ(s |X). Briefly, InvMSAFold
is a deep neural network composed of graph convolutions and attention layers that outputs the
couplings Jθ(X) and fields hθ(X) of a Potts model. Sequences are then modeled by the Potts
pairwise distribution in (1), so that pθ(σ |X) = p(σ | Jθ(X), hθ(X)).

The Potts model for proteins. Consider a multiple sequence alignment (MSA) of length L, with
sequences σ = (σ1, . . . , σL) having components σi ∈ {1, . . . , q}, where q = 21 is the size of the
alphabet (number of aminoacid types + blank). the Potts model is a simple model with pairwise
interaction for the statistic of sequences. It can be derived from a maximum entropy principle when
imposing as the only constraints that single-site frequencies and two-site correlations are reproduced.
Despite its simplicity, it has proven to be highly effective in capturing the full statistical structure
of MSA families, thanks to the co-evolutionary principles motivating it. The model is defined by a
vector (called field) of q components for each site, hi(a), and by a symmetric matrix (called coupling)
of q × q elements, Jij(a, b), for each pair of sites (i, j). We will denote with h and J the tensors
of size L× q and L× L× q × q containing all fields and all couplings. The sequence probability
according to the Potts model is then given by

p(σ|J, h) = 1

ZJ,h
e
∑

i<j Jij(σi,σj)+
∑

i hi(σi), (1)

with ZJ,h a normalization factor. Couplings and fields are typically fitted on a protein family using
Boltzmann sampling [9], pseudolikelihood maximization ([10], see later), or mean-field methods. In
this work, instead of fitting a separate model for each different family, we will train a neural network
to produce, conditional on the target structure, coupling, and fields modeling a generic family.

The InvMSAFold architecture. InvMSAFold is a feedforward neural network composed of two
parts, the structure encoder and couplings/fields decoder.

For the encoder, we select the one from the ESM-IF1 model [2] which follows the GVP-GNN
architecture of Ref. [11]. Crucially, the encoder gives a rotationally invariant representation Y of the
input X . Thanks to this invariance, the decoder part of the architecture doesn’t have to worry about
symmetry consistency in producing couplings and fields.

The decoder takes as input batches of encoded structures. Different lengths in the batch are accommo-
dated by zero-padding up to a common length L. The sequence of L tokens of length D-dimensional
(D = 512 in our experiments) is fed to 6 transformed layers with 8-heads self-attention. Finally, we
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apply position-wise a two-layer MLP that we reshape into a K × q matrices, with q the alphabet size
and K the arbitrarily chosen rank of our coupling representations, smaller than the typical length L.

Calling v the L × K × q tensor output of previous operations, we use it to obtain a low-rank
representation of the coupling matrices as follows:

Jij(a, b) =

K∑
k=1

vki (a)v
k
j (b). (2)

Our architecture is therefore able to infer the Potts parameters from a structure of arbitrary length L.
In a standard setting where a Potts model is fitted to a single MSA, low-rank decompositons of J
have been shown to be as effective as the full-rank counterparts [12]. We then have to train our model
by maximizing the log likelihood of the infered Potts model on the complete MSA of sequences
homologous with the native one of the structure.

Pseudolikelihood inference The log-likelihood of (1) is a concave function in the parameters. As
a consequence, the global maximum is attainable by simple optimization methods such as gradient
ascent. Gradient existimation is expensive though and requires Markov Chain Monte Carlo sampling
from the model itself. An alternative objective function is given by the log-pseudolikelihood, which
involves the minimization of

L(J, h) = Eσ∼D
1

L

L∑
i=1

log p(σi |σ\i, J, h). (3)

where D is a training set of sequences. The pseudo-likelihood estimator is a consistent and efficient
estimator [10]: if sequences in the MSA are samples drawn from a Potts distribution, its parameters
are recovered at an optimal rate in the limit of large training set size. In our setting, we train the
network by computing the gradients∇θL, that is backpropagating the gradient through J and h to
the parameters of InvMSAFold. To encourage diversity in the generating sequences, at training time
we augment each example (X,σ) with a set of homologous sequences that we use to compute the
loss (3). To avoid overfitting, we also add an L2 penalty on the couplings and fields in (3).

Alternative Pairwise Modeling: ArDCA. The Potts model, while being effective in reproducing
the statistics of MSAs, requires running MCMC for sampling at inference time. As an alternative
inferred model that allows autoregressive sampling and exact likelihood evaluation, we consider
ArDCA from Ref. [13]. The parameters defining ArDCA, still takes the form of coupling J and field
h, but now used to produce conditional probabilities in the form p(si|s<i, Ji,<i, hi). The couplings in
ArDCA are slightly different than in DCA, and cannot be interpreted as direct couplings. Moreover,
the further away we go in the sequence the more couplings are to be summed with the site fields.
This causes the strength of the coupling to decrease as we increase the position in the sequence. This
scaling property makes the coupling matrix full rank, and therefore hard to approximate with our
model. To counter this effect, in the ArDCA implementation, after generating J according (2), we
rescale it as Jij ← Jij

max(i,j) . The choice of a scaling inversely proportional with the position, comes
from observation ArDCA from [14].

3 Results

3.1 Data Collection and Preprocessing

To train and evaluate models, as common in the Inverse Folding literature, we rely on the curated
CATH [15] 4.2 40% non-redundant data set, in which structures are grouped by their CATH(class,
architecture, topology/fold and homologous superfamily) classification. Such a hierarchical classi-
fication of protein domains based on their folding patterns has proven to be fundamental in many
fields. In particular we leverage it to evaluate the ability of our models to generalize across different
protein folds. We split the CATH dataset into a train dataset and three testing dataset, which we label
respectively sequence, structure and superfamily. 80% of the sequences are divided into train and
sequence testing data set: the latter contains those structures of which we have seen an homologous
during the training. The structure test data set, which contains 10% of sequences, has structures
not seen during training, but of which we have seen a structure belonging to the same superfamily.
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Figure 2: Comparing the correlations between generated and true samples for ArDCA(blue), potts(red)
and ESM-IF1(green). On the left we have the results for the sequence in the superfamily test dataset,
on the right of the structure test dataset. For each dataset, the plot on the left has on the x-axis the
length of the sequence N , while the one on the right has the MSA size M

Finally, in the superfamily test dataset we have sequences of which we have not even seen an element
belonging to the same superfamily during training: these sequences hence have very different folds
from the one seen during training.

Once we have divided the structures of CATH as detailed above, for each structure we generate a
MSA searching for homologous sequences inside the comprehensive Uniprot50 data set. To obtain
the MSAs we leverage the MMseqs2 (Many-against-Many sequence searching) software, which
allows for accurate and fast generation of many MSAs.

3.2 Second Order Reconstruction

We tested the three different models in their ability to reproduce the covariance matrix of the MSA
for input sequences belonging to the structure and super-family test data sets. The experimental
procedure for both datasets is the following: 1) For every sequence whose MSA had at least 2000
samples we obtained the generative model for the three different models. 2) To generate the samples
from Potts we leverage the efficient library bmDCA, for ESM-IF1 we used the built in sampler and
for ArDCA we built our own sampler. Since getting samples from ESM-IF1 was much slower, for
every sequence is ESM-IF1 we get 900 samples, while for the latter two we get as many samples as
sequences in the MSA. We don’t think the result are sensitive to this fact. 3) For ESM-IF1, given
the samples, we re-aligned the samples using the full MSA to get a fair comparison. 4) Given the
samples, we compute the covariance matrices of the generated samples and the one of the true MSA.
We then compute the Pearson correlation between the flattening of the two.

Once we have these correlation values for the two test datasets, we compute the kernel density
estimation of them against the sequence length N and the MSA size M . As we can see from Figure
2, ArDCA and Potts do both significantly better than ESM-IF1. ArDCA seems also to dominate
potts; especially its performance does not seem to deteriorate with the lenght of the input sequence,
while both potts and ESM-IF1 exhibit this feature. Both ArDCA and potts do better as the original
MSA size is larger, while ESM-IF1(as expected) is not influenced.

3.3 Iso-Structure Exploration

In our pursuit of understanding the relationship between protein sequence variations and structural
deformations, we designed a controlled experiment that systematically explores the tolerance of a
protein structure to increasing sequence dissimilarity. This experiment provides a unique perspective
on protein structural robustness and represents a novel application of state-of-the-art computational
tools.

For a given protein structure of interest, we initiated the experiment by generating a spectrum of
sequence variants. We systematically increased the hamming distance of these variants from the
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Figure 3: comparison of the quality of the generated sequence under the constraint of increasing
hamming distance (normalized by protein length) from the native sequence. We started aggregated
the score of 9 pdbs from the superfamily set, and sampled from ESM-IF1 and our methods. We then
refold the sequence with alphafold and compare the refolded structure with the original one using the
RMSD. We observe the ESM-IF1 is not able to generate good sequence far away fro the native one.

original native sequence. This divergence was achieved by progressively altering amino acids, thereby
introducing increasing levels of sequence dissimilarity while preserving the protein’s overall fold.

To assess the impact of these sequence variations on the protein structure, we employed a temperature-
based exploration approach. Starting from sequences with minimal dissimilarity from the native
sequence, we gradually elevated the temperature. This step allowed us to reach sequences that were
further and further removed from the native sequence, effectively increasing the structural diversity
under consideration.

Following the generation of these sequence variants, we utilized the AlphaFold protein folding model
[16, 17] to refold the sequences. AlphaFold has demonstrated exceptional capabilities in predicting
protein structures accurately. We leveraged its predictive power to refold the diverse set of sequences
generated at different levels of sequence divergence.

To evaluate the structural fidelity of the refolded sequences, we conducted a comparative analysis
with the ESM-IF1 model, a prominent computational tool in structural bioinformatics. Specifically,
we measured the structural similarity between the refolded sequences and the native structure using
the RMSD 3. Alphafold was used with no templates, and mmseq2 was used for the msa.

4 Discussion

Our findings reveal that our approach consistently outperforms the ESM-IF1 model in preserving the
native structure of the protein for sequences that are far removed from the original native sequence.
The RMSD score and pLDDT metrics consistently demonstrate a higher level of structural fidelity in
the refolded sequences generated using our approach.

This experimental setup and comparative analysis underscore the effectiveness of our methodology in
exploring the structural consequences of sequence diversity, emphasizing its potential in applications
ranging from protein engineering to understanding the adaptation of proteins in diverse environments.

Our study marks a significant shift in the domain of inverse folding, where the conventional focus
was on decoding the original sequence from a known structure. In contrast, our research addresses
a more realistic scenario where we possess the native sequence but seek to generate alternative
sequences. This novel approach, aimed at expanding sequence diversity while preserving the fold,
carries profound implications for a range of applications. By systematically generating alternative
sequences for a given protein structure, we open new avenues for filtering and selecting sequences
based on desired properties, such as improved thermostability, altered substrate specificity, or reduced
toxicity.
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