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Abstract

Accurate blind docking has the potential to lead to new biological breakthroughs,
but for this promise to be realized, it is critical that docking methods generalize
well across the proteome. However, existing benchmarks fail to rigorously assess
generalizability. Therefore, we develop DOCKGEN, a new benchmark based on
the ligand-binding domains of proteins, and we show that machine learning-based
docking models have very weak generalization abilities even when combined
with various data augmentation strategies. Instead, we propose CONFIDENCE
BOOTSTRAPPING, a new training paradigm that solely relies on the interaction
between a diffusion and a confidence model. Unlike previous self-training methods
from other domains, we directly exploit the multi-resolution generation process of
diffusion models using rollouts and confidence scores to reduce the generalization
gap. We demonstrate that CONFIDENCE BOOTSTRAPPING significantly improves
the ability of ML-based docking methods to dock to unseen protein classes.

1 Introduction

Understanding how small molecules and proteins interact, a task known as molecular docking, is at the
heart of drug discovery. The conventional use of docking in the industry has led the field to focus on
finding binding conformations when restricting the search to predefined pockets and evaluating these
on a relatively limited set of protein families of commercial interest. However, solving the general
blind docking task (i.e. without pocket knowledge) would have profound biological implications.
For example, it would help us understand the mechanism of action of new drugs to accelerate their
development [31], predict adverse side-effects of drugs before clinical trials [24], and discover the
function of the vast number of enzymes and membrane proteins whose biology we do not yet know
[38]. All these tasks critically require the docking methods to generalize beyond the relatively small
class of well-studied proteins for which we have many available structures.

Existing docking benchmarks are largely built on collections of similar binding modes and fail to
rigorously assess the ability of docking methods to generalize across the proteome. To address this
need, we propose DOCKGEN, a new benchmark that aims to test a method’s ability to generalize
across protein domains. With DOCKGEN, we show that existing machine learning-based docking
methods poorly predict binding poses on unseen binding pockets, and that standard data augmentation
techniques do not help bridge this generalization gap.

To move beyond this challenge, we propose CONFIDENCE BOOTSTRAPPING, a novel self-training
scheme inspired by Monte Carlo tree-search methods, where we train directly on protein-ligand
complexes from unseen domains without access to their structural data. The training is enabled by
the interaction between a diffusion model rolling out the sampling process and a confidence model
assigning confidence scores to the final sampled poses. These confidence scores are then fed back
into the early steps of the generation process (see Figure 1 for a visual representation). This process
is iterated to improve the diffusion model’s performance on unseen targets.

∗Equal contribution.

Machine Learning for Structural Biology Workshop, NeurIPS 2023.



Figure 1: Visual representation of the CONFIDENCE BOOTSTRAPPING training scheme. The dashed
lines represent the reverse diffusion generation rollouts that the model executes. The dotted lines
illustrate the bootstrapping feedback from the confidence model that is used to update the likelihood
of the early diffusion steps by changing the weights of the score model.

Unlike previous self-training methods that were applied to other fields, CONFIDENCE BOOTSTRAP-
PING directly takes advantage of the structure of the sampling process. In particular, we exploit
the multi-resolution structure of diffusion models by identifying that the final confidence model
generalizes significantly better than the diffusion model and using information from the confidence
model to guide early stages of the reverse diffusion process. CONFIDENCE BOOTSTRAPPING, via its
iterative feedback, is able to close the gap between the diffusion model and the confidence model.

We test CONFIDENCE BOOTSTRAPPING on the new DOCKGEN benchmark by fine-tuning the best
version of DIFFDOCK on individual clusters of protein domains. In each of these clusters, within
the first few iterations of bootstrapping, the diffusion model is pushed to generate docked poses
with increasingly high confidence. This increased confidence also translates into significantly higher
accuracy with the fine-tuned models improving from 9.8% to 25.6% success rate overall, and above
40% in half of the protein domains. Remarkably, it doubles the performance of search-based docking
methods, which have been shown to generalize significantly better than ML methods.

2 The DockGen Benchmark

We argue that the existing approaches used to evaluate the ML docking methods fall short in
analyzing their generalization capacity to different parts of the proteome. Binding pockets, due to
their importance to many biological mechanisms, are often among the most well-conserved regions
in proteins. Therefore, just looking at the UniProt-ID of a protein or its global sequence similarity
often leads to proteins in the training and testing sets that have the same underlying pocket. Figure
3-A shows an example of such failures, where two proteins even with only 16% sequence similarity
(30% is often used as cutoff) share very similar binding pockets.

To better detect these cases we delve one level deeper into the organization of proteins and look at
protein domains. Protein domains are the structural and functional units that compose proteins. Very
similar domains can appear in different sequences but have similar local structural characteristics.
Therefore, by looking at the protein domains where ligands bind, we can form a more granular
classification of the protein-ligand interactions. In practice, we achieve this by using the ECOD [4]
domain classification and select complexes from the Binding MOAD dataset [14]. More details on
the dataset generation strategy and its advantages can be found in Appendix B.

We then run a number of baselines considered to be the state-of-the-art open-source or open-access
models: for search-based methods SMINA [19] and GNINA [27], while for ML methods EQUIBIND
[33], TANKBIND [23] and DIFFDOCK [7]. As reported in Table 1 in the appendix, ML methods
significantly underperform in this new benchmark and their performances are only a fraction of
those that they have in the time-split complexes from the PDBBind test set, with regression methods
having nearly no success. In Appendix D.1, we will further show that even increasing the training
data or performing a range of data augmentation strategies is not able to considerably close this
generalization gap, motivating the exploration of different training strategies.
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3 Confidence Bootstrapping

Motivation For many decades, docking, along with other structural biology problems like protein
folding, was studied and treated as an NP-hard combinatorial optimization problem [34, 29]. This
NP perspective suggests a useful insight to the problem: it is easier to check that a pose is good than
to generate a good pose. Combined with the necessity of alternative training methods to bridge the
generalization gap, this insight points towards the exploration of new self-training-based strategies.

Existing self-training methods do not, however, directly exploit the structure of the generative process
they optimize. Moreover, they often fail if the initial generator is not good enough because of the
low signal-to-noise ratio causing an amplification of the errors of the original model [26]. We argue
that diffusion models, because of their multi-resolution structure, offer a unique opportunity to more
precisely target the effect of self-training and avoid error amplification.

Overview We introduce CONFIDENCE BOOTSTRAPPING, a training mechanism that refines a
diffusion generator based on feedback from a confidence model. The diffusion model is used to
“roll out” the reverse diffusion process, generating poses that are then scored with the confidence
model. Taking advantage of the multi-resolution nature of diffusion models, these scores are used to
inform how to update the parameters of the early steps of the diffusion process so that the model will
generate more poses close to those with high confidence (see a graphical representation in Figure 1).
This process is then repeated for several steps.

CONFIDENCE BOOTSTRAPPING is particularly well suited for the molecular docking task. First, the
limited amount of training data and its lack of diversity make alternative training methods critical.
Furthermore, CONFIDENCE BOOTSTRAPPING can leverage information from affinity datasets such as
BindingDB [21], which are orders of magnitude larger than the number of known structures. Finally,
docking screens are usually run on a very large number of complexes all on a restricted set of proteins.
Therefore, any time spent fine-tuning the docking algorithm for the restricted set is largely amortized.

Formalization We now formalize the CONFIDENCE BOOTSTRAPPING training routine. Let
pθ(x; d) be the probability distribution of poses learned by the diffusion model with score sθ(x(t), t; d)
where d is the known information about the complex (e.g protein and molecule identity). Let cϕ(x, d)
be the output of the confidence model, and let D = {d1, d2, ...} be a set of known binders (e.g. from
BindingDB) for the target distribution of interest.

CONFIDENCE BOOTSTRAPPING consists of K iterations where at each iteration i the score model
weights θ are updated based as following optimization:

θi+1 =θ

[
Et∼U [0,T ]{λ(t)Ex(0),d∼ptrain

Ex(t)|x(0)[∥sθ(x(t), t; d)−∇x(t) log p0t(x(t)|x(0)∥22]}

+ Et∼U [tmin,T ]{λ(t)Ex(0),d∼pθi,ϕ
Ex(t)|x(0)[∥sθ(x(t), t; d)−∇x(t) log p0t(x(t)|x(0)∥22]}

]
where θ0 are the weights of the pretrained diffusion model (if not trained from scratch), tmin ∈ [0, T )
and pθ,ϕ(x, d) ∝ pθ(x; d) exp[cϕ(x, d)]. tmin > 0 ensures that the bootstrapping feedback is only
used to update the initial steps of the reverse diffusion. This is used because the samples taken from
the combination of diffusion and confidence models are likely to be too noisy to provide fine-grained
guidance for small t.

Each of these iterations i ∈ [0,K) is achieved by performing a rollout stage, followed by an update
stage. During the rollout stage, we first sample d from D, then sample points from pθi(·, d), forming
a buffer B = [(x1, d1), ...]. Then during the update stage, a fixed number of stochastic gradient
descent steps are performed where half of the batch elements are taken from the training dataset (first
half of optimization objective) and half are taken from B (second half). In particular to approximate
samples from pθi,ϕ(x, d), the elements (x, d) of B are sampled with probabilities proportional to
exp[cϕ(x, d)]. Further details on the implementation and optimization of this routine can be found in
Appendix F.

Model Architecture We test the effectiveness of CONFIDENCE BOOTSTRAPPING in improving
molecular docking generalization by fine-tuning DIFFDOCK on individual classes of protein domains.
However, to enable an efficient execution of this iterative training routine, we make a number of
changes to the architecture of DIFFDOCK’s score and confidence models that make them significantly
faster and better suited for bootstrapping. We details these architecture improvements in Appendix E.
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Figure 2: Empirical performance of CONFIDENCE BOOTSTRAPPING across the 8 protein domain
clusters within DOCKGEN-cluster. Left: performance for each cluster before the fine-tuning and
after the K=60 steps of CONFIDENCE BOOTSTRAPPING. Right: aggregated performance along the
fine-tuning for all the clusters weighted by their count with, as references, the performance of some
of the baselines on the same set.

4 Experiments

We test CONFIDENCE BOOTSTRAPPING on the new DOCKGEN benchmark, where we fine-tune
a model on each protein domain cluster2. We use clusters with at least 6 complexes and restrict
the test set to 8 separate clusters (5 for validation) for a total of 85 complexes, which compose the
DOCKGEN-clusters subset (see Table 1 for the performance of baselines in this subset).

In Figure 2-right, we plot the average performance across all clusters in comparison to that of
the baselines. From this, we see that, in DOCKGEN-clusters, CONFIDENCE BOOTSTRAPPING
considerably raises the baseline DIFFDOCK’s performance going from 9.8% to 25.6% and doubles
that of the traditional search-based methods even when run with high exhaustiveness.

The analysis becomes even more interesting when looking into the evolution of the performance in
the individual clusters (Figure 2-left). In half of the clusters, the model is able to reach top-1 RMSD
< 2Å performance above 40%. These clusters mostly constitute those in which the original model
has non-zero accuracy with an initial performance varying from around 5% to 25%. Then we have
two clusters where the accuracy is improved to only 5-10% and two clusters where the model never
selects good poses neither before nor after the bootstrapping.

5 Conclusion

Given the potential of blind docking in biology and drug discovery, it is important to track the
progress of ML-based methods to generalize to to unseen pockets. To this end, we have proposed
DOCKGEN, a new benchmark for blind docking generalization based on the classification of binding
protein domains. The performance analysis on DOCKGEN highlights that none of the existing ML
methods approach a satisfactory generalization performance, and data augmentation techniques
cannot meaningfully reduce the generalization gap.

To tackle this, we proposed CONFIDENCE BOOTSTRAPPING, a self-training method that only relies
on the interaction between a diffusion and a confidence model and exploits the multi-resolution
structure of the sampling process. This allows the direct training of the docking model on classes of
proteins where binding structural data is not available. Empirically, the method shows significant
improvements on the DOCKGEN benchmark, going from 10% to 25% success rate and surpassing
that of search-based methods. Finally, we believe this opens up the possibility of training large-scale
docking models that have so far been obstructed by the size and diversity of the available data,
bringing us one step closer to a generalizable solution to the docking challenge.

2Code and data for the experiments can be found at this URL: https://anonymous.4open.science/r/confiboot-
3118
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A Related work

Search-based docking Due to its importance in biological research and drug discovery, molecular
docking has for decades been a central challenge for the computational science community [12, 15,
35]. Originally, most techniques followed the search-based paradigm, which is still prevalent today.
These methods consist of a scoring function and an optimization algorithm. The latter searches
over thousands or millions of different conformations, which are passed to the scoring function
that determines their likelihood/goodness. While these methods tend to show relatively robust
generalization across protein classes, they are significantly affected by the size of the search space,
which grows exponentially as the ligand gets larger or as assumptions are removed (e.g. receptor
rigidity).

ML-based docking Researchers have recently tried to move beyond the search-based paradigm
and directly generate poses with deep learning models. The first attempts [33, 23] framed the docking
task as a regression problem; this showed significant improvements in runtime but did not reach the
accuracy of search-based methods. Corso et al. [7] proposed DIFFDOCK, a generative model based
on the diffusion modeling framework that is trained to sample docked ligand poses. In particular,
DIFFDOCK uses a diffusion model to sample a small number of possible poses which are then passed
to a confidence model that ranks and assigns a confidence score to each.

Blind docking benchmarks The majority of previous ML-based methods used the PDBBind
dataset [22], a curated set of protein-ligand crystallographic structures from PDB [3], to train and
test models. In particular, they adopted a time-based split of the dataset where structures that were
resolved before 2019 went into training and validation, and those from 2019 formed the test set.
Stark et al. [33] and others also evaluate the performance on a reduced set of proteins with different
UniProt-ID [5] compared to those in the training set. Here, while ML methods show a drop in
performance, they remain in line with search-based techniques [7]. In terms of evaluation metric,
most docking works measure the proportion of approximately correct poses, which are commonly
considered to be those with a ligand RMSD under 2Å [1, 7].

Diffusion models Let p(x) be some data distribution of interest. Score-based diffusion generative
models [32] are trained to sample from p by defining a continuous diffusion process dx = f(x, t)dt+
g(t)dw, where w represents the Wiener process, that transforms the data distribution in a simple
prior and learning to reverse such process. This is enabled by the existence of a corresponding reverse
diffusion process which can be expressed by the SDE dx = [f(x, t)−g(t)2 ∇x log pt(x)]dt+g(t)dw
where pt(x) is the likelihood of the evolving data distribution. To run this reverse diffusion equation,
we need to learn to approximate the score of the evolving data distribution sθ(x, t) ≈ ∇x log pt(x),
this is achieved by optimizing the parameters θ via the denoising score matching loss:

θ∗ =θ

[
Et∼U [0,T ]{λ(t)Ex(0)∼ptrain

Ex(t)|x(0)[∥sθ(x(t), t)−∇x(t) log p0t(x(t)|x(0)∥22]}
]

where λ(t) is a positive weighting function. Diffusion models were then generalized to compact Rie-
mannian manifolds [9], a formulation that is particularly well suited for scientific applications where
the main degrees of freedom can be well represented by actions on a low-dimensional Riemannian
manifold [6]. This idea underlies DIFFDOCK and other recent advances in computational sciences
[17, 36].

Self-training methods Self-training refers to a range of techniques that have been employed in
several different ML application domains where labels predicted by some model on unlabelled
data are used for training. For example, in the setting of image classification, Xie et al. [37] used
unlabelled images to improve a classifier by first generating labels from the clean image with the
current classifier version, and then training the classifier to make the same prediction on noisy versions
of the same image. This method was taken as inspiration for the self-distillation technique used by
AlphaFold2 [18], where after a first training iteration, predicted structures satisfying a certain residue
pairwise distance distribution were used for a second iteration of model training.

In the realm of generative models, McClosky et al. [26] used the labels predicted by a discriminative
reranker to select the best parses generated by a generative parser and add them to the training set.
Jin et al. [16] took a similar approach for antibody optimization via the feedback of a neutralization
predictor. Finally, Generative Adversarial Networks (GANs) [11] also use the feedback from a
discriminator to train a generative model. However, in GANs one relies on having in-distribution
data to jointly train the discriminator.
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B DockGen Benchmark Details

B.1 Overview

To classify each domain, we used the ECOD [4] classification. This clustering divides the 17k
complexes from PDBBind before 2019, which have been used for training and validation of previous
ML models, into 487 clusters. The remaining data from 2019, from which the test set was generated,
presents only 8 additional clusters composed of a total of 15 complexes. This clustering approach is
very different from that taken by other methods based on global sequence similarity. In fact, in Figure
3-B we present the histogram of the sequence similarity between proteins within ECOD clusters of
PDBBind where the median similarity is only 23.5%.

To obtain a more sizable test set without retraining the models on a reduced set, we turn to the Binding
MOAD dataset [14]. Similar to PDBBind, Binding MOAD is a curated collection of protein-ligand
complexes from the PDB. However, due to its different filtering and requirements (e.g. no requirement
for known affinity), it contains a set of 41k complexes partially disjoint from PDBBind. These come
from 525 ECOD clusters, 346 of which are in common with PDBBind, and 179 of which are not
present in PDBBind.

A. C.B.

Figure 3: A. An example of two proteins in PDBBind, 1QXZ in pink and 5M4Q in cyan, that
share a very similar binding pocket structure (the ligand is in red), but have only 16% sequence
similarity (maximum of 20% on individual chains). While sequence similarity splits would classify
them in separate clusters, our approach correctly identifies that the binding domain of these two
proteins is the same (“Creatinase/aminopeptidase” sometimes referred to as “pita-bread” fold [2]).
B. Histogram of the global pairwise sequence similarity between pairs of proteins within an ECOD
cluster in PDBBind. This highlights how common global sequence similarity splits (that often use
30% similarity cutoff) are inadequate in this setting. C. Visualization of the van der Mer-inspired
synthetically generated docked poses. In this case, a tyrosine (in red) is taken to be the ligand, and
the amino acids that are nearby in the primary sequence are removed from the protein structure of
1QXZ (the created chain breaks are highlighted in orange).

B.2 Construction details

In this section, we specify the details of how the Binding MOAD dataset was parsed and filtered to
obtain the DOCKGEN benchmark validation and test sets. The benchmark was created following
these steps:

1. We perform the ECOD-based clustering. Each ligand in a protein is classified by the ECOD
domain (t group) of the chain that is making the most contacts with the ligand. The t
group of the ligand is assigned using the consensus of per-residue t-group assignments of
each contacting amino acid (5Å heavy atom distance) in the dominant chain. We use this
approach to classify both the complexes in PDBBind and MOAD. There are 179 clusters
in MOAD that do not appear in PDBBind. These 179 are randomly and equally divided
between validation and test datasets.

2. Within these clusters, since most docking tools do not support the simultaneous docking of
multiple ligands, we discard ligands that are within 4.8Å from the heavy atoms of another
ligand.

3. We discard the ligands labeled by MOAD as "part of proteins" as these are constituted
mostly by metals and covalent binders.
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4. We discard very large ligands formed by more than 60 heavy atoms.

5. Ligands with equal chemical composition that are bound to the same protein are also
clustered together forming a single ligand with multiple correct poses.

6. To ensure diversity in the benchmark, if the same ligand appears bound to different biological
assemblies of the same PDB entry we only select one of these at random.

7. To avoid overrepresentation of certain ligand classes, we limit the maximum number of
ligands to 5 of the same molecule separately in the validation and test sets. This avoids,
for example, the presence of a large number of NAD ligands when considering the "NAD-
binding domain" cluster.

8. To follow the convention that has been used to train previous ML-based blind docking
algorithms, we select only the protein chains that have a C-alpha atom within 10Å of a
ligand heavy atom. In the cases of multiple equal ligands bound to the same complex, one
was selected as reference for the filtering.

After these steps we are left with a validation set composed by 141 unique complexes from 70
different clusters and a test set formed by 189 complexes from 63 clusters.

C Data Augmentation Strategies Details

C.1 Increasing the training data

To increase the training data using the clusters of Binding MOAD that did not go into the validation
or test set, we first take the clusters that remained after applying step 1 above. We also remove all
complexes resolved in 2019 or later to maintain the validity of the PDBBind test set. Then, we again
discard all ligands that are close to other ligands and those with a single heavy atom.

We take the remaining complexes, forming a dataset with 20,012 ligand poses bound to 14,214
different biological units, and use them for training. For ligands that are bound to the same biological
unit, at every epoch we select a single ligand at random for training. At training time, we simply
concatenate this dataset to PDBBind’s training set. One should note that the two datasets are not
disjoint and many complexes will appear in both. We avoid removing the redundancy to give more
weight to complexes that passed both filtering processes of MOAD and PDBBind and are therefore
more likely to be of higher quality.

C.2 van der Mer-inspired training

To extract van der Mer-like amino-acid ligands, we start from a large collection of protein structures
that comprise the ProteinMPNN [8] training set. At preprocessing time, for every sidechain s in the
protein, we compute ns the number of other amino acids that have heavy atoms within 5Å and are
not local in primary sequence (within 10 residues). This determines the extent to which the remaining
part of the protein forms a pocket around the selected sidechain, once the adjacent sequence on each
side is removed.

At training time, we iterate over the clusters of proteins in the dataset. We use the same clusters
adopted by ProteinMPNN that were generated with a sequence similarity cutoff of 30%. For each
cluster, we take one protein at random, and within this, we select a sidechain s at random with
probability proportional to max(0, ns − 5). Effectively, sampling buried residues with a higher
likelihood. If no sidechain has more than 5 contacts then the protein is skipped.

Once a sidechain is selected, the sequence-local segment of the protein chain, consisting of 21
residues centered at the selected sidechain (i.e. 10 residues on either side), is removed from the
protein structure. The sidechain and its backbone atoms are then used as the ligand that the model is
trained to dock.

Note that for computational efficiency, instead of re-computing the embedding each time we truncate
a protein structure, we compute the ESM embeddings [20] used by DiffDock only once with the
full sequence and then simply crop the removed sequence out (even though the embedding of the
remaining residues might be affected by the residues that were removed).
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D Performances on DockGen Benchmark

D.1 Data augmentation strategies

Before looking at the empirical performance of CONFIDENCE BOOTSTRAPPING, we explore whether
data augmentation strategies are sufficient to improve the generalization capacity of an ML docking
model like DIFFDOCK.

Increasing the training data First we investigate how much the addition of more data, within
the protein domains that the model already sees, can help with generalization. This is an important
question because in recent years there has been a call from the research community for pharmaceutical
companies to release the large number of crystallography structures they possess. We test this question
by including in the training data all MOAD complexes from the same binding protein domains as
those seen in PDBBind training and validation sets and released before 2019 (to maintain the validity
of the PDBBind test set). After filtering out duplicates and non-conformant ligands, this increases the
number of training data points by approximately 50%.

Van der Mer-inspired docking A problem with increasing the amount of training data, as discussed
above, is the fact that it is limited to the same pocket diversity as the extra data points lie within the
same protein domain clusters. To try to move beyond this, we design a novel auxiliary training task
based on the generation of synthetic docked poses using protein sidechains as surrogate ligands. We
take inspiration from the concept of a van der Mer, which has been used successfully in the design
of proteins that bind target ligands [30]. A van der Mer is an amino acid that interacts with another
amino acid that is distant in the 1D protein sequence, which can closely approximate a noncovalent
protein-ligand interaction. In a given protein crystal structure, we identify a sidechain with a large
number of protein contacts distant in sequence. The interacting amino acids are assigned as the
“binding pocket" for the chosen sidechain (see Figure 3-C). We remove the coordinates of the “ligand"
residue and its sequence-local neighbors from the protein to generate the new target protein (more
details on how exactly these are chosen can be found in Appendix C.2).

The advantage of these synthetic data points is that they are myriad and easy to compute, since any
(even unliganded) protein structure can be used to generate such examples. Thus, we can potentially
dramatically increase the structural and chemical diversity of binding domains and pockets. This
diversity could help the model understand the chemical and geometrical environments of different
pockets. The drawbacks are that these synthetic complexes are of unknown affinity (many could be
weak binders), and the chemical diversity of ligands is limited to the 20 amino acids.

D.2 Experimental results

The results of these additions, reported at the bottom of Table 1 show that, on one hand, increasing
the training data improved the generalization of DIFFDOCK. On the other, the van der Mer-inspired
sidechain-docking strategy exhibits some improvements on the validation set, but does not make
significant accuracy improvements on the held-out test set. Still, ML-based docking models are
far from the accuracy of search-based methods and even further from a performance that would
be satisfactory to fulfill the promise of blind docking. Therefore, we hypothesize that, due to the
plateauing of the increase in available crystallographic structures, ML-based docking methods must
utilize training techniques that go beyond the data augmentation strategies to achieve a combination
of high expressivity and strong generalizability.

E Improvements on Model Architecture

Score model We speed up the architecture and execution of DIFFDOCK’s score model in a number
of ways. First, we add a number of embedding message-passing layers which, unlike the cross-
attentional interaction layers of DIFFDOCK, independently process the protein and ligand structures.
This allows us to increase the depth of the architecture with very little added runtime. In fact, due
to the significantly higher number of nodes, the main complexity of the embedding layer lies in the
protein component. However, under the rigid protein assumption, the structure is the same across all
the different samples and diffusion steps. Therefore, the protein embedding can be computed only
once resulting in minor computational overhead.
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Table 1: Performance of different methods on the PDBBind and DOCKGEN benchmarks. Baseline
performances on PDBBind are taken from Stark et al. [33] and Corso et al. [7]. DIFFDOCK† indicated
the series of changes made to DIFFDOCK score and confidence model to make it more efficient
reported in Appendix E. Runtimes were computed as averages over the PDBBind test set. * indicates
that the method was only run on CPU as the code did not support GPU acceleration.

PDBBind DOCKGEN-full DOCKGEN-clusters Average
Method %<2Å %<5Å %<2Å %<5Å %<2Å %<5Å Runtime (s)

SMINA 18.7 38.0 7.9 22.8 2.4 15.3 126*
SMINA (EX. 64) 25.4 47.8 10.6 22.2 4.7 14.1 347*
P2RANK+SMINA 20.4 43.0 7.9 22.7 1.2 14.1 126*
GNINA 22.9 40.8 14.3 28.0 9.4 28.2 127
GNINA (EX. 64) 32.1 53.6 17.5 39.2 11.8 43.5 348
P2RANK+GNINA 28.8 47.8 13.8 27.0 4.7 22.4 127

EQUIBIND 5.5 39.1 0.0 4.8 0.0 7.1 0.04
TANKBIND 20.4 59.0 0.5 16.9 0.0 15.9 0.7
DIFFDOCK (10) 35.0 61.7 7.1 33.7 6.1 40.2 10
DIFFDOCK (40) 38.2 63.2 6.0 32.1 3.7 35.4 40

DIFFDOCK† (10)
+ increased training data 29.8 61.0 7.6 39.1 9.8 47.6 2.8
+ van der Mers training 33.0 66.0 7.1 40.8 8.5 59.8 2.8

Second, we limit the order of the spherical harmonics used to represent the edges to one (rather
than two). This reduces the tensor product convolution used by DIFFDOCK’s score and confidence
models to a set of scalar, dot, and vector products, for which we can explicitly write a more efficient
kernel instead of relying on expensive e3nn convolutions [10]. Finally, we batch and move the whole
reverse diffusion process to GPU to improve parallelization and memory transfers. As shown in Table
1, this set of techniques provides us with a significantly faster sampling method.

Confidence model We also change a number of design choices in the confidence model to make it
more efficient and better suited for CONFIDENCE BOOTSTRAPPING. The first choice is to force the
model to reason about local interactions, as the affinity of a ligand to a particular pose is largely a
local property. We achieve this by simply feeding to the model the receptor structures of only the
amino acids whose C-alpha is within 20Å of any of the predicted ligand atoms’ positions.

Further, during the binary classification training of the confidence model, we try to remove the bias
of the model against hard targets by balancing the proportion of positive and negative examples
the model is trained over. When not possible with sampled poses (because the model only samples
negatives), we use the so-called conformer-matched ligand poses [17] as positive examples. Moreover,
to make the transition smoother and reduce the perceived variance in the labels, we separate the
positive (poses with RMSD<2Å) and negative classes (>4Å)3. Finally, we supervise the model not
only to predict the label of the whole ligand but also that of each individual atom (supervised on their
individual distance to the ground truth pose).

F Confidence Bootstrapping Details

In this section, we discuss the CONFIDENCE BOOTSTRAPPING procedure and our experimental setup.
We demonstrate that CONFIDENCE BOOTSTRAPPING improves blind docking performance of the
pretrained score model on a previously unseen cluster without knowing the ground-truth poses of that
cluster. This is achieved by iteratively sampling from the score model (the rollout process), evaluating
these samples with the confidence model, and updating the score model treating high-quality samples
as ground-truth poses. Our procedure assumes a DIFFDOCK score model and a confidence model
both pretrained. We use the procedure outlined in Corso et al. [7] to train and sample from the score
model.

3We note that contemporary work Masters et al. [25] also applies this strategy.
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F.1 Training Procedure

The training procedure takes as input ligand/receptor pairs D = {d1, d2, ...} from a cluster of interest,
a pretrained diffusion model parametrized by θ with learned distribution over poses pθ(x; d) and score
sθ(x

(t), t; d), and a pretrained confidence model cϕ(x, d). At each step, we sample complexes from
the score model through the reverse diffusion process, score these complexes with the confidence
model, and use high-confidence samples to update the score model. More specifically, we start with
the buffer B that is initially empty; at step i, we sample q candidate poses (xj , di) for j ∈ {1, · · · , q}
for each di ∈ D from pθi

ema
(x; d) and evalute these candidate poses with cϕ. We use the exponential

moving averaged version of model weights θiema as in Corso et al. [7] to stabilize the inference over
different training epochs. We add the sampled poses with a confidence score cϕ(x, d) > k, where k
is the confidence cutoff, to the buffer: B = B ∪ {(xj , di) | cϕ(xj , di) > k}. Then, we update the
score model θi by treating complexes in B as ground truth poses and performing a fixed number of
SGD update steps on the diffusion objective to obtain θi+1.

There are a few nuances to building and using the buffer B. First, we resample a constant m complexes
from B to train the score model at every step. Motivated by the intuition that higher-score poses should
be sampled more frequently, the poses are sampled from the distribution p(x, d) ∼ 1

Z exp[cϕ(x, d)]
where Z is a normalization constant. Additionally, we enforce an upperbound on the number of
samples per complex to encourage diversity across complexes in B by only keeping the n highest
scoring poses per protein/ligand pair. Moreover, updating the score model with samples from the
buffer may cause it to lose information about how to perform steps with t < tmin and/or learn to
sample from pathological spaces of the confidence model, where the confidence model assigns high
scores to poses distant from the ground truth. Therefore, at each training step, we also include p
randomly sampled complexes from PDBBind in addition to complexes sampled from B. In our
scheme, k, p, q, m, and n are hyperparameters selected through testing the method on the validation
dataset.

F.2 Experimental Details

Setup. We tested CONFIDENCE BOOTSTRAPPING on DOCKGEN-clusters, a subset of DOCKGEN
containing 8 clusters with at least 6 complexes each. For every cluster in DOCKGEN-clusters,
we started with the same pretrained diffusion and confidence models, and ran 60 iterations of
CONFIDENCE BOOTSTRAPPING, where each iteration contained a rollout step and an update step
with 200 SGD updates. We did two evaluation runs with the same hyperparameters and reported the
averaged results. To evaluate the generated complexes, we computed the symmetric-corrected RMSD
of sPyRMSD [28] between the predicted and the crystal ligand atoms. We reported the percentage
of top-ranked predictions that have an RMSD less than 2Å, a metric generally considered to be
representative of getting the correct pose [1, 13, 27, 7].

Hyperparameters. In our experiments, we chose confidence cutoff k = −4, number of complexes
sampled from PDBBind p = 100, number of complexes sampled from the buffer m = 100, number
of inference samples q = 32, and maximum samples per protein/ligand pair n = 20. At the rollout
step, we ran 4 inference steps each with 8 samples and compute the RMSD less than 2Å metric with
the top-ranked pose from each inference step to reduce variance in the reported metric. Additionally,
we set number of inference samples to 80 for the first bootstrapping inference step to fill the initially
empty buffer. These parameters were selected by testing the method on the 5 DOCKGEN validation
clusters.

F.3 Oracle Experiments

In a separate experiment, we tested CONFIDENCE BOOTSTRAPPING with “oracle” confidence
predictions. The oracle confidence predictor is a monotonic transformation of the true RMSD
between the ground truth pose and the predicted pose: cϕ(x, d) = −4 tanh

(
2
3RMSD(x,x∗)− 2

)
.

Note that this is not a practical setting as we would not have access to the ground truth poses x∗

in real applications. However, this is an illustrative experiment establishing an upperbound on the
performance gains achievable through CONFIDENCE BOOTSTRAPPING with a “perfect” confidence
model. We used the same set of hyperparameters used on the test datasets and report the results at
Figure C.1.
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Figure C.1: Empirical performance of CONFIDENCE BOOTSTRAPPING with oracle confidence across
the 8 protein domain clusters within DOCKGEN-cluster, the bootstrapping method is run twice for
every cluster and we show the average results of the two runs. All performances are measured based
on the top-1 pose when taking 8 inference samples with the fine-tuned models. A. Median confidences
of sampled points at every iteration for each cluster. B. Proportion of top-1 predictions below 2Å over
the course of the iterations for each cluster. C. Performance for each cluster before the fine-tuning
and after the K=60 steps of CONFIDENCE BOOTSTRAPPING. D. Aggregated performance for all the
clusters weighted by their number of complexes, showing results using the oracle confidence model
and pretrained confidence model.
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