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Abstract

Deep generative models show promise for de novo molecular design, especially
pocket-conditioned conditional generation methods that output small-molecule
ligands in their predicted binding pose with high shape complementarity. However,
recent work demonstrates these models still fail to generate chemically valid and
synthetically accessible ligands. This paper provides further insight into these
methods and their generated molecules through analysis of pharmacophore features
commonly used in structure-based and ligand-based drug discovery. We specifically
assess the generated distribution of hydrogen bond donors, acceptors, and aromatic
rings from deep generative methods on three well-studied protein targets: adenosine
AZ2a receptor, cyclin-dependent kinase 2, and the main protease of SARS-CoV-2.
Our results find autoregressive approaches better recapitulate the expected spatial
distribution of pharmacophore features compared to diffusion-based models. The
analysis presented here highlights current limitations in deep generative models
for 3D design, while suggesting new directions to realistically aid structure-based
design.

1 Introduction

The ability to accurately predict how drug candidates bind to protein targets is critical for success-
ful structure-based drug design. Traditionally, this involves exhaustive conformational sampling
and molecular docking, which is computationally demanding and restricted to existing molecular
libraries [1, 2]. Recently, deep generative models have unlocked exciting possibilities for de novo
molecular design. By learning to produce novel ligands conditioned directly on binding sites, these
models bypass limitations of predefined chemical spaces and separate docking steps. Architectures
utilizing three-dimensional diffusion or autoregressive generation have shown initial promise in pro-
ducing diverse ligands with favorable shape complementarity. Moreover, jointly generating candidate
structures and bound poses is highly appealing to streamline drug discovery [3].

Recent studies have underscored limitations in deep generative models for structure-based drug
design (SBDD) through the introduction of new pose evaluation methodologies [4, 5]. In particular,
generated molecules were found to violate validity and physical constraints and provide lower-quality
poses than traditional docking software [6]. Together, these analyses provide frameworks to pinpoint
deficiencies and drive future enhancements through rigorous pose evaluation. Although recent
benchmarks have evaluated overall ligand quality [7] and physical validity, an unanswered question
is whether deep generative SBDD models are effectively learning meaningful representations of
protein-ligand interactions essential for binding. In contrast to prior approaches that strictly assess
ligands and their interactions, we instead take an abstracted approach by extracting pharmacophore
features, e.g. hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), etc., from generated
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poses. Relaxing the metric through "fuzzy-matching" of pharmacophores provides a useful, but
less-stringent, evaluation of model quality, by using these features to understand spatial patterns. By
evaluating pose pharmacophore fidelity, our work provides an interpretative lens to guide refinements
in deep generative SBDD. We summarize our contributions as follows:

* We qualitatively analyze several state-of-the-art deep generative models, 3DGenSBDD,
Pocket2Mol, and DiffSBDD across multiple protein targets, adenosine A2a receptor, cyclin-
dependent kinase 2, and the main protease of SARS-CoV-2. We demonstrate that the spatial
distributions of key pharmacophore features tend to be better localized with respect to
idealized pharmacophore features in autoregressive approaches compared to diffusion-based
approaches.

* We develop a simple coarse clustering analysis of ligand pharmacophore features to assess
whether models learn to consistently place molecular features, and find greater dispersion
with diffusion models across different protein families.

» Leveraging these insights, we suggest several key directions for further exploration in this
area to improve model training.

2 Background and Related Work

Small Molecule Generative Models. Earlier approaches focused on generating 1D SMILES strings
[8] or 2D molecular graphs. For example, GraphAF [9] leverages normalizing flows on molecular
graph representations. Jin et al. [10] use a junction tree variational autoencoder that operates on
molecular graphs. While powerful, these methods do not model 3D geometry explicitly. More recent
techniques [11] aim to generate molecular structures directly in 3D space . Pocket2Mol [12] uses an
autoregressive model that sequentially adds atoms and bonds based on a 3D protein pocket context.
Li et al. [13] frame the generation problem as a reinforcement learning task and use Monte Carlo
tree search to generate pocket-specific ligands. However, sequential atom-by-atom generation can be
inefficient and may not capture global 3D relationships.

Structure-Based Diffusion Models. Building on above advances, diffusion models have been
adapted for structure-based molecular generation tasks. DiffSBDD [14] employs an SE(3)-equivariant
diffusion model to generate novel ligands conditioned on protein binding pockets. They demonstrate
both context encoding and ligand inpainting strategies. While showing strong promise, current
models still have limitations; they assume static protein structures and cannot model induced fit or
significant flexibility. Exploring conditioning strategies and architectures to address this remains an
open challenge. Our work seeks to evaluate these models and whether they learn realistic binding
features.

Benchmarking 3D Molecular Generative Models Harris et al. [5] presented POSECHECK to
assess binding poses from several state-of-the-art SBDD methods (including LiGAN, 3D-GenSBDD,
Pocket2Mol, TargetDiff [15], and DiffSBDD). Despite leveraging 3D structural information, the
generated molecules frequently violated physical constraints and formed fewer key receptor inter-
actions than expected, calling into question presumed benefits of explicit 3D conditioning. In a
complementary study, Buttenschoen et al. [4] developed PoseBusters, a test suite benchmarking both
deep learning and classical docking approaches. Testing five deep generative models (DeepDock [16],
DiffDock [17], EquiBind [18], TankBind, UniMol) and two traditional docking tools (AutoDock
Vina [19], Gold [20]), they demonstrated key shortcomings in deep learning approaches, which failed
to surpass classical programs in producing chemically valid and favorable binding poses, especially
for novel protein targets.

3 Methods
3.1 Evaluated Models

We evaluated several diverse generative models that condition based on a protein pocket that simulta-
neously generate a ligand and its pose:

3DGenSBDD Luo et al. [21] recently develop a 3D generative model to estimate the probability
density of atom occurrences in a protein’s binding site. The model uses a graph neural network
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Figure 1: Two example molecules from each method assessed.

encoder composed of rotationally invariant message passing layers to represent the 3D context. An
autoregressive approach is used to generate valid and diverse small molecules from the learned
distribution by sequentially sampling atoms based on predictions from a spatial classifier module.

Pocket2Mol Peng et al. [12] introduce an E(3)-equivariant network for molecular sampling con-
ditioned on 3D protein pockets. It employs a graph neural network with vector-based neurons and
geometric vector perceptrons to model the chemical and geometric features of the pockets. Atoms,
types and bonds are efficiently generated by directly predicting relative atom positions from tractable
distributions without relying on MCMC sampling.

DiffSBDD Schneuing et al. [14] disclose an SE(3)-equivariant 3D conditional diffusion model for
structure-based drug design. It leverages equivariant graph neural networks to generate novel ligands
conditioned on protein binding pockets. The model can be trained in a protein-conditional or joint
manner, and applied to downstream tasks like property optimization and scaffold hopping.

3.2 Protein Targets and Sampling

We study these models in the context of three structurally well-studied protein targets: adenosine
A2a receptor 2 (A2a, PDB: SNM4 [22]), cyclin-dependent kinase 2 (CDK2, PDB: 6Q4H [23]),
and SARS-CoV-2 main protease (Mpro, PDB: 5SR82 [24]) were chosen due to a large number of
publicly-deposited structures with bound, non-covalent ligands in a pocket of interest; the highest
resolution structure was chosen for generation. For each method on each target, we generated 10,000
molecules. Each resulting molecule was run through RDK:it to obtain Cartesian coordinates for
hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), aromatic ring centroid (ARO), cationic
(CAT), anionic (ANI), and hydrophobic (HYP) atoms. We also generated coordinates for Van der
Waals (VDW) and ligand centroids (CTR) based on all heavy atoms. Protein pharmacophore features
were extracted and visualized using the Molecular Operating Environment (MOE).

3.3 Clustering Assessment

Clustering assessment was performed using Density-based spatial clustering of applications with
noise (DBSCAN) [25] using the scikit learn package. We looked at the number of clusters, percentage
of noise points where no cluster was assigned, and the Calinski-Harabasz index as a measure of
cluster definition where higher values indicate better-defined clusters. To ensure a consistent number
of samples for DBSCAN-based clustering, we extracted 3,000 coordinates for each pharmacophore
feature group.

4 Results and Discussion

Whereas prior studies assessing generative models [4, 5] focus on ligand quality or assess their
steric clashes, we focus instead on the question of feature localization, i.e. do generative models
tend to place chemical features for a generated ligand that complement the protein pocket? To
address this question, we visualize features from a large pool of generated ligands, assess their radial
placement with respect to key interacting residues, and assess their clustering within the pocket. As
illustrated in Fig. 2 and Table 1, autoregressive vs. diffusion-based approaches generate ligands in
dramatically different ways. The far right panel illustrates the observed PDB reference ligands that
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Figure 2: Overlay of generated ligand pharmacophore features (small dots) with MOE pharmacophore
feature projections (larger spheres) from receptor atoms in A2a pocket. A) ligand HBAs overlaid on
projected HBA coordinates (filled red spheres) based on receptor HBDs (empty blue spheres), B)
ligand HBDs overlaid on projected HBD coordinates (filled blue spheres) based on receptor HBAs
(empty red spheres), C) ligand aromatic ring centroids overlaid on projected pi-normal projections
(filled orange spheres) based on receptor aromatic rings. Each image contains 3k coordinates from
10k generated molecules.

satisfy key hydrogen bonding and aromatic interactions to key residues N358 and F177. We find that
the autoregressive models tested place molecular features more systematically around the pocket,
whereas diffusion-based approaches largely focus on pocket occupancy.

We also reported radial distributions of generated ligand pharmacophore features (Figure 3) from
three receptor atoms critical for PDB ligand interactions: N358 sidechain nitrogen to ligand HBAs,
N358 sidechain carbonyl oxygen to ligand HBDs, and the F177 aromatic centroid to ligand aromatic

Table 1: Clustering results for generated atoms against the A2a receptor.

Feature Metric 3D-GenSBDD Pocket2Mol DiffSBDD

HBA clusters 11 19 4
noise points 234 342 926
sil. coeff. 0.021 -0.112 -0.216
C-H index 497 234 25
HBD clusters 11 20 2
noise points 259 373 754
sil. coeff. -0.014 -0.130 0.056
C-H index 220 212 35
Aromatic clusters 9 2 1
noise points 87 77 305
sil. coeft. 0.286 -0.032 0.330
C-H index 474 15 13




15 15 15
< A = Reference PDB = Reference PDB = Reference PDB
om =1 3DGenSBDD =1 Pocket2Mol =1 DiffSBDD
I 10 10 10

O 1 2 2 2
QL o 3 g g
b 8 8 8
= w0 0.5 05 05
9 0.0 0.0 00
© 0 25 30 35 40 45 50 20 25 30 35 40 45 50 20 25 30 35 40 45 50
15 15 15
< o == Reference PDB == Reference PDB = Reference PDB
o
= Mm =1 3DGenSBDD =1 Pocket2Mol =1 DiffSBDD
=]
o I 10 10 10
c oz z z
= 2 z 2
»n 0 & & &
QO W 0.5 0.5 0.5
'? (a2}
e 0.0 0.0 0.0
o 20 25 30 35 40 45 50 20 25 30 35 40 45 50 20 25 30 35 40 45 50
-
© ®) C == Reference PDB == Reference PDB == Reference PDB
o) x £ 30GenSBDD 1.5{ E=3 Pocket2Mol 1.5 { =1 DiffSBDD
[&]
S <,
12
Q H
n
N~
—

Distance (A)

Figure 3: Histograms of distances between generated atomic coordinates for hydrogen bond acceptors
(HBAs), donors (HBDs), and aromatic rings (ARO) from key pharmacophore residues (N358, N358,
F177) from A2a binding pocket. Generated distances are represented in orange bars. Observed radial
distances for reference PDB ligands are shown in the blue bars. Molecular interactions typically
satisfy narrow ranges, which are not well captured by most models.

centroids. PDB ligands expectedly show tight HBA and HBD distances between 2.7-3.5A and
aromatics between 3.5-4.0A. HBAs somewhat favor this distance for the autoregressive models, but a
more uniform distribution is observed for DiffSBDD. HBDs for 3D-GenSBDD overlay tightly with
the HBD distance of PDB ligands, whereas we don’t observe this same effect for Pocket2Mol and
DiffSBDD. Moreover, these methods do not generate aromatic rings <3.5A, and these each show
peaks near the 3.8A. Furthermore, because ligand binding requires satisfying key protein-ligand
interactions, we further explored the hypothesis that generated ligands points should generate natural
pharmaocphore feature clusters. To test this hypothesis, we performed clustering using DBSCAN
for each method to identify potential clusters, and observed distinct modes for 3D-GenSBDD and
Pocket2Mol, but noted high dispersion for DiffSBDD. Although these analysis focus on more
qualitative insights, we believe they provide direct insight into the extent that models can satisfy
critical physical interactions, rather than simply filling the pocket.

Given these observations, we propose that future development in this active research area leverage
pharmacophore-based evaluations for model assessment and improvement. Satisfying key protein-
ligand interactions remain key in the optimization of small molecules; integrating this domain
knowledge into model design may further improve model performance. In particular, we propose:
1) Incorporate chemical and geometric intuition to guide generation, rather than purely data-driven
approaches. Domain knowledge may help satisfy critical interactions. 2. Develop multi-objective
frameworks that balance competing factors like novelty, diversity, and interaction fidelity during
training and sampling to provide a more holistic approach. 3. Explore constraints and losses to
enforce correct pharmacophore matching and geometry to improve satisfaction of key interactions. We
anticipate that exploration of these approaches, in concert with complementary approaches proposed
by Harris et al. [5] and Buttenschoen et al. [4] will yield significant improvements. All together, we
believe that further research in this area will continue to improve on these early approaches towards
more realistic and useful molecule and pose generation.
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Appendix

A Additional Plots

A2a CDK2 Mpro

e HBA e HBD W Aromatics

I

0 .0 0.0
3D-GenSBDD Pocket2Mol DiffSBDD PDB 3D-GenSBDD Pocket2Mol DiffSBDD PDB 3D-GenSBDD Pocket2Mol DIffSBDD PDB
Method Method Method

35

5

mem HBA  wes HBD mEm Aromatics mmm HBA  Wes HBD W Aromatics

w

°
s
&

5 - 5 @
" ~
o s B

s

5 o 5

Average Feature Count Per Molecule
o o ~
& °

Average Feature Count Per Molecule

Average Feature Count Per Molecule

s o
&

Figure 4: Average composition of pharmacophore features across the three targets tested compared to
known PDB ligands.

In general, each method generates less HBA, HBD and ARO groups on average compared to ligands
deposited in the PDB. As PDB ligands are often highly optimized, this is not surprising; however, it
may emphasize the need for these methods to upweight these groups during generation.
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Figure 5: Distributions of Mpro generated molecule properties compared to PDB reference ligands.
For each generated molecule, we overlaid this onto every PDB ligand without re-optimization
and calculated the shape and color Tanimoto scores using OpenEyeOmega’s FastROCS. The top
represents the maximum Tanimoto similarity for each generated ligand to any PDB reference ligand;
the bottom represents the average Tanimoto similarity for each generated ligand across all PDB
reference ligands. Left is shape-based Tanimoto; right is color-based.



We used the FastROCS analysis to investigate how well generated molecules overlap to PDB ligands,
both sterically (shape) and chemical (color) features. Generated molecules are in the same coordinate
space as PDB ligands, and no optimization was performed.

For the max scores (top), the best overlap for each generated molecule is shown here. In all methods,
the best steric overlap between 0.8-0.9 suggests that these methods successfully fill similar parts of the
pocket to PDB ligands. These max scores drop significantly in the chemical features overlap, where
maximum Tanimoto scores achieve 0.5 on average. Interestingly, there is a bimodal distribution in
DiffSBDD; however, as we have seen that these features uniformly fill the pocket, we would assume
that some of these fall close to PDB ligands. The average Tanimoto scores of each generated molecule
(bottom) show that on average, these molecules do not align closely, either by shape or chemical
features. One specific observation is that no method extended into the solvent-facing regions, a
strategy common among medicinal chemists. It may be advantageous for these methods to recognize
bulk water and build hydrophilic moieties accordingly.
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