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Abstract

Proteins can be represented in various ways, including their sequences, 3D struc-
tures, and surfaces. While recent studies have successfully employed sequence-
or structure-based representations to address multiple tasks in protein science,
there has been significant oversight in incorporating protein surface information, a
critical factor for protein function. In this paper, we present a pre-training strategy
that incorporates information from protein sequences, 3D structures, and surfaces
to improve protein representation learning. Specifically, we utilize Implicit Neural
Representations (INRs) for learning surface characteristics, and name it Protein-
INR. We confirm that ProteinINR successfully reconstructs protein surfaces, and
integrate this surface learning into the existing pre-training strategy of sequences
and structures. Our results demonstrate that our approach can enhance performance
in various downstream tasks, thereby underscoring the importance of including
surface attributes in protein representation learning. These findings underline
the importance of understanding protein surfaces for generating effective protein
representations.

1 Introduction

Proteins are vital components of biological systems, executing a myriad of functions that underpin
an extensive array of cellular processes and biological pathways. These intricate macromolecules
have multi-faceted characteristics that can be represented through different paradigms, including
but not limited to their amino acid sequences, three-dimensional (3D) structures, and the specific
attributes of their surface regions. Recent studies [, |2, 3] have successfully employed machine
learning models pre-trained on sequences and structures, resulting in significant progress in tackling
an array of downstream tasks in the field of protein science.

Despite these strides, there exists a notable oversight in the current landscape of protein representation
learning: the often-underestimated significance of protein surface characteristics. The seminal work
for surface modeling is MaSIF [4, 5], which proposed a novel surface fingerprint method and
proved that the attributes of a protein’s surface are crucial in determining its functional properties,
particularly in the context of molecular interactions like ligand binding, enzymatic catalysis, and
signal transduction between molecules. While existing works for protein representation learning have
focused heavily on encoding amino acid sequences and 3D structural elements, they have largely
neglected the indispensable role that protein surfaces serve, thus leaving an unaddressed gap in the
prevailing research.
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Figure 1: An illustration of our proposed strategy for pre-training sequences, structures, and surfaces
to solve downstream tasks.

In response to this significant gap, our research aims to offer a comprehensive solution. We propose an
all-encompassing pre-training strategy that incorporates information from all three essential aspects
of proteins: sequences, 3D structures, and notably, surfaces. Our approach is pioneering in that it is
the first to specifically target the learning of protein surface attributes, and it employs cutting-edge
Implicit Neural Representations (INRs) [6] to achieve this goal effectively. This inclusive approach
enables our model to enhance performance across various downstream tasks, thereby emphasizing
the importance of incorporating surface information in protein representation learning.

2 Preliminaries

2.1 Protein graph

Proteins are constructed by 20 different amino acids. Their 3D structures are formed through the
chemical bonds and interactions among the atoms of the amino acids and making them naturally
suited for graph representation. Based on the GearNet’s representation [2/], which exhibits high
performance for downstream tasks we aim to solve, a protein P is expressed as a relational graph Gp,
made up of (V,£,R). V is the set of nodes and each node presents a residue in protein and includes
the amino acid residue type and 3D coordinate. £ is the set of edges among nodes with their types R
such as the edges between two residues located within a certain distance on the protein sequence or
3D coordinates.

2.2 INRs

To model the surface of the protein, and we utilize Signed Distance Function (SDF) to represent the
surface. SDF is a well-established strategy for representing 3D shapes as scalar fields. The SDF is a
mathematical expression that assigns a scalar value to a given coordinate x, expressing the distance d
between the spatial point and the closest point on the shape’s surface as follow:

F(z)=s:x € R scR. 6))

We employ the methodology of DeepSDF [[7] and train a model that possess continuous implicit
representations, which describe the F for geometric molecular surfaces. We define the inside surface
as d < 0 and the outside surface as d > 0. Following this definition, the equation F(z) = 0 implies
the molecular surface boundary, specifically defining the molecular surface. In summary, we train a
model that encode a protein molecular surface and produce INR parameters, which imply the F.

3 Method

We aim to pre-train sequences, structures, and surfaces of proteins for better protein representation.
To learn a large volume of structural and sequence data, we employ the “series-fusion” approach



which has demonstrated superior performance in previous work [3]. First, we pre-train the sequences
on sequence encoder and use this encoding as input for the structure encoder. Then, we pre-train the
structure encoder on the surfaces using ProteinINRs and utilize the weights of pre-trained structure
encoder as initial weights for pre-training on the structures. Then, we pre-train the structure encoder
on the structure through multi-view contrastive learning based on the approach [2] to obtain the
final protein representation. Finally, we leverage protein representation from the pre-trained model
on three modalities to solve downstream tasks. Our pre-training strategy can be seen as continual
pre-training [8]]. Figure[I]contains an illustration of our pre-training strategy. Detailed information
about pre-training sequences and structures are described in Appendix[A.2] Also, model architectures
are illustrated in Figure 2]

3.1 Generalizable Implicit Neural Representations for Protein

To effectively pre-train protein surfaces, we employ INRs. In the early stages of INRs, a coordinate-
based multi-layer perceptrons (MLPs) is trained for each individual instance. However, with the
increasing amount of datasets, the computational expense associated with training multiple MLPs for
each individual data point has become too costly. Consequently, various solutions have been proposed
to develop a generalizable INR to accommodate an entire dataset within a single model. One notable
approach, TransINR [6]], entails leveraging Transformer architecture, particularly for INR parameter
calculation based on multiple partial views of 3D objects as conditioning inputs. This technique
has garnered considerable attention in the field. Building upon these advancements, ProteinINR
adopts and first extends these methodologies in the protein field. It represents an expressive and
generalizable INR that can effectively capture the shapes of tens of thousands of protein instances
within a single model.

3.1.1 Encoding protein using point and structure encoder

The ProteinINR framework first encodes a certain protein instance P into a protein set embedding
h. ProteinINR inputs the complex 3D protein asset as a protein point cloud P € RV*3 In this
work, we set N as 16,384. ProteinINR utilizes the Dual-scale Point Cloud Recognition (DSPoint) [9]]
Encoder v to address the complex and irregular nature of protein surfaces, which exhibit intricate
high-frequency features. This encoder effectively captures a given point cloud’s high-frequency and
low-frequency characteristics, demonstrating notable efficacy in the tasks that involve high-frequency
features, such as point cloud segmentation. Following the process of updating point features through
the DSPoint method, we downsample the points into a reduced set of M points P e RMx3 by
utilizing the deformable Kernel Point Convolution (KPConv) networks [[10]. Ultimately, a learnable
linear transformation is implemented on the downsampled points to align the embeddings’ hidden
dimension prior to cross attention.

RGB values are frequently utilized as characteristics for individual points in point cloud modeling.
ProteinINR considers the chemical properties of protein surfaces stemming from their electrical
environment as chemical colors. Although MaSIF utilized a pre-computation technique to determine
the chemical colors, the computational cost associated with this approach is prohibitively expensive.
Fortunately, dMaSIF has shown that it is possible to create a comprehensive representation of chemical
properties by utilizing atom category features and distances inside an end-to-end learning framework.
Building upon these findings, we adopt a similar approach for protein point cloud chemical color
representation. We integrate two essential elements into our approach, namely atom categorical
embeddings and the property of Top K closest distances. Incorporating these characteristics into
the point cloud encoder leads to the formation of embeddings that encompass both the surface’s
geometric structure and chemical attributes. This approach ensures that ProteinINR represents the
protein molecular surface by considering the intricate interplay between the protein’s structural
characteristics and its chemical attributes.

The primary contribution of our study is employing INR training as a pre-training technique to
inject the knowledge of protein surface characteristics into the protein structure encoder. In order
to accomplish this, we represent an input protein as a structure and incorporate a protein structure
encoder into the INR training process, which allows us to encode the protein structure graph Gp and
generate protein structure embeddings g € R*" where R and h are length of residues and length of
hidden dimension, respectively. Finally, the embeddings h can be used for various downstream tasks.
The utilization of this architectural design enables the protein structure encoder to actively participate



in the process of acquiring surface-aware representation learning. As a result, the structure encoder
enhances its ability to comprehend and depict protein molecule surfaces comprehensively. We note
the extracted point embedding as p € RM*",

3.1.2 Spatially arranged latent representations

Recently, Spatial Functa [[11]] has demonstrated improvements in the quality of latent representations
when two-dimensional spatial inductive biases are incorporated. Building upon this, we extend the
concept to three-dimensional protein surfaces. In ProteinINR, the latent embeddings z € RE*¢ with
length of L are initially rearranged into a three-dimensional voxel grid z € R?*7***¢_ where c, i,
j» and k are feature size, width, height, and depth of latent grid respectively. Following that, we
implemented 3D convolutions on the reorganized embeddings, which allowed for the incorporation
of spatial inductive biases inside the latent embeddings. Finally, latent embeddings are rearranged
to have the original shape z € RY*¢ and projected through a learnable projection layer to have the
feature dimension z € RY*" . While this approach may seem simple, the results are remarkably
effective, leading to enhanced INR performance, as further elucidated in our ablation study.

3.1.3 Transformer encoder for INRs

In ProteinINR, the latent representation (referred to as z) of a protein instance’s surface is obtained
using a transformer encoder. The initial step is the concatenation of the protein’s point cloud
embedding p, structural embedding g, and latent embedding z as follows:

h = Concat(p, s, z),h € RIMFEFL)xh @

Next, the final latent codes z are obtained through self-attention processes where protein information
is propagated over all protein-related tokens and latent embeddings.

3.1.4 INR decoder and SDF regression

In order to strengthen the ability of ProteinINR to capture localized and fine-grained details of local
surfaces, we utilize the decoder introduced by [12]. This decoder has demonstrated a significant
improvement of over 50% compared to the prior TransINR model. The improvement is achieved
by introducing a locality inductive bias into the INR framework. In ProteinINR, the locality-aware
INR decoder D, utilizes the latent code z to predict the SDF § for K query coordinates x € R¥*3
near molecular surface of IV protein samples P™. The optimization of ProteinINR is fulfilled by
minimizing the L2 loss between the predicted SDF values and the corresponding SDF values for each
SDF sample. Furthermore, clamping techniques are employed to focus the model’s attention on the
specific details within the vicinity of the surface region. More detailed steps are followed:

§ =Dy(x,2) (3)
N K,

min Z Z |clamp(s, §) — clamp(§, §)||3 @
v NKn i3

4 Experiments and Results

4.1 Dataset preparation for pre-training

INR training Before calculating samples of the signed distance function, we generated the zero-
level surface, namely, the molecular surface, represented by the equation F(x) = 0 in implicit
representations. To accomplish this objective, we utilized the MSMS program [[13} [14]], which is
well-established triangulation software for molecular surfaces. Subsequently, we computed the SDF
values for the points acquired by the sampling approach utilized in DeepSDF. In that case, the SDF
values are their distances from the nearest vertices point of a given molecular surface mesh. Finally,
500,000 sample points with their SDF values were generated for each protein.



Table 1: Performance on downstream tasks. We compare the models with and without using the
pre-trained weights from ProteinINR. We highlight the cases where performance is the best in terms
of Fi,ax and AUPR for EC and GO task and mean accuracy for FC in bold.

EC GO-BP GO-MF GO-CC FC |
Method Sum

Fmax  AUPR Fmax  AUPR Fmax  AUPR Fmax  AUPR Acc |
GearNet 81.6 837 448 252 604 529 433 268 46.8 | 465.5
GearNet-INR 814 837 447 265 59.9 521 43.0 272 47.6 | 466.1
GearNet-MC 87.2 889 499 264 64.6 558 469  27.1 51.5 | 498.3
GearNet-INR-MC 869 839 498  26.0 654  56.1 477  26.6 51.1 | 498.5
ESM-GearNet-MC 89.0 89.7 535 275 68.7 579 494 324 53.8 | 521.9
ESM-GearNet-INR 89.0 903 50.8 334 67.8  62.6 50.6 369 48.9 | 530.3
ESM-GearNet-INR-MC 89.6  90.3 51.8 332 683  58.0 504 357 50.8 | 528.1

Structure pre-training In-depth details and statistics about the data we used are provided in the

Appendix

4.2 Experimental settings

Downstream tasks To quantify representation power of our proposed method, we adopt three
downstream tasks as in GearNet paper. Details for finetuning and evaluating downstream tasks are

included Appendix

4.3 Experimental results

Representing protein surface shapes using ProteinINR The procedure for acquiring a triangular
mesh that corresponds to a specific protein using INR parameters from ProteinINR is outlined as
follows. Initially, the SDFs are calculated for the vertices of a voxel grid with a regular size of 128.
Following this, the marching cubes algorithm [15]] is employed to compute the mesh. Protein surface
samples reconstructed using ProteinINR are depicted in Figure 3| It is worth mentioning that the
protein molecular surfaces exhibit significant irregularity and possess high-frequency properties.
Intriguingly, ProteinINR effectively preserves intricate information, even hole or ring-like shapes. In
addition, we calculated the Chamfer distance between the ground truth and the reconstructed meshes
for the test set. A subset of 30,000 data points was selected, and the computed average chamfer
distance was 0.003. The number might be quite decent in the context of chamfer distances for natural
3D objects as reported in studies related to SDF reconstruction [16} [17) 18] [19]. These findings
indicate that ProteinINR effectively acquires generalizable INRs that can accurately depict the uneven
surfaces of proteins.

Downstream evaluation We compare the performance of the structure encoder initialized with
weights from a pre-trained ProteinINR model and without such initialization across various down-
stream tasks related to protein function. Intriguingly, we can see that ESM-GearNet-INR-MC and
ESM-GearNet-INR outperform the previous state-of-the-art model, ESM-GearNet-MC, when
taking the summation of all scores. This demonstrates our main contribution clearly, emphasizing
that incorporating surface-related features, which has not been explored by previous models, into pro-
tein pre-training representation learning enables comprehensive representation learning for proteins.
Additionally, we observe a rapid decrease in pre-training loss as depicted in Figure [ of Appendix,
which provides an additional evidence.

5 Conclusion

We propose a pre-training strategy for learning from sequences, structures, and surfaces of proteins to
achieve better protein representation. For the first time, we use INR to pre-train the protein surface,
introducing a method we call ProteinINR. We confirm that ProteinINR effectively reconstructs the
protein surfaces. Moreover, the results on the downstream tasks demonstrate that learning the protein
surface can lead to better protein representation.
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A Appendix

A.1 Related works
A.1.1 Protein representation learning

Most studies in the field of protein representation learning have adopted one of three main approaches:
(i) focusing on protein sequences, (ii) concentrating on protein structures, or (iii) employing a hybrid
strategy that incorporates both sequence and structural information.

In the first approach, which focuses on learning protein sequences, researchers commonly adopt the
architecture of pre-trained language models from the field of Natural Language Processing (NLP),
such as Transformer[20]], BERT [21]], and GPT [22], to effectively represent proteins by learning their
amino acid sequences as if they were language 23\ [1, 24]. The second approach generally employs
Graph Neural Networks (GNNs)-based architectures [25, 26l 27} [2]] to capture the intricate structural
features of proteins. In the third approach, hybrid models aim to learn from both protein sequences
and structures. Notable studies, such as DeepFRI [28] and LM-GVP [29] have utilized encoders for
both sequence and structural information and have pre-trained on sequence data. STEPS [30] and
ESM-GearNet [3] have gone a step further by also pre-training on structural information to achieve
enhanced performance.



However, these methods have not taken into account the significant role of protein molecular surface
information plays in various biological processes. Traditionally, molecular surfaces are defined using
Connelly surfaces [13} [14] based on van der Waals (vdW) radii, often represented as mesh-based
structures derived from signed distance functions. Seminal work for modeling protein molecular
surfaces is MaSIF (molecular surface interaction fingerprinting) [4], which fingerprints molecular
surfaces expressed as molecular meshes using pre-defined and pre-calculated physical and geomet-
rical features. To remove the high pre-computation costs of featurization, [31] proposed dMaSIF,
which showed that modeling molecular surfaces as a point cloud with atom categories per point is
competitive. [32] proposed HOLOProt, which attempted to segment the protein surface into "super-
pixels" for more efficient consideration of surface information and used the features in conjunction
with structure features in a multi-modal modeling manner. However, theoretically, molecular surfaces
are continuous surfaces with infinite resolution, which existing mesh-based approaches cannot fully
express. To tackle this challenge, we utilize the Implicit Neural Representations (INRs) approach, a
technique capable of perfectly capturing infinite resolution characteristics. Our model, called Protein-
INR, understands protein molecular surface resolution independently. Furthermore, our ProteinINR
model is a generalizable INR approach, allowing us to develop a single model capable of representing
many protein structures. On the other hand, [33]] proposed a harmonic message passing, called HMR,
which considered surfaces during molecular representation learning. Compared to HOLOProt and
HMR, which focused on the design of encoder, we use INRs as a pre-training framework in which a
structure encoder is trained to extract structure features to recover molecular surface.

A.1.2 Implicit Neural Representations

Point cloud-based [34] 35 (10, |9]], mesh-based [36} 137, 38|, and voxel-based [39, 140, 141, 42] methods
have historically relied on fixed-sized coordinates or grids to represent 3D assets. Unfortunately,
these approaches suffer from resolution dependency, making them insufficient for modeling or
rendering high-resolution 3D assets effectively. In contrast, Implicit Neural Representations (INRs)
concentrate on learning parameterized functions that predict location-specific information for given
arbitrary query coordinates by utilizing seminal methods such as auto-decoding [[17, [16], Fourier
features [43],144], sinusoidal activations [43]], meta-learning [46} 147, 48l [11]], or transformer-based
architecture [6]. The inherent differentiation gives INR the benefit of being independent of resolution,
enabling it to depict scenes and objects with outstanding precision and fidelity [49, 150} 51]].

[52] proposed a generalized INR, which is the only work dedicated to the study of INR for proteins.
The contributions were crucial because generalized INR expanded the use of INR to topological
systems that do not possess a well-defined coordinate system. They utilized 2D graph spectral
embedding to learn INR for various real-world systems in non-Euclidean domains, including proteins.
Nevertheless, although the work demonstrated the capacity to generalize across diverse systems, it
necessitated the training of individual Multi-Layer Perceptron (MLP) models for each sample, hence
constraining its ability to generalize across datasets. Our study provides evidence that it is feasible to
represent protein surfaces using the INR with the Euclidean coordinate system. Furthermore, our
study contributes to the area by showcasing the feasibility of a generalizable INR model capable of
representing an entire dataset with a single model.

A.2 Detailed information on pre-training
A.2.1 GearNet-Edge-IEConv

To encode the structural information of proteins, we use the GearNet-Edge-IEConv architecture [2]. In
GearNet architecture, a protein is represented by a graph G = (V, £, R) where V represents residues
of proteins, £ denotes edges between residues, and R represents edge types. Edges in GearNet are of
three types: sequential edges, which are edges between two residues located within a certain distance
on the protein sequence; radius edges, which are edges between two residues that have a Euclidean
distance of less than a specific value in 3D coordinates; and k-nearest neighbors edges, which are
edges between a specific node and its k-nearest neighbors in terms of Euclidean distance in 3D
coordinates. GearNet-Edge-IEConv has two additional elements compared to GearNet: i) the Edge
element, which transforms edges into nodes resulting in G’ = (V’, £, R’) and facilitates message
passing between edges, and ii) the IEConv element, which applies a learnable kernel function to the
edge, inspired by the previous work [27].
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A.2.2 Pre-training of protein structures

To effectively learn protein representations from a large volume of structural and sequence data,
we employ the “series fusion” approach, which has demonstrated superior performance in previous
work [3]]. In the “series fusion” architecture, the output from the trained language model is fed into
the structure encoder. We utilize ESM-1b [[1] as the trained language model. To encode a protein
graph by learning their structural information, we adopt the GearNet-Edge-IEConv architecture,
which performs best across most tasks, as the structure encoder and then we pre-train the structure
encoder on structures by employing the multi-view contrastive learning approach [2].

To pre-train GearNet-Edge-IEConv, we employ the multi-view contrastive learning approach, which
shows the highest performance in the previous work [2]. Multi-view contrastive learning aims to make
the embeddings of related substructures similar, while rendering the embeddings of unrelated sub-
structures distinct, akin to SimCLR [53]]. Substructures are extracted either by taking a subsequence
from the sequence or by extracting a subspace in 3D space. Table 2| presents the hyperparameters
used in pre-training of structural data for ESM-GearNet-IEConv and GearNet-IEConv. We save the
model checkpoints every 5 epochs, and among the saved checkpoints, we use the checkpoint with the
lowest loss for downstream tasks. We use 64 NVIDIA A100 80GB gpus for pre-training.

Table 2: GearNet-Edge-IEConv and ESM-GearNet-Edge-IEConv hyperparameters

GearNet-Edge-IEConv ESM-GearNet-Edge-IEConv

Subsequence maximum length 50 50
Subspace minimum neighbors 15 Not used
Sequence model Not used ESM-1b
Batch size 48 48
Optimizer Adam Adam
Learning rate 1.0e-3 2.0e-4
# epochs 50 50

A.3 Datasets used in structure pre-training

To pre-train structural information, we utilize AlphaFold Protein Structure Database version 2 [54] to
pre-train the models. We use protein structure prediction data for 20 species and Swiss-Prot [55]. We
utilize protein structure prediction data for 20 species and Swiss-Prot [55]] from AlphaFold Protein
Structure Database version 2 [54]]. After processing to convert pdb files to protein graphs and remove
the proteins with errors, the statistics of the graphs we finally used are presented in Table 3]

A.4 Detailed information on downstream task

For downstream task, we basically use the framework provided by GearNet[2] and all experiments
shown in Tableare performed under same conditions. We choose Enzyme Commission (EC) number
prediction task and Gene Ontology (GO) term prediction proposed from the previous work [28]]. Fold
classification suggested from the previous work [S6] is adopted as downstream evaluation as well. EC
task is prediction of EC numbers of proteins which represent biomedical reactions they catalyze. GO
task is divided into three sub-tasks by their ontologies, biological process (BP), molecular function
(MF), cellular component (CC). Each task predicts whether a protein is associated with a specific
GO term. For EC and GO tasks, F,,,, and pair-centric area under precision-recall curve (AUPR)
values are calculated to measure performance. In the Fold classification task, fold labels of proteins
are classified, and mean accuracy is used to evaluate performance. The number of datasets used in
each downstream task is described in Table[d} We finetune the models with batch size as 16 per step.
All other settings are used as provided by the framework. The models demonstrating the highest
performance on validation set are chosen to report the results in Table|l] We finetune each task with
the datasets as described in Appendix[A.4] The model is trained for 50 epochs on EC, 200 epochs
on GO, and 300 epochs on fold classification task. We finetune and evaluate the model upon the
framework proposed by GearNet [2]] and all other settings for finetuning models is same except batch
size. We use batch size as 16 per step (8 A100 GPUs and 2 for each GPU) for all experiments.
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Table 3: The number of protein structures used per species

Proteome ID Taxonomy # structures
UP000006548 Arabidopsis thaliana 27393
UP000001940 Caenorhabditis elegans 19658
UP000000559 Candida albicans 5956
UP000000437 Danio rerio 24595
UP000002195 Dictyostelium discoideum 12592
UP000000803 Drosophila melanogaster 13424
UP000000625 Escherichia coli 4363
UP000008827 Glycine max 55747
UP000005640 Homo sapiens 23280
UP000008153 Leishmania infantum 7903
UP000000805 Methanocaldococcus jannaschii 1772
UP000000589 Mus musculus 21571
UP000001584 Mycobacterium tuberculosis 3988
UP000059680 Oryza sativa subsp. japonica 43623
UP000001450 Plasmodium falciparum 5162
UP000002494 Rattus norvegicus 21209
UP000002311 Saccharomyces cerevisiae 6026
UP000002485  Schizosaccharomyces pombe 5123
UP000008816 Staphylococcus aureus 2885
UP000002296 Trypanosoma cruzi 18992
UP000007305 Zea mays 39258
Swiss-Prot - 541938
Total - 906458

We evaluate a total of seven models: i) GearNet, which is trained directly on the downstream tasks
with a structure module; ii) GearNet-INR, where the structure module is pre-trained on the surfaces,
and then trained on the downstream task; iii) GearNet-MC, whose structure module is pre-trained
on the structures by multi-view contrastive learning, and then trained on downstream tasks; iv)
GearNet-INR-MC, whose structure module is pre-trained on the surfaces, subsequently on the
structures, and then trained on downstream tasks; v) ESM-GearNet-MC, where a sequence encoder
is pre-trained, followed by pre-training on the structures; vi) ESM-GearNet-INR, where a sequence
encoder is pre-trained, followed by pre-training on the surfaces; vii) ESM-GearNet-INR-MC, which
entails pre-trained a sequence encoder, then pre-training the structure module on the surface, followed
by further training on the structure, and finally training on the downstream tasks. We use ESM-1b as
the seugnece encoder and GearNet-Edge-IEConv as the structure encoder.

Table 4: The number of datasets for downstream tasks.

Dataset # Train # Validation # Test
Enzyme Commission 15,170 1,686 1,860
Gene Ontology 28,305 3,139 3,148
Fold Classification 12,312 736 718

12



L Coordinates H Implicit Decoder SDF I

T 1 I 1

L)Ll
I

Transformer Encoder with Self-Attentions

|
A E LR

Hrgh-frequency aware
Point Encoder

©@---®® A

g

Molecular surface point cloud Protein structure Latent embedding

Structure Encoder Spatral Convolution

Figure 2: An overview of our ProteinINR architecture. The points tokens, structure tokens, latent
tokens are calculated using high-frequency-aware point encoder, structure encoder (GearNet-Edge-
IEConv), and three-dimensional convolution layers, respectively. Points are 16k resolution. Trans-
former encoders output parameters of an MLP using the tokens, then SDF values are obtained using
the parameters for the query coordinates.
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Figure 3: Above images are the examples of reconstructed meshes and surfaces from ProteinINR for

given proteins. ProteinINR preserves the intricate details of irregular protein surfaces, particularly
capturing features such as ring-like and hole shapes with remarkable fidelity.
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Figure 4: The loss of multi-view contrastive learning of GearNet-MC, GearNet-INR-MC, ESM-
GearNet-MC, and ESM-GearNet-INR-MC. Compared to GearNet-MC and ESM-GearNet-MC, we
observe that the GearNet-INR-MC and ESM-GearNet-INR-MC exhibit a faster decrease in loss
initially.
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