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Abstract

Proteins are responsible for most biological functions, many of which require
the interaction of more than one protein molecule. However, predicting protein-
protein interaction (PPI) sites (the interfacial residues of a protein that interact
with other protein molecules) remains a challenge. The growing demand and
cost associated with the reliable identification of PPI sites using conventional
experimental methods call for computational tools for automated prediction and
understanding of PPIs. Here, we present Pair-EGRET, an edge-aggregated graph
attention network that leverages the features extracted from pre-trained transformer-
like models to accurately predict pairwise protein-protein interaction sites. Pair-
EGRET works on a k-nearest neighbor graph, representing the three-dimensional
structure of a protein, and utilizes the cross-attention mechanism on top of a
siamese network to accurately identify interfacial residues of a pair of proteins.
Through an extensive evaluation study using a diverse array of experimental data,
evaluation metrics, and case studies on representative protein sequences, we find
that our method outperforms other state-of-the-art methods for predicting PPI
sites. Moreover, Pair-EGRET can provide interpretable insights from the learned
cross-attention matrix. Pair-EGRET is freely available at https://github.com/
1705004/Pair-EGRET.

1 Introduction

Proteins play a fundamental role in various cellular processes, often forming complexes through
interactions between multiple proteins [1]. A thorough understanding of protein interfaces and the
interacting residues involved is crucial in fields like disease research and drug development[2–7].

Protein-protein interaction sites (PPIS) are the residues of a protein that interact with residues from
other proteins to form an interface between them. The problem of identifying interacting residues of
proteins has two forms: i) Partner-independent prediction involves finding residues in an isolated
protein that may interact with residues from any other protein [8, 9]. ii) The second form – and the
one addressed in this study – is partner-specific prediction which involves identifying interacting
residues of a protein for a specific partner protein. Partner-specific methods can further be classified
into those that seek to only identify which residues constitute the interface between protein pairs
(henceforth referred to as interface region prediction methods) and those that seek to identify specific
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pairs of residues (one from each protein) that interact with one another (henceforth referred to as
pairwise PPIS prediction methods) [10, 11]. The latter is notably more challenging. This research
addresses both forms, presenting an innovative method for accurately predicting interface regions
and pairwise PPIS in protein complexes.

Experimentally identifying PPIS using wet lab methods is time-consuming and costly, resulting in
the rise of various computational approaches as alternatives. Computational methods like protein-
protein docking models [12–15], template-based methods [16–18] and machine-learning methods
[19, 11, 20–24] employ different techniques like computationally rotating and translating proteins to
produce different poses, comparing an unknown protein with a known query protein, and training
models to learn features of interacting residues, etc. However, these methods suffer from numerous
shortcomings including limited coverage, inability to predict novel interactions, and challenges in
feature selection.

Some recent deep learning-based methods [10, 8, 25, 26] have demonstrated that incorporating
information from both the primary amino-acid sequence and the 3D structure of a protein leads to
more accurate identification of PPIS. For extracting features from the primary sequence, the recently
developed protein language models [27, 28], trained on large datasets of 1D amino acid sequences,
have been proved to be effective [8, 26, 29]. For encoding the 3D structural information of proteins,
several geometric structures have been proposed [9, 30] among which Graph Neural Networks
(GNN) [31] has proved to be useful for a number of methods [10, 25, 8]. GNNs have the capability
to learn global and local contextual features for a residue from its neighborhood. Mahbub and Bayzid
[8] proposed an edge-aggregated graph attention network [32] - a variant of GNN, in their model
EGRET where both node-level and edge-level features are used for calculating the attention scores
allowing the model to utilize the rich structural data encoded in the edges of the graph. EGRET was
proposed for the task of partner-independent prediction of interaction sites.

In this study, building on the recent successful application of transformers and GAT networks in
partner-independent PPI site prediction, we propose a novel deep learning model Pair-EGRET that
extends the architecture of EGRET for both pairwise PPI site and interface region predictions. Pair-
EGRET integrates GNN and protein language models to effectively leverage both structural and
sequence-based information. Moreover, to allow each protein to attend to the relevant features from
the other protein’s residues, we adopted the concept of the cross-attention [33], widely used in Natural
Language Processing (NLP) for incorporating information from multiple input sources or contexts.
The combination of using transfer learning, edge-aggregated GAT networks, and cross-attention
modules led to the improvement of Pair-EGRET compared to the best alternative methods on widely
accepted benchmark datasets for partner-specific interaction prediction (both PPI site and interface
region predictions). We have included case studies that visually inspect the predicted binding residues.
We further visualize and interpret the representations learned by Pair-EGRET.

2 Approach

In our study, we represent the three-dimensional structures of the receptor and the ligand-protein of a
complex, using directed k-nearest neighbor graphs [34]. Each graph node corresponds to an amino
acid residue and is connected to its k closest neighbors via directed edges. Each node of the graph is
characterized by some features of the corresponding residue. We used embedding vectors generated
by ProtBERT [27] and some physicochemical properties of amino acids as node-level features.
The distance and angle between residues served as the edge-level features for the weighted edges
connecting them. For a detailed discussion of the graph representation of protein for Pair-EGRET,
refer to Appendix A.

2.1 Architecture of Pair-EGRET
The architecture of Pair-EGRET can be discussed in two parts: (i) the architecture of EGRET [8],
which was initially proposed for identifying interaction sites from a single protein, and (ii) our
proposed extension to the EGRET architecture for predicting interaction sites between pairs of
proteins. We will discuss the components of these two architectures briefly in this section. We
strongly recommend reading through Appendix A for an in-depth understanding of both the original
EGRET and the Pair-EGRET model.

2



2.1.1 Architecture of EGRET
In our study, we utilize the EGRET model as the foundation for our Pair-EGRET framework. Fig. A1
shows the end-to-end pipeline of EGRET with three core components:

i) The local feature extractor: This layer captures the local interactions between neighboring
residues using a one-dimensional CNN applied to the node-level features.
ii) The edge-aggregated graph attention layer: This layer encodes the three-dimensional structural
information of the neighborhood of each node. It employs an improved graph attention [32]
mechanism, incorporating both node and edge-level features for calculating attention scores and
applying aggregation – a process used in different GNN architectures [35, 32].
iii) The node-level classifier: This final layer linearly transforms the aggregated features obtained
from the previous layer and applies sigmoid activation to generate interaction probabilities for each
residue of a sequence.

2.1.2 Extension to EGRET for pairwise prediction
For solving both forms of partner-specific protein interaction prediction problem, we extend the
EGRET model. We leverage the EGRET architecture to extract useful features from receptor and
ligand proteins separately and add additional layers that combine features from both proteins and
produce our desired outputs. There are five core components in the Pair-EGRET architecture:

i) Siamese EGRET network: Our proposed architecture of Pair-EGRET begins with a Siamese
network, which consists of a pair of identical networks containing the first two modules of EGRET
(local feature extractor and graph-based encoder). These identical networks share weights with one
another, enabling the Siamese network to learn a common representation of both the ligand and the
receptor.
ii) Positional encoder: The positional encoder module - inspired by Vaswani et al. [33], is used to
utilize the information about the position of residues in a protein sequence. This module calculates
a positional embedding for each residue and adds it to the feature representations obtained from the
Siamese network. This can be useful because the location of a residue can impact its interaction
with residues present in the partner protein in the complex.
iii) Multi-headed cross-attention layer: The multi-headed cross-attention layer employs the cross-
attention mechanism [33] to combine features originating from both receptor and ligand proteins.
Through an encoder-decoder structure, this layer facilitates the mutual exchange of information
between the proteins. It quantifies the influence of a ligand residue on a receptor residue and vice
versa by generating attention scores that help identify relevant residue pairs within a complex. We
employ multiple attention heads within this module to capture various aspects of the input features.
iv) Pairwise classifier: The pairwise classifier layer in Pair-EGRET produces the final output for
our first task: pairwise PPIS prediction. Within this module, a series of fully connected layers
and activation functions are applied to a feature vector formed by combining the output of the
previous layer for every possible ligand-receptor residue pair within the complex. The resulting
output probability scores signify the likelihood of interaction between each of these residue pairs.
v) Interface region classifier: The interface region classifier generates the final output for our
second task - identifying the interface region of protein complexes. Similar to the pairwise classifier,
this layer also incorporates fully connected layers and activation functions to transform the feature
representation of each individual protein into probability scores indicating the likelihood of each
residue of the protein being a part of its interface. Ideally, any residue of a protein that interacts with
any other residue of its partner protein should be identified as an interface residue by this layer.

Fig. 1 shows the overall end-to-end pipeline of Pair-EGRET where the first three modules are
connected sequentially and are common to both forms of the partner-specific interaction prediction
problem we are addressing. The final two layers are parallel networks that generate the outputs
corresponding to each problem.

3 Experimental studies
3.1 Dataset

We evaluated Pair-EGRET on three benchmark datasets: i) Docking Benchmark version 5.0 [36]
(DBD5), ii) Dockground X-ray unbound docking benchmark version 4 [37], and iii) A subset of
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Figure 1: Schematic diagram of the overall pipeline of Pair-EGRET being applied to a receptor
protein (r) and a ligand-protein (l). (a) Siamese EGRET network with shared weights. (b) Positional
encoder being added to the individual proteins and linearly projected to three separate feature spaces–
query, key, and value (discussed in Section A.3(iii)). (c) Both proteins transformed through the
multi-headed cross-attention layer using the query vector of itself and the key and value vector of
the other protein. (d) Pairwise classifier being applied to the merged features. (e) Interface region
classifier being applied to individual proteins.

the MaSIF [9] dataset. Table B1 contains a summary of these datasets. Similar to prior work
[10, 38, 11, 25, 25], we considered residue pairs to be interacting if they had non-hydrogen atoms
within 6Å distance. We downsampled the non-interactive residue pairs in the highly imbalanced
datasets to get a 1:10 ratio of positive-to-negative samples during training.

3.2 Performance evaluation

Due to the high imbalance in the datasets, accuracy isn’t a meaningful metric for our study. Instead,
we relied on threshold-independent metrics AUROC and AUPRC which are suitable for imbalanced
datasets [39]. We used the median AUROC of test complexes for evaluation in order to avoid extreme
changes in score due to complex sizes [25].

3.2.1 Pairwise PPIS prediction results

Results on DBD5: For pairwise interaction site prediction, we compared the Median AUROC and
AUPRC scores of Pair-EGRET with machine learning, CNN and GNN-based methods [11, 40–
42, 10, 43–45]. It is evident from Table 1 that Pair-EGRET outperforms all the other methods with
respect to our primary evaluation metric, median AUROC with a score of 0.88828 while achieving an
AUPRC score of 0.0173 which is comparable to the best-performing (0.018) method DCNN[41].

Results on Dockground: Although the unbound benchmark version 4 of Dockground is relatively
less explored for the pairwise PPIS prediction task, we evaluated Pair-EGRET on this benchmark
because of the varying levels of difficulty it offers making it more diverse than DBD5. Compared to
BIPSPI+ [46] – one of the few methods evaluated on Dockground for this task, Pair-EGRET performs
very well with a median AUROC of 0.8747, highlighting its robustness in identifying interaction sites
in relatively difficult complexes.

3.2.2 Interface region prediction results

Results on DBD5: We compared Pair-EGRET with BIPSI, BIPSPI+, and PInet [30] for interface
region prediction on the DBD5 test dataset. In addition to AUROC and AUPRC, we also report
the precision and recall scores of the methods for a fair comparison and consistency with the other
baselines. Pair-EGRET outperforms all the other methods under two evaluation metrics - AUROC
and recall. Remarkably, the AUROC score of Pair-EGRET is 0.924 which is 8.96% higher than the
second best method BIPSPI+.
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Table 1: Comparison between the predictive performance of different methods in predicting pairwise
PPIS of the test complexes of DBD5 and Dockground. Scores for the baselines on DBD5 are directly
reported from [10, 25, 26].

DBD5 Dockground

Method Median AUPRC Method Median AUPRC Method Median
AUROC AUROC AUROC

BIPSPI 0.878 - DTNN 0.867 0.007 BIPSPI+ 0.831
SASNet 0.876 - NEA 0.876 0.012 Pair-EGRET 0.8747
DCNN 0.828 0.018 EGNN 0.829 -
NGF 0.865 0.007 GVP-GNN 0.885 -

Pair-EGRET 0.888 0.0173

Results on MaSIF: Our assessment of Pair-EGRET on the MaSIF dataset involved a comparison
with MaSIF [9], SPPIDER [47], and PInet [30]. Pair-EGRET’s superior performance is evident
from its AUROC score of 0.9583, which is 8.89% than the next best method PInet. Additionally,
Pair-EGRET outperforms all other models in terms of AUPRC (0.5938) as well. It’s worth noting
that, the use of bound conformations in the MaSIF dataset generally contributes to better performance
compared to other benchmarks for all methods.

Table 2: Performance comparison of different methods in identifying interface regions of test
complexes of DBD5 and a subset of MaSIF curated by the authors of [30]. geom* indicates models
that only use geometric features of proteins.

DBD5 MaSIF

Method AUROC AUPRC Precision Recall Method AUROC AUPRC

BIPSPI 0.822 0.410 0.391 0.558 SPPDER 0.65 -
MaSIF geom* 0.68 -

BIPSPI+ 0.848 0.4653 0.438 0.573 MaSIF 0.87 -
PInet geom* 0.75 0.30

PInet 0.753 0.596 0.492 0.723 PInet 0.88 0.45
Pair-EGRET 0.924 0.275 0.255 0.746 Pair-EGRET 0.9583 0.5938

3.3 Case study

We performed a visual comparison between the interface regions predicted by Pair-EGRET and a
competitive method NEA (pairwise PPIS prediction method developed by Fout et al. [10]) for two
representative complexes (PDB ID 3HI6 and 1JTD from DBD5 test set) using PyMOL software
[48]. Comparing the results from Fig. B3, Pair-EGRET’s predictions (green) were more concentrated
around the true interface regions (yellow) and covered almost the entire interface. NEA’s predictions
(cyan) were more scattered and missed parts of the actual interface in both complexes.

4 Conclusions

In this study, we introduced Pair-EGRET, a novel deep-learning method for accurate pairwise
interaction site and interface region prediction in protein complexes using an edge-aggregated graph
attention network and cross-attention mechanism. Additionally, we explored extensions to the original
EGRET architecture, such as incorporating physicochemical features, positional encoders, and multi-
headed cross-attention layers. Future directions for this study include leveraging larger protein
language models like ESM-2 [49] by Facebook Research and benefiting from the availability of larger
datasets[40, 9] assembled from structure-known proteins for enhancing our model’s performance.
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Appendix A: Model details

A.1 Features of protein graph

Node-level features

Each residue i in a protein is associated with a feature vector qi ∈ Rdnode , where dnode represents
the number of node features used in this study. We leverage two types of node features to represent a
residue.

i) Embedding-based features of the residues were extracted from the protein sequences using
ProtBERT, a contextual embedding generation pipeline developed by [27]. ProtBERT captures both
local and global context, including neighboring residues and overall protein structure, to generate
embedding vectors e = {e1, e2, ..., eN}, ei ∈ Rdprotbert (dprotbert = 1024 and N = number of
residues in the protein), which encode the structural and functional characteristics of the residues.
Alternatively, other embedding generation models available in ProtTrans [28], such as ProtXL or
ProtXLNet, can be used instead of ProtBERT without significantly impacting performance.

ii) Physicochemical Features of amino acids were incorporated as node features. These features
encompass a range of properties, including hydrophilicity, flexibility, accessibility, turns scale,
exposed surface, polarity, antigenic propensity, hydrophobicity, net charge index of side chains,
polarizability, solvent-accessible surface area (SASA), relative SASA, side-chain volume, and residue
depth. Notably, we calculate relative hydrophobicity and polarity based on two different scales or
methods, namely H11a, H12a, P11a, and P12a, respectively, to ensure a comprehensive representation
of these characteristics in our analysis [50]. These properties of a node i is represented by a vector
pi ∈ Rdphychem (dphychem = 16).
By concatenating the vectors ei and pi we obtained the final node features q = {q1, q2, ..., qN},
qi ∈ Rdnode where dnode = dprotbert + dphychem = 1024 + 16 = 1040.

Edge-level features

Similar to EGRET [8], we utilize two edge-level features to represent the relationship between
residues i and j through the edge ξij where ξij ∈ Rfe and fe = 2: (i) Inter-residue distance Dij

which denotes the average distance between the atoms of the residues and (ii) Relative orientation θij
which is measured by the absolute value of the angle formed by the surface-normals of the planes
passing through the alpha carbon atom (Cα), the carbon atom of the carboxyl group, and the nitrogen
atom of the amino group of each residue.

A.2 Components of EGRET

We discuss the structures and functionalities of the three core components of the EGRET model to
make this paper self-contained and comprehensive.

i) Local feature extractor

The local feature extractor captures local interactions of the protein residues with other “sequentially
closer" residues (not necessarily close in Euclidean space) while reducing the dimensionality of
the node-level features. A one-dimensional convolutional neural network with a small odd number
window size is used to encode the node feature vectors q = {q1, q2, ..., qN} into a new condensed
and neighbor-aware feature representation h = {h1, h2, ..., hN}, hi ∈ Rfn , where fn < dprotbert.

ii) Edge-aggregated graph attention layer

The edge-aggregated graph attention layer transforms the features hi of the node i by encoding
the three-dimensional structural information of its neighborhood Ni. This layer uses a modified
version of the original graph attention layer [32] and aggregation process used in various GNN-based
architectures [35, 32]. In the original aggregation process, the node features are transformed by taking
a weighted average of the neighborhood node features using the equation: ĥi = σ(

∑
j∈Ni

γijW
vhj)

where, W v ∈ Rfn×fn is a learnable parameter and γij is the attention score calculated from hi and
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Fig. A1: Schematic diagram of the overall pipeline of EGRET being applied to a dummy protein
having 13 residues. (a) Local feature extractor (with window size wlocal = 3). (b) Edge-aggregated
graph attention layer applied to residue 2 with neighborhood N2 = {1, 3, 10}. (c) Node level classifier
applied to final representation ĥ2 of node 2. (d) The details of the edge-aggregated graph attention
layer in an expanded form. (e) The expanded form of the module that calculates the attention scores
for aggregation. [All figures were taken from [8]]

hj that represents the importance of the features of node j to node i. EGRET improves upon this
method by incorporating edge features during the calculation of attention scores and the aggregation
process, resulting in a new scoring function eji and attention distribution αji. These metrics are
obtained from the following equations.

eji = Ω(Wα[W vhi||W vhj ||W pξji]) (1)

αji = softmax(eji) =
exp(eji)∑

k∈Ni
exp(eki)

(2)

Finally, the node and edge features are aggregated using the equation

ĥi = σ(
∑
j∈Ni

αjiW
vhj +

∑
j∈Ni

αjiW
ϵξji) ||hi (3)

Here, Wα ∈ R2fn+fe , W v ∈ Rfn×fn , W p ∈ Rfe×fe and W ϵ ∈ Rfn×fe are learnable parameters,
|| is the concatenation operator, and Ω(.) and σ(.) are activation functions.

iii) Node-level classifier

The node-level classifier of EGRET linearly transforms the output of the previous layer ĥi. It applies
the sigmoid activation function to generate the probability of being an interaction site for the residue
represented by the node i.

A.3 Components of Pair-EGRET

The first three components of Pair-EGRET (i.e. Siamese EGRET network, positional encoder, and
multi-headed cross-attention layer) are connected sequentially and are common to the architecture
required for both pairwise interaction site prediction and interface region identification problems. The
final two layers (pairwise classifier and interface region classifier) are parallel networks that generate
the outputs corresponding to these two problems.
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i) Siamese EGRET network

Each identical branch of the Siamese EGRET network contains only the first two modules of EGRET.
Since the third module of EGRET (the node-level classifier) produces the probability of interaction
for each residue without any knowledge of the partner protein in the complex, we discard this layer
and instead utilize the features obtained from the local feature extractor and GAT layer of EGRET to
encode each residue with features derived from its neighborhood, taking into account both sequential
and spatial proximity.

The node features qi and edge features ξij corresponding to each of the graphs Greceptor and Gligand

are fed through the siamese network to generate features ĥl and ĥr respectively. In this study,
along with the embedding-based features used in the original EGRET paper, we also incorporate a
wide range of physicochemical features for each residue to use as node features. Additionally, we
enhance the quality of the features generated from the Siamese network by increasing the number
of convolution layers in the local feature extractor and using multiple layers of the graph attention
module.

Weight sharing between the branches of the Siamese network ensures that the model learns a common
representation of proteins and is invariant to the ordering of the partner proteins provided to it.

ii) Positional encoder

According to Vaswani et al. [33], positional encoding for position pos in the sequence can be defined
as:

PE(pos, i) =

{
sin(pos/10000

i
dmodel ), if i is even,

cos(pos/10000
i−1

dmodel ), otherwise,
(4)

where i ∈ [1, dmodel] is the dimension of the embedding vector being calculated, and dmodel is the
dimension of the input embedding vector. This function maps the position of each amino acid to a set
of position-specific embeddings PE. PE is added to the feature representations ĥl and ĥr obtained
from the siamese network, to generate the outputs P l and P r of this layer.

P l
pos = ĥl

pos + PEpos , P
r
pos = ĥr

pos + PEpos

iii) Multi-headed cross-attention layer

The structure of the multi-headed cross-attention layer is inspired by the encoder-decoder attention
module described by [33]. The cross-attention module transforms the input feature vectors into
three feature spaces: query, key, and value using learnable parameters WQ,WK , and WV ∈ Rdk×dk ,
where dk is a hyperparameter. Specifically, the ligand feature vector P l obtained from the positional
encoder layer is transformed into query Ql = WQP

l, key Kl = WKP l, and value V l = WV P
l,

while the receptor feature vector P r is transformed into Qr, Kr, and V r using similar equations.

To model the interaction between the proteins, the cross-attention module is applied to the ligand and
receptor feature vectors separately, as defined by the following equations:

Attention(Ql,Kr, V r) = softmax(
Ql(Kr)T√

dk
)V r

Attention(Qr,Kl, V l) = softmax(
Qr(Kl)T√

dk
)V l

(5)

where softmax is the softmax activation function, and (·)T denotes the transpose operation. Each
attention head in the multi-headed cross-attention module is an independent attention layer that
captures different aspects of the input. Specifically, multi-headed attention can be described by the
equation:

MultiHead(Q,K, V ) = WOConcat([head1, head2, . . . , headNh
])

where headi = Attention(Q,K, V ) is the output of the i-th attention head , Nh is the number of
total attention heads, and WO is a learnable parameter used to project the concatenated attention
heads back to the original feature space.

The outputs of the multi-headed attention are then added to the input of the module through a residual
connection [51] which enables the model to capture both the attended features and original features,
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followed by layer normalization [52] which stabilizes the model. The final outputs M l and Mr are
defined by the following equations:

M l = LayerNorm(P l +MultiHead(Ql,Kr, V r))

Mr = LayerNorm(P r +MultiHead(Qr,Kl, V l))

iv) Pairwise classifier

For the task of pairwise interaction site prediction, for each residue pair (li, ri) we have to generate
an output Oi ∈ {0, 1} where Oi = 1 would indicate that residue number li of the ligand and residue
number ri of the receptor are an interacting pair, whereas Oi = 0 would indicate otherwise.

In the pairwise classifier layer, for each residue pair, we extract the node features M l
li

and Mr
ri

from the outputs M l and M l generated by the cross-attention module and concatenate them. This
representation of the residue pair is passed through a feed-forward neural network that incorporates a
combination of learned weights, nonlinear activation functions such as ReLU and LeakyReLU, and
finally, a sigmoid activation function to predict the probability of interaction between the nodes li and
ri.

Similar to [10], to ensure invariance to the ordering of the receptor and ligand, we concatenate the
features in both possible orders, resulting in two predictions:

Orl
i = σ(FFN(Mrri∥M lli)) , Olr

i = σ(FFN(M lli∥Mrri))

where FFN is the feed forward network and σ is the Sigmoid activation function. Finally, we take
the average of these two predictions to generate the final output probability Oi for the residue pair
(li, ri):

Oi =
1

2
(Orl

i +Olr
i )

v) Interface Region Classifier

For the task of interface region prediction, for each residue li of the ligand or rj of the receptor
we have to generate outputs Ol

i or Or
j which would indicate whether the residue is a part of the

interface of the complex or not. In the interface region classifier layer, instead of concatenating the
outputs M l and Mr generated by the cross-attention layer, we pass M l and Mr individually through
a feed-forward network. The dense layers linearly transform the feature vectors and the sigmoid
activation function is applied to generate outputs Ol and Or for the ligand and receptor proteins
respectively.

Ol
i = Dense(M lli) , Or

j = Dense(Mrrj)

The outputs represent the probabilities of each residue of a protein being part of the interface region
of the complex.

Appendix B: Experiment details

B.1 Summary of datasets

i) Docking Benchmark version 5.0 (DBD5) is widely recognized as the standard benchmark for
evaluating pairwise PPIS prediction and interface region identification. The dataset includes structures
of 230 complexes from the protein data bank (PDB) [53] with amino acid sequence lengths of the
constituent proteins varying from 29 to 2128. Training and validation on DBD5 were performed
using the 175 complexes present in version 4.0 of Docking Benchmark (DBD4) [54]. We performed
an 80%-20% partition of the 175 complexes stratifying them by the difficulty provided in [36]. For
testing, we used a set of 55 complexes that were added in the update from DBD4 to DBD5. This
time-based split of the dataset simulates the ability of the model to predict unreleased complexes, as
opposed to a random split which has more training/testing cross-contamination. [40]

ii) Dockground is another benchmark used for evaluating pairwise interaction site prediction
models. The dataset contains a diverse array of protein complexes of varying difficulties. Compared
to DBD5, it has relatively fewer proteins with rigid bodies and more with higher difficulty levels. In
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Table B1: Summary of the datasets used in this study

Dataset Samples Train Validation Test Total

DBD5

Complexes 140 35 55 230

Positive 12,866 3,138 4,871 20,875
samples (9.09%) (0.2%) (0.1%) (0.3%)

Negative 128,660 1,874,322 4,953,446 6,956,428
samples (90.9%) (99.8%) (99.9%) (99.7%)

Dockground

Complexes 236 60 100 396

Positive 14,007 3,940 5,905 23,852
samples (9.09%) (0.05%) (0.04%) (0.11%)

Negative 140,070 7,199,540 12,673,885 20,013,495
samples (90.9%) (99.94%) (99.95%) (99.88%)

MaSIF

Complexes 1890 470 787 3147

Positive 308,441 77,903 94,135 480,479
samples (9.09 %) (0.28%) (0.26%) (0.74%)

Negative 3,084,229 27,074,411 34,833,241 64,991,881
samples (90.9%) (99.71%) (99.73%) (99.26%)

our experiments, we used the unbound docking benchmark set 4 of the Dockground dataset containing
396 complexes with only 77 complexes shared with DBD5. We used 236 complexes for training,
60 complexes for validation, and 100 complexes for testing Pair-EGRET on the task of pairwise
interaction site prediction.

(iii) MaSIF is a relatively large dataset containing a total of 3362 complexes taken from the PRISM
[55] list of nonredundant proteins, the ZDock benchmark [13], PDBBind [56], and SabDab [57]
dataset. For evaluating our model, we used the curated subset of MaSIF used by PInet [30] which
excludes complexes with interface regions smaller than 1% of the size of the ligand. We also excluded
complexes with receptor or ligand sequence lengths smaller than the minimum neighborhood size
required by the edge-aggregated graph attention layer of EGRET. This resulted in a dataset containing
3147 complexes, which was split into 1890 training, 470 validation and, 787 test complexes. We
used this subset of MaSIF for evaluating Pair-EGRET in identifying interface regions of complexes.
This benchmark uses bound conformations of proteins to produce features for training the models.
Consistent with other methods, only for this benchmark, we used the provided bound conformations
for generating the node and edge-level features of Pair-EGRET.

B.2 Analysis of model performance

We analyzed the impact of different features and modules of Pair-EGRET on its performance and
visualized the patterns of cross-attention scores generated by the model to improve the interpretability
of the results found in this study.

Impact of different node-level features: Table B2 shows the impact of different node-level features
on the median AUROC scores of Pair-EGRET in predicting pairwise PPIS from DBD5 test complexes.
The results highlight that adding ProtBERT-based and physicochemical features improves the median
AUROC score of Pair-EGRET by 10.168% and 8.518% respectively, indicating that the model may
be benefiting from the patterns captured by ProtBERT embeddings and the physical characteristics
represented by the physicochemical features.

Impact of different modules of Pair-EGRET In Table B3, we analyzed the impact of different core
modules of Pair-EGRET, particularly the positional encoder and the multi-headed cross-attention
layer on its performance. The addition of the positional encoder introduces a 3.837% improvement in
the median AUROC of Pair-EGRET for pairwise PPIS prediction in DBD5 complexes, while the
cross-attention module introduces an improvement of 2.508%. This strengthens our argument that
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the positional encoder enhances sequential context, and the cross-attention module enables residues
to access relevant information from the residues of the partner protein.

We also conducted some ablation studies to assess the performance of models featuring simpler
architectures when equipped with the enhanced physicochemical and ProtBERT-based features
of Pair-EGRET. Specifically, we substituted the first three modules of Pair-EGRET with more
straightforward layers and presented the pairwise PPIS prediction results for DBD5 test complexes
using these modified models (see Table B4). The architectures we considered for this analysis include:
a Siamese feed-forward network solely composed of fully connected layers, a CNN-based network
employing 1D convolution operations on protein sequences, an attention-based model integrating a
positional encoder and a cross-attention module, and a graph attention network [32] with a single
graph convolution layer [35]. The results in the table reveal that the enhanced features used in
this study yield reasonably good results even for very simple architectures such as Siamese FFN
and 1D CNN. However, the incorporation of GAT or attention modules significantly improves the
model’s performance. Notably, the GAT network with a single convolution layer achieves the highest
median AUROC score among these models. These findings suggest that the performance boost in
Pair-EGRET can be attributed to both the enhanced features utilized in this study and the effective
architecture of Pair-EGRET. The model not only relies on improved features but also excels in
accurately capturing the contextual intricacies conveyed by these features, ultimately contributing to
a significant overall performance improvement.

Table B2: Median AUROC scores of Pair-EGRET for predicting pairwise interaction sites in DBD5
test complexes, evaluated with various combinations of node-level features.

Node features combination Median AUROC (DBD5) Improvement by feature

With both features 0.88828 -
Without physicochemical features 0.8031 +8.518%
Without ProtBERT-based features 0.7866 +10.168%

Table B3: Median AUROC scores of Pair-EGRET for predicting pairwise interaction sites in DBD5
test complexes, comparing the impact of different modules in the Pair-EGRET architecture.

Model architecture Median AUROC (DBD5) Improvement by module

Our full framework 0.88828 -
Without cross-attention 0.8632 +2.508%

Without positional encoder 0.84991 +3.837%

Table B4: Performance of models with simpler architectures compared to Pair-EGRET on PPIS
prediction of DBD5 test complexes using the same set of enhanced features as Pair-EGRET.

Model architecture Median AUROC (DBD5)

Siamese feed-forward neural network 0.6947
1D Convolutional neural network 0.7112

Attention-based network 0.7889
GAT with a single graph convolution layer 0.8232

Patterns of cross-attention scores In Fig. B1(c), we present a heatmap of attention scores produced
by the cross-attention layer for a representative protein (PDB ID 3HI6). Remarkably, the highest
attention scores (lighter colors) in the heatmap correspond to interacting residue pairs or closely
located pairs, as confirmed by PyMOL visualization Fig. B1(a). Conversely, pairs with lower attention
scores (darker colors) are more distant and may even be buried within the proteins’ surfaces Fig.
B1(b). These findings highlight the meaningful connection between Pair-EGRET’s cross-attention
layer scores and the characteristics of interacting residue pairs.
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(a)

(b)

(c)

Fig. B1: Patterns of cross-attention scores in a 20 residue window of chain A of the ligand and chain L
of the receptor of a representative complex (PDB ID 3HI6). (a) PyMOL visualization of the residues
corresponding to the lighter regions (high attention scores) of the heatmap. (b) PyMOL visualization
of the residues corresponding to the darker regions (low attention scores) of the heatmap. (c) Heatmap
of the attention scores generated by the multi-headed cross-attention layer of Pair-EGRET.

15



B.3 Additional figures

(a) (b) (c)

(d) (e) (f)

Fig. B2: PyMOL visualization of two representative complexes (PDB ID 3HI6 and 1JTD) from the
test set of DBD5 in bound form. The red and blue surfaces represent the ligand and receptor proteins
respectively. (a-c) The true interface regions of 3HI6 (yellow), the regions predicted by Pair-EGRET
with 90-95% confidence (green), and the regions predicted by NEA with 75-80% confidence (cyan).
(d-f) The true (yellow), predicted by Pair-EGRET (green), and predicted by NEA (cyan) interface
regions of 1JTD.
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