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Abstract

Structure-based protein design has attracted increasing interest, with numerous
methods being introduced in recent years. However, a universally accepted method
for evaluation has not been established, since the wet-lab validation can be overly
time-consuming for the development of new algorithms, and the in silico validation
with recovery and perplexity metrics is efficient but may not precisely reflect true
foldability. To address this gap, we introduce two novel metrics: refoldability-based
metric, which leverages high-accuracy protein structure prediction models as a
proxy for wet lab experiments, and stability-based metric, which assesses whether
models can assign high likelihoods to experimentally stable proteins. We curate
datasets from high-quality CATH protein data, high-throughput de novo designed
proteins, and mega-scale experimental mutagenesis experiments, and in doing
so, present the PDB-Struct benchmark that evaluates both recent and previously
uncompared protein design methods. Experimental results indicate that ByProt,
ProteinMPNN, and ESM-IF perform exceptionally well on our benchmark, while
ESM-Design and AF-Design fall short on the refoldability metric. We also show
that while some methods exhibit high sequence recovery, they do not perform as
well on our new benchmark. To the best of our knowledge, this is the first work to
benchmark protein design methods using mega-scale experimental data. Our pro-
posed benchmark paves the way for a fair and comprehensive evaluation of protein
design methods in the future. Code is available at https://github.com/WANG-
CR/PDB-Struct.

1 Introduction

Designing new proteins with desired properties is a pivotal task in bioengineering [Huang et al.,
2016]. It aids in developing therapies, crafting novel antibodies, and exploring the uncharted realm of
proteins beyond those found in nature. Structure-based protein design has emerged as the predominant
approach for de novo protein design, owing to its versatile application across proteins with well-
defined structures. In recent years, the integration of deep learning has enhanced the capabilities
of structure-based protein design, yielding notable results [Ingraham et al., 2019, Jing et al., 2020,
Dauparas et al., 2022, Zheng et al., 2023].

Benchmarking these methods is crucial, yet current benchmarks have limitations. Experimental
validation is expensive [Ladd et al., 1977, Bai et al., 2015, Dauparas et al., 2022], while the in silico
proxy, measuring sequence recovery and perplexity [Jing et al., 2020], is efficient but may not reflect
real-world foldability. High sequence similarity doesn’t guarantee similar folding structures, as
single mutations can lead to misfolds like in Alzheimer’s [Cohen and Kelly, 2003, Qu et al., 1997].
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Perplexity evaluates the uncertainty of a model’s predictions by measuring the likelihood that the
protein design model assigns to the ground truth sequence, but the ground truth sequence offer limited
distribution insight. Furthurmore, protein design methods compute pseudo-likelihoods based on
varying assumptions, making these scores incomparable. Some models, such as one-shot predic-
tions [Gao et al., 2023b], assume conditional independence, unlike autoregressive models [Ingraham
et al., 2019].

To enhance existing benchmarks, we introduce two novel metrics for structure-based protein design
methods. The "refoldability" metric evaluates the quality of designed sequences, leveraging protein
structure prediction models [Jumper et al., 2021, Mirdita et al., 2022, Lin et al., 2022, Wu et al.,
2022] to determine folding stability and structure similarity. The "stability-based metric" assesses
a method’s ability to estimate the protein sequence landscape using curated datasets from high-
throughput de novo protein design and mutagenesis experiments [Rocklin et al., 2017, Tsuboyama
et al., 2023]. With these metrics, we present the PDB-Struct benchmark, comparing both latest and
previously unexamined models. Our main contributions are:

• Introduction of two evaluation metrics with curated datasets.
• Establishment of the PDB-Struct benchmark, examining prevalent protein design models.
• Unique comparison of encoder-decoder and structure-prediction based design methods.
• Comprehensive insights into the strengths and weaknesses of various protein design models.

2 Method

Problem Definition Protein can be represented as a pair of amino acid sequence and structure
(S,X ), where S = [s1, s2, · · · , sn] denotes its sequence of n residues with si ∈ {1, ..., 20} indicating
the type of the i-th residue, and X = [x1,x2...,xn] ∈ Rn×4×3 denotes its structure with xi

representing the Cartesian coordinates of the i-th residue’s backbone atoms, including N, C-α, C and
O. The challenge posed by the structure-based protein design is to elucidate an effective model θ
capable of learning the underlying mapping from the provided structure data to the corresponding
sequence distribution, and then generate novel sequences Ŝ ∼ pθ(S|X ).

Refoldability-based Metric "Refoldability" is the natural metric that measures the quality of
sequences designed based on structures. It assesses sequence quality on two aspects: the ability of
the designed sequence to express and fold stably, and its potential to refold into the input structure.
The evaluation pipeline is shown in Figure. 1, where we generate multiple sequences with sequence
design models given an input structure, and predict the structures for all the generated sequences.
Firstly, to assess whether the generated sequences can respect the structure condition, we evaluate the
agreement of the ground truth structure with the predicted structures using the TM-score [Zhang and
Skolnick, 2005]. We refer this metric as Ref-TM. Furthurmore, to evaluate the folding stability of
the generated sequences, we compute the mean value of the per-residue confidence estimate pLDDT
predicted by the structure prediction models, refered as Ref-pLDDT. Previous research indicates
that pLDDT serves as a reliable predictor of disorder [Tunyasuvunakool et al., 2021]. We employ
AlphaFold2 [Jumper et al., 2021], OmegaFold [Wu et al., 2022], and ESMFold [Lin et al., 2023] as
structure prediction models, which helps minimize deviations due to the choice of model.

Stability-based Metric The stability-based metric evaluates the ability of structure-based design
methods to assign higher likelihoods to sequences with high experimental stability scores. The score
R is measured by:

R(θ,D) = ρs
(
L(S(i)|Xtemplate, θ),G(i)

)
(1)

where ρs is Spearman’s correlation, θ is the design model, L is the pseudo-log-likelihood function
and D =

{
Xtemplate,S(i),G(i)

}
is the evaluation dataset, with Xtemplate the template structure, S(i)

the i-th sequence and G(i) the stability score corresponding to the i-th sequence. If the score R is
high, the protein design method is likely to assign higher probability to the sequences with higher
stability. Addressing the previously mentioned limitations of the perplexity metric, this dataset with
multiple sequences can construct a more accurate sequence landscape that approximate the ground
truth distribution. By the way, we apply the spearman correlation to calculate R, which measure the
correlation between score rankings instead of the direct relationship between two attributs, making
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Figure 1: Pipeline of measuring refoldability metric.

the protein design methods comparable among them again. Note that the temperature is set to 1.0 for
all the models.

3 Experiments

Baselines We evaluate StructTrans [Ingraham et al., 2019], GVP [Jing et al., 2020], Protein-
MPNN [Dauparas et al., 2022], PiFold [Gao et al., 2023b], ByProt [Zheng et al., 2023], AF-
Design1 [Wang et al., 2022], ESM-Design [Verkuil et al., 2022], ESM-IF1 [Hsu et al., 2022] with our
benchmark. Each model follows the default settings provided in their original papers or codebases.
Encoder-decoder based models are trained on the CATH4.2 train dataset for up to 100 epochs. ESM-
IF1, on the other hand, is trained on the CATH4.3 dataset2. ESM-Design and AF-Design models are
trained on full UniRef data [Suzek et al., 2015]or complete PDB data [Berman et al., 2000].

Table 1: Refoldability metric and recovery metric on the CATH dataset. We employ bold and
underlining to highlight the best and suboptimal results on each metric. The details of the dataset and
experiment are provided in the appendix.

Design method ESMFold OmegaFold AlphaFold2 Recovery%
TM pLDDT TM pLDDT TM pLDDT

Uniform 0.05 27.68 0.05 31.53 0.06 33.68 5.00
Natural frequencies 0.07 30.53 0.07 35.59 0.06 35.02 5.84

StructTrans 0.72 68.85 0.64 70.35 0.79 80.66 35.89
GVP 0.73 69.67 0.67 74.33 0.83 84.29 39.46
ProteinMPNN 0.80 76.53 0.76 80.75 0.87 87.89 41.44
PiFold 0.71 67.55 0.64 70.21 0.82 82.54 44.86
ByProt 0.73 72.12 0.70 77.58 0.85 87.26 51.23
AF-Design 0.53 61.37 0.53 72.04 0.52 75.29 15.95
ESM-Design 0.38 59.65 0.38 62.66 0.37 60.02 17.33

Wildtype 0.80 74.91 0.75 78.39 0.90 89.87 100

Results on Refoldability-based Metric In Table. 1, we report the refoldability and recovery
metrics, where ProteinMPNN leads in refoldability, achieving 0.87 Ref-TM and 87.89 Ref-pLDDT
using AlphaFold2 prediction, with ByProt and GVP closely following. ESM-Design and AF-Design,
however, are found lacking in both metrics. To provide context, random sampling produces sequences
with a mere 0.05 Ref-TM, indicating poor refoldability and sequence quality. In contrast, wildtype
sequences achieve a Ref-TM of 0.90 with AlphaFold2, underscoring its predictive accuracy for new
sequences.

1https://github.com/sokrypton/ColabDesign
2Since ESM-IF1 is trained on CATH4.3, we did not evaluate its refoldability on CATH4.2 to avoid potential

data leakage. Currently, we cannot train ESM-IF on CATH4.2 because the training code has not been provided.

3



Other Observations 1) Table. 1 highlights some discord between recovery and refoldability metrics.
For instance, ProteinMPNN, despite its third-place ranking in recovery, excels in Ref-TM and Ref-
pLDDT metrics, while PiFold, with its second-place recovery, lags in refoldability. 2) Despite these
discrepancies, rankings remain consistent across different structure prediction models, solidifying
the credibility of refoldability metrics. 3) We also observed congruence between Ref-TM and
Ref-pLDDT trends across structure prediction models, emphasizing their potential as pre-screening
discriminators for generated sequences in structure-based protein design.

Results on Stability-based Metrics Table. 2 shows the stability metric on De Novo Design datasets.
(i) AF-Design displays the highest correlation score, likely attributed to its use of AlphaFold2.
However, sampling from the estimated distribution is still challenging. (ii) Within the encoder-
decoder methods, ESMIF performs the best, followed by ByProt and ProteinMPNN. (iii) Surprisingly,
ESM-Design does not perform as good as AF-Design model, and also falling short compared to
other Encoder-Decoder methods. In the appendix, we also analyze results on the Mutagenesis Data.
ESM-IF achieves the highest mean score, with PiFold coming in second. However, the performance
of the AF-Design model is not as strong, possibly because structure prediction models they use are
not sensitive to single-site mutations [Pak et al., 2023].

Table 2: Stability metric on De Novo Design datasets.
Design method EHEE3 EHEE4 EHEE5 EHEE6 HHH54 HHH82 HHH84 HHH86 mean

GVP 0.158 0.285 0.299 0.271 0.682 0.593 0.588 0.658 0.442
PiFold 0.158 0.287 0.269 0.267 0.688 0.607 0.556 0.641 0.434
ProteinMPNN 0.176 0.282 0.314 0.274 0.688 0.584 0.570 0.626 0.439
ESMIF 0.171 0.335 0.331 0.282 0.678 0.660 0.625 0.691 0.472
ByProt 0.191 0.297 0.296 0.270 0.688 0.631 0.571 0.626 0.446

AF-Design 0.252 0.366 0.402 0.353 0.699 0.672 0.661 0.723 0.516
ESM-Design 0.153 0.259 0.291 0.189 0.622 0.369 0.303 0.362 0.319

Takeaways (i) High recovery in models doesn’t always correlate with good refoldability. (ii)
ByProt, ProteinMPNN, and ESM-IF excel in our benchmark. (iii) Encoder-decoder methods tend to
have an advantage over structure-prediction based methods in refoldability and recovery metrics, but
the latter offer promise in sequence density estimation. (iv) AF-Design shows distinct advantages
over ESM-Design in various metrics and inference efficiency. (v) PiFold performs well in recovery
and stability metrics, but faces challenges in refoldability, possibly due to conditional independence
assumption.

4 Conclusion

To better evaluate structure-based protein design models, we propose the refoldability-based metric
and stability-based metric. We curate datasets corresponding to these metrics, and conduct experi-
ments on this PDB-Struct benchmark. By examining the benchmark results, we pinpoint strengths
and weaknesses of each model, offering insights to protein researchers in their model selection. This
paves the way for a fair and comprehensive evaluation of protein design methods in the future.

Future Work and Improvement We are continuously collecting additional De Novo Design and
Mutagenesis datasets to enhance our benchmark, and we are evaluating newly released protein-design
methods such as KW-design [Gao et al., 2023a] and GRADE-IF [Yi et al., 2023]. Furthermore, we
are conducting extensive experiments to demonstrate the superiority of refoldability metrics over the
recovery metric. Discussions regarding the efficiency and reliability of the PDB-Struct benchmark
evaluations are ongoing, and we intend to address these in a future version of this work. Concurrently,
we discovered another project for benchmarking protein design methods, ProteinInvBench [Gao et al.,
2023c], which has been accepted into the NeurIPS 2023 Datasets and Benchmarks Track. Inspired by
their approach, we are considering the addition of a diversity metric to our benchmark.
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A Supplementary Material

A.1 Existing Structure-based Protein Methods

Encoder-Decoder Model Traditional methods encode 3D structure data using hand-crafted features
or direct atom positions, typically employing MLPs [O’Connell et al., 2018, Li et al., 2014] and
CNNs [Qi and Zhang, 2020, Anand and Achim, 2022]. Alternatively, viewing protein structure as a
k-NN graph of amino acids retains spatial information, making GNNs a favored encoder. StructTrans
employ graph-based self-attention modules in their encoder-decoder framework and decode in an
autoregressive manner [Ingraham et al., 2019]. Further advancements have been made by GVP [Jing
et al., 2020], ProteinMPNN [Dauparas et al., 2022] and ESM-Inverse Folding [Hsu et al., 2022],
both showcasing significant improvements. Some of the latest models suggest decoding residues
conditionally independently given their structure, which accelerates the generation process without
compromising sequence recovery[Gao et al., 2023b]. Moreover, inspired by the achievements in
protein language modeling, ByProt introduced a structure adapter to incorporate ESM2 model[Lin
et al., 2022], then decode as iterative refinement and boasts high sequence recovery[Zheng et al.,
2023]. Works on graph-based encoder-decoder paradigms are emerging[Tan et al., 2022, Gao et al.,
2023a, Mao et al., 2023], setting new benchmark in sequence recovery metric.

Structure Prediction based Model Models of this kind utilize pretrained structure prediction
models or pretrained language models [Yang et al., 2020, Jumper et al., 2021] to compute an energy
function, and then utilise different sampling strategies to generate samples. Wang et al. [2022]
proposed to sample with thousands of gradient steps. Alternatively, Verkuil et al. [2022] proposed
to perform Markov chain Monte Carlo sampling steps combined with simulated annealing, all to
minimize the loss functions defined by protein structure prediction models and the structure condition.
Similarly, hallucination methods aim to maximize the KL divergence between the predicted structures
and a background distribution [Anishchenko et al., 2021, Hie et al., 2022]. However, it should be
noted that the sampling process in these models tends to be slower than that in encoder-decoder
models.

Diffusion-based Model Diffusion models [Ho et al., 2020] offer an alternative to generate samples
through denoising, and they potentially offer advantages when learning from limited data [Zaidi
et al., 2022]. Yi et al. [2023] performs denoising in the graph attribute space and achieves high
sequence recovery. There are other models applying diffusion models in the discrete sequence space,
such as EvoDiff [Alamdari et al., 2023] and, ProteinGenerator [Lisanza et al., 2023]. Other works,
like Chroma [Ingraham et al., 2022] and RFDiffusion [Watson et al., 2022], apply denoising in the
structure space. Since they have not released the code, or do not apply to structure-based protein
sequence design, we are not evaluating them at the moment.
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A.2 Details of Metrics and Dataset

A.2.1 Evaluating the Designed Sequences with Refoldability-based Metrics

Motivation "Refoldability" is the natural metric that measures the quality of sequences designed
based on structures. It evaluates the sequence quality on two aspects: whether the designed sequence
can be expressed and fold stably, and whether they can refold into the input structure. Previous
works have synthesized the proteins experimentally to assess refoldability [Dauparas et al., 2022,
Verkuil et al., 2022]. However, the synthesis process [Mori and Barth, 1999], as well as the structure
determination methods, such as X-ray crystallography and cryoEM [Ladd et al., 1977, Bai et al.,
2015] are costly, hindering benchmarking across various design models. Previously, sequence
recovery was proposed as an in silico benchmark [Ingraham et al., 2019]. While it’s straightforward
to calculate, there’s no confirmed evidence that a high sequence similarity sufficiently implies a high
similarity between folded structures, or implies a good foldability in real world. For instance, even
single mutations can cause a protein to misfold, leading to diseases such as Alzheimer’s and cystic
fibrosis [Cohen and Kelly, 2003, Qu et al., 1997]. Fortunately, due to advancements in high-accuracy
protein structure prediction models, recent work [Wang et al., 2022] suggests leveraging them as an
in silico proxy for actual structures. Adopting this idea, we propose to estimate the true refoldability
with structure prediction models.

It’s important to highlight that, although Ref-TM metric and ScTM metric [Trippe et al., 2023] share
a similar pipeline, they serve different purposes. The purpose of ScTM is to evaluate the quality of
generated protein structures, treating both the protein design model and structure prediction model
as oracles. In contrast, the foldability metric considers the inverse folding model as variable, while
maintaining the input structure as a fixed ground truth derived from the test set.

Dataset We use the CATH4.2 40% non-redundant protein dataset [Orengo et al., 1997], and adopt
the same data splitting based on CATH topology as StructTrans [Ingraham et al., 2019]. This results
in 18024 protein single chains in the training set, 608 in the validation set, and 1120 in the test set.
We furthur curated a small, high-quality test set from the original test set. After removing data points
with unmeasured coordinates in the protein sequences, we randomly select one protein data from
each CATH family and manually excluded proteins with extensive disordered regions, resulting in a
final test set of 82 samples, with length ranges from 49 to 480 amino acids.

A.2.2 Evaluating the Estimated Likelihoods with Stability-based Metrics

Motivation Previous benchmark use perplexity as metric, which is the exponential of negative
pseudo-log-likelihood. However, using and comparing perplexities introduces ambiguity due to
several factors. First, the perplexity value is sensitive to changes in the sampling temperature. Using
a protein design method with a high sampling temperature of 0.1, for example, could result in
its perplexity exceeding that of a random sampling model based on residue frequency matrix, as
demonstrated in Table. 3. Second, the computation of pseudo-log-likelihood differs among models, as
shown in Table. 4. For example, PiFold assumes conditional independence of the residue types given
the input structure, whereas ESM-IF does not make this assumption. Direct comparison between
these methods, therefore, may not be entirely fair. Lastly, assigning high perplexity to the ground
truth sequence does not imply that the protein design method construct the sequence distribution
wrongly, since it is possible that the method has distributed a high probability mass function across
many sequences which could fold into the given structure but are not present in the dataset.

Table 3: Perplexities on CATH test set.

Design method Perplexity

Uniform 20.00
Natural frequencies∗ 18.32
ESM-IF(τ = 1) 4.24
ESM-IF(τ = 0.1) 3749.51

Table 4: Calculation of pseudo-log-likelihood.

Model Type3 Pseudo-log-likelihood L(S|X , θ)

Autoregressive 1
N

∑N
i=1 log pθ(si|s<i,X )

One-Shot 1
N

∑N
i=1 log pθ(si|X )

Refinement 1
N

∑N
i=1 log pθ(si|s−i,X )

MCMC −λpEprojection(X|S)− λLMELM (S)
Gradient Descent −λpEprojection(X|S)− λLMELM (S)

3The autoregressive decoding models include StructTrans, GVP, ProteinMPNN, and ESM-IF. The one-shot
decoding model is represented by PiFold and the refinement decoding model is represented by ByProt. While
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Dataset We constructed datasets from two types of high-throughput data: "De Novo Design" and
"Mutagenesis"[Rocklin et al., 2017, Tsuboyama et al., 2023]. In these original datasets, miniproteins
in 4 topologies were designed, and single-site mutations were tested on several de novo designed
miniproteins. The statistics for these datasets are presented in Table.5, Table.6, and Table.7 while
Figure.2 and Figure. 3 illustrate example datasets. The first category, De Novo Design data, refers
to proteins modeled after specific structural templates. These proteins are designed based on these
structure templates, and they will fold into corresponding structure once it can be folded. Even
though there is a one-to-one relationship between structure and sequence in this data, structures
stemming from the same topology show only subtle differences. For our curated dataset, we clustered
these structural templates and replaced individual templates with the centroid of their respective
clusters. Given that all structures within a cluster have a TMscore exceeding 0.5 with each other,
it is reasonable to assume that sequences derived from these structures would have highly similar
folds [Xu and Zhang, 2010]. In contrast, the second category, Mutagenesis data, is derived from
various templates, including both natural proteins in the PDB and De Novo designed proteins with
predicted structures. These datasets contain a significant amount of single-site and double-site
mutation data related to the corresponding template, providing insight into which mutations stabilize
the protein.4 We further removed the ’insertion’ and ’deletion’ types of mutations, which alter the
length of amino acid sequences, from the original dataset [Tsuboyama et al., 2023]. This resulted in
527K sequences with a stability score.

Table 5: Dataset statistic of the De Novo Design data. We have clustered the protein structures
and picked the four biggest cluster as datasets, on two design topologies EHEE and HHH . i.e.
EHEE6 denotes the 6-th structural cluster, which is the biggest cluster among EHEE topology.
Sequences are noted as stable if their experimental stability score is greater or equal than 1. We are
working on the structural clustering of de novo designed proteins to curate more datasets.

EHEE3 EHEE4 EHEE5 EHEE6 HHH54 HHH82 HHH84 HHH86

# sequence 1743 1850 477 6873 669 632 1990 612
# stable sequence 110 120 31 511 203 186 621 213
portion 0.06 0.06 0.06 0.07 0.30 0.29 0.31 0.35

Table 6: Dataset statistic of the Mutagenesis data derived from Rocklin et al. [2017]. Sequences
are considered stable if their experimental stability score is greater than or equal to 1. Each column
represents a dataset, while the name indicates the template protein.

EEHEE37 EEHEE1498 EEHEE1702 EEHEE1716 EEHEE779

# sequence 775 775 775 775 775
# stable sequence 49 392 680 339 163
portion 0.063 0.506 0.877 0.437 0.21

HEEH223 HEEH726 HEEH872 HHH142 HHH134 HHH138

# sequence 775 775 775 775 775 775
# stable sequence 453 39 438 623 720 754
portion 0.585 0.05 0.565 0.804 0.929 0.973

Table 7: Dataset statistic of the Mutagenesis data derived from dataset #3 in Tsuboyama et al. [2023]
Dataset Description # of total sequences sequence group # sequences groups # of sequences

Original Dataset All data for ∆∆G 607,839 single-site mutation 412 wild-types 448,788

(WT < 4.75 kcal/mol) double-site mutation 496 pairs 159,051

Filtered Dataset remove "indel" and "delete" 527,830 single-site mutation 372 wild-types 368,779

double-site mutation 481 pairs 159,051

ESM-Design is categorized under MCMC sampling models, AF-Design is a gradient descent-based model with
λLM = 0.

4The stability-based metric evaluated on Mutagenesis dataset is similar to the experiment conducted by
Ingraham et al. [2019]. However, while Ingraham et al. [2019] applied the Pearson correlation score.
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Figure 2: De Novo Design dataset with one structure template and four corresponding sequences
along with stability scores.

Figure 3: Mutagenesis dataset with one structure template and four corresponding sequences along
with stability scores
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A.3 Details of Experiments

Settings For each structure in the test set, we randomly generated 100 sequences using protein
design models and also from random models that sample from uniform and natural frequency
distributions. The sampling temperature is set to 0.1 for all encoder-decoder-based models. However,
due to the slow inference speed of AF-Design (2.4 GPU hours per sequence on average) and ESM-
Design (9 GPU hours per sequence on average), we limited our generation to 5 sequences per structure
for AF-Design and just 1 sequence per structure for ESM-Design. We then predicted the structures
of these generated sequences using both ESMFold and OmegaFold. AlphaFold25 is somehow time
costly to run, so we randomly feed one sequence per structure into AlphaFold2. Finally, we employ
the TMalign toolkit [Zhang and Skolnick, 2005] to compute the Ref-TM score. We chose to overlook
potential data leakage issues for these models because they begin from random starting points and is
inable to sample the exact ground truth sequence accurately, as demonstrated in further experiments.
All experiments were conducted on Nvidia Quadro RTX8000.

Stability-based Metric on Mutagenesis Data Table. 8 shows the stability metric on De Novo
Design datasets presented in [Rocklin et al., 2017]. (i) There is no single model that consistently
performs well across all datasets. Overall, ESM-IF again achieves the highest mean correlation score
of 0.433, and PiFold achieves the second with 0.413 correlation. (ii) The observation that PiFold
performs well in density estimation on the mutational dataset and in recovery suggests that PiFold
excels at modeling per-residue likelihood. (iii) The performance of AF-Design and ESM-Design
is subpar. The possible reason is that structure prediction based models are not sensitive to point
mutations [Pak et al., 2023].

Table 9 presents the stability metric applied to mega-scale Mutagenesis datasets, which includes
527,830 sequences. This dataset is significantly larger than the one comprising 8,525 sequences
used in the previous table. We have divided the dataset into two parts: mutations on 215 natural
proteins and mutations on 156 de novo designed proteins. This division allows us to examine whether
the models perform differently on these groups. The correlation scores were first calculated for
each sequence group relative to its corresponding wild-type protein, and then these scores were
averaged. Our observations are as follows: (i) ESMIF consistently achieves the highest correlation
scores across both de novo proteins and natural proteins, followed by ProteinMPNN, ByProt, and
PiFold; (ii) Encoder-decoder based models show lower correlation scores on de novo sequence
groups, while structure-prediction based models attain higher scores on natural sequence groups;
(iii) The performance of AF-Design and ESM-Design remains subpar in this larger dataset. Notably,
ESM-Design performs poorly on natural proteins, exhibiting both positive and negative Spearman’s
correlation, which results in an average correlation score near zero.

Table 8: Stability metric on Mutagenesis datasets in [Rocklin et al., 2017].
Design method EEHEE37 EEHEE1498 EEHEE1702 EEHEE1716 EEHEE779 HEEH223

GVP 0.481 0.318 0.247 0.413 0.526 0.340
PiFold 0.581 0.298 0.187 0.477 0.580 0.413
ProteinMPNN 0.597 0.382 0.136 0.384 0.595 0.324
ESMIF 0.641 0.382 0.236 0.565 0.645 0.454
ByProt 0.629 0.414 0.320 0.548 0.584 0.402

AF-Design 0.557 0.300 0.027 0.036 0.490 0.195
ESM-Design 0.240 0.115 -0.080 0.188 0.039 0.227

Design method HEEH726 HEEH872 HHH142 HHH134 HHH138 mean

GVP 0.102 0.248 0.502 0.253 0.295 0.339
PiFold 0.239 0.315 0.536 0.290 0.383 0.391
ProteinMPNN -0.055 0.205 0.431 0.256 0.326 0.326
ESMIF 0.216 0.335 0.573 0.318 0.398 0.433
ByProt 0.238 0.338 0.511 0.289 0.360 0.421

AF-Design 0.214 -0.148 0.453 0.351 0.314 0.254
ESM-Design 0.062 0.013 0.004 -0.050 -0.050 0.064

5We use the ColabFold [Mirdita et al., 2022] implementation with MMseqs MSA alignment [Steinegger and
Söding, 2017, Mirdita et al., 2019].
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Table 9: Stability metric applied on mega-scale experimental Mutagenesis datasets [Tsuboyama
et al., 2023]. The columns display the average stability scores for de novo designed proteins, natural
proteins in the PDB, and across all 372 sequence groups.

Design method De Novo Natural All
GVP 0.390 0.494 0.450
PiFold 0.448 0.556 0.511
ProteinMPNN 0.428 0.605 0.531
ESMIF 0.500 0.629 0.575
ByProt 0.468 0.586 0.536

AF-Design 0.354 0.292 0.318
ESM-Design 0.127 0.0004 0.053
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