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Abstract

The accurate computational annotation of protein sequences with enzymatic func-
tion, especially those that are part of the functional and taxonomic dark matter,
remains a fundamental challenge in bioinformatics. Here, we present HiFi-NN,
(Hierarchically-Finetuned Nearest Neighbor search) which annotates protein se-
quences to the 4th level of EC (enzyme commission) number with greater precision
and recall than all existing deep learning methods. HiFi-NN is a hierarchically-
finetuned deep learning method based on a combination of semi-supervised repre-
sentation learning and a nearest neighbours classifier. Furthermore, we show that
this method can correctly identify the EC number of a given sequence to identities
below 40%, where the current state of the art annotation tool, BLASTp, cannot.
We proceed to improve the representations learned by increasing the diversity of
the training set, not just in sequence space but also in terms of the environment the
sequences have been sampled from. Finally, we use HiFi-NN to annotate a portion
of microbial dark matter sequences in the MGnify database.

1 Introduction

Enzymes are efficient catalysts capable of accelerating chemical reactions by several orders of magni-
tude [1]. They play a crucial role in a myriad of processes within living organisms, encompassing
functions from respiration and digestion to facilitating muscle and nerve activity. Sequence databases
are experiencing unprecedented growth, providing an increasing number of enzymatic sequences that
span a wide range of microbial genomes [11] [12]. While these developments have led to impressive
success in training unsupervised models [19][24], a substantial portion of this sequence space remains
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functionally and taxonomically unannotated and it has been termed the "microbial dark matter"
(MDM) [13] [14]. At least one-third of microbial proteins cannot be annotated by aligning them with
functionally characterized sequences, and recent studies on the entire AlphaFold database provide
evidence that up to 34% of the protein space qualifies as dark matter [25]. Enzymes are exceptionally
attractive in biotechnology, catalyzing a wide array of chemical reactions under mild, non-toxic
conditions [1]. Given the vast potential within the MDM, it is imperative that we develop innovative
methodologies for more accurate and cost-efficient enzyme sequence annotation.

The catalytic function of enzymes is commonly annotated with Enzyme Commission (EC) numbers,
categorized mainly into oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases, and
transferases [2] [3]. Enzyme commission numbers are an effective proving ground for functional
annotation methods. This is because the EC number describes a reaction catalysed by a protein,
through convergent evolution different folds can catalyse the same reaction [1] [2] [3] and so
annotation methods which rely solely on sequence homology may fail to generalise to novel folds
or sequence motifs. Additionally, a given protein may have multiple EC numbers. A total of 8,243
EC numbers have been identified in the BRENDA [3] database. The numbering system is structured
in a hierarchical manner, with 7 top level categories. Each level of the hierarchy denotes a more
specific type of reaction than the previous. For example, all carbonic anhydrases (EC:4.2.1.1) are
hydro-lyases (EC:4.2.1) and that all hydro-lyases are lyases (EC:4).

Several computational methods have been developed to annotate EC numbers from amino-acid
sequence alone, such as the sequence-homology-based BLASTp [4], or methods based on curation
of protein families or sequence profiles [5], [6], [7], as well as deep-learning methods that were
developed more recently: These include DEEPre [8], DeepEC [9], and CLEAN [10]. The latter is
considered the current stat-of-the art deep-learning method for predicting EC numbers from sequence.
Despite the aforementioned advances in deep-learning based enzyme functional annotation, and
language models being built to understand the language of life for the bacterial and archaeal kingdoms,
comprehensively annotating the microbial dark matter remains a challenge [15] [16]. To address this
challenge, we present HiFi-NN (Hierarchically-Finetuned Nearest Neighbor search). HiFi-NN is
based on contrastive learning, which has been applied to various protein-sequence related tasks [10],
[17], which we have optimised for annotation of the MDM.

HiFi-NN serves as a method by which a query amino acid sequence can be compared to a set of
protein sequence embeddings to find those most similar to each query. To this end, we provide a model
that has been trained using contrastive learning to map ESM-2 embeddings [19] to a new feature
space where distances between the embeddings of sequences correspond to the similarities of their
respective EC numbers. The contributions of our manuscript are three-fold: (1) We develop a method
that can correctly identify the EC number of sequences below the twilight zone by incorporating the
inherent hierarchy in EC numbers in our contrastive loss, surpassing current methods. (2) We show
that the model can improve by increasing the sequence and environmental diversity of the training set
from our proprietary database. (3) We annotate a subset of the dark space in the MGnify database
[12].

2 Related work and Methods

Related work and methods are outlined in the supplementary information sections A and B, respec-
tively.

3 Results

We train HiFi-NN using contrastive learning, where the training objective is to learn an embedding
space of vectors where the Euclidean distance among data points represents the similarities among
their functionalities (EC classes) (Fig. 1). In particular, for each sequence in the training set (anchor),
we select a positive and a negative sequence, which belong to the same and different EC classes,
respectively (Fig. 1a). HiFi-NN is then trained with a triplet loss where distances between positive
and anchor sequences are minimized, and between anchor and negative sequences are maximized
(Fig. 1a).

We leverage the inherent hierarchy of the EC annotation system as a natural augmentation by sampling
positive and negative examples for a given anchor across each of the four levels. The loss function is
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Figure 1: The contrastive learning protocol followed by HiFi-NN during (a) training and (b) inference.

a weighted sum of triplet losses applied to each level of the hierarchy. The selection of positives and
negatives for a given anchor is outlined in Table 1. After training, the model assigns the EC label to a
query sequence by applying k-nearest neighbor to a pre-embedded lookup table (Fig. 1b).

Table 1: Positive and negative labels for a given anchor
Anchor: 1.1.1.1

Level Positive Negative

1 1.2.4.6 7.1.4.21
2 1.1.3.5 1.3.2.7
3 1.1.1.2 1.1.6.11
4 1.1.1.1 1.1.1.2

We aimed to assess the performance of HiFi-NN in diverse scenarios, and to do so, we assembled
different datasets, each with a specific purpose. First, we wanted to compare how our model performs
at varying clustering identities to the current gold standard protein annotation tool, BLASTp, which
requires several validation sets representing each identity threshold. Second, we prepared a dataset to
calibrate our choice of k nearest neighbours and distance thresholds at which our model should refuse
to annotate, outlined in supplementary information D and E. Lastly, we further curated a dataset
to annotate the MDM. For this we use Swissprot clustered to 30%, with 100 sequences removed
as a validation set, and supplemented with sequences from our in-house knowledge graph. In each
instance we train a separate model, one for each lookup set used. This ensures that at training time
the model does not have access to sequences with the sequence similarity to the training set which
we aim to evaluate performance on.

3.1 Performance relative to BLASTp

For the first purpose, we clustered the Swissprot database to sequence identities ranging from 10% to
90% in increments of 10. Our results showed that HiFi-NN outperforms Blast at almost all identity
ranges in recall, precision and F1 score (Figure 2a-c), particularly excelling at the low identity range
(10-50%).

Figure 2: HiFi-NN can annotate proteins to low sequence identity better than homology based
approaches.
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We expand on the performance comparison between HiFi-NN and BLASTp as well as the make-up
of the clustered sequence sets in supplementary information section C.

3.2 Annotating benchmarking datasets outside public databases

Figure 3: Training sets: Swissprot and sequence supplementation from an in-house metagenomic
knowledge graph. a) UMAP of Swissprot sequences with an EC number used for training HiFi-NN.
b) UMAP with sequences from a) overlayed with 3 million sequences from an in-house metagenomic
knowledge graph. c) Key features of the knowledge graph ensuring diverse sampling origin and
Nagoya compliance [18], from which the subset of 3 million sequences shown in b) were derived.

Seeing that HiFi-NN ourperforms BLASTp especially at the low sequence identity range (compared
to the lookup data sets), we wanted to test the performance on benchmarking datasets comprised of
novel enzyme sequences outside public databases. To that end, we hypothesised that our model would
further benefit from supplementing the training dataset with sequences from diverse and under-studied
environments (Fig 3a and 3b). For this, we use a proprietary, Nagoya-compliant [18] metagenomic
knowledge graph, covering broad pH, temperature, and biome ranges (Fig 3c). A curated subset of 3
million sequences (Fig 3b) from this knowledge graph was added to the training set and a new model
was trained on the bigger sequence set. We further expand on the selection and constitution of the
training sets used for HiFi-NN models in supplementary information section B.

We compare our method to other state of the art deep learning protein function annotation tools as
well as the current most widely used annotation tool, BLASTp, on the Price data set [35]. This data set
was introduced for benchmarking the performance of EC number annotation by [28]. It is composed
of 149 sequences covering 56 EC numbers. As shown in table 2, HiFi-NN (trained on Swissprot only)
outperforms BLASTp and deep-learning annotation methods in recall and F1-score for the task of
annotating the Price enzyme dataset [35]. When supplemented with 3 million curated sequences from
our in-house database, HiFi-NN outperforms all the aforementioned methods in recall, precision, and
F1-score, including HiFi-NN trained on Swissprot only. Crucially, the sequence supplementation to
the training set also increases the confidence score of correct annotations (supplementary information
section F).

3.3 Using HiFi-NN for annotating the microbial dark matter

With HiFi-NN performing particularly well on annotating the low sequence identify range and
microbial benchmarks, we utilise the best performing model on the Price-149 data set to annotate
microbial dark matter. For this, we curated a representative set of 2 million amino acid sequences
from the microbial database MGnify [12] (supplementary information section G). When we annotate
this subset with BLASTp (same parameters as section 3.1), and HiFi-NN, with a more conservative
confidence cutoff than in section 3.2 to optimise for higher precision (supplementary information
section G). As a result, BLASTp annotates 548,587 sequences and HiFi-NN annotates 1,673,827
sequences.

With no ground truth for these sequences we seek to validate our annotations using the predicted
structures for these MGnify sequences available from the ESM Metagenomic Atlas [19]. The
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Method Recall Precision F1-score

ECPred 0.0197 0.0197 0.0197
DEEPre 0.0403 0.0415 0.0386
DeepEC 0.0724 0.1184 0.0846
ProteInfer 0.1382 0.2434 0.1662
ProteinVec 0.2961 0.4901 0.3378
BLASTp 0.3750 0.5083 0.3852
DeepECtransformer 0.3026 0.5263 0.3511
CLEAN 0.4671 0.5844 0.4947
HiFi-NN (Swissprot) 0.5724 0.5505 0.5304
HiFi-NN (Swissprot +
3 million curated sequences) 0.5921 0.6657 0.6015

Table 2: Recall, precision and, F1 scores on a data set of enzymes from [35] (referred to as the
Price-149 dataset in [10], [49]. Each reported result using HiFi-NN is using the k = 20 nearest
neighbours. The trade-off between recall and precision is discussed in the supplementary information.
As in [10] we report the weighted average of each metric to account for class imbalance. The scores
from each competing method are as reported in [10].

Figure 4: Sequence similarity graph of the MGnify sequences annotated by HiFi-NN but not by
BLASTp. We highlight some representative examples which have matches in the PDB.

hypothesis we seek to test is that for at least some of our annotations, are there proteins in the Protein
Data Bank (PDB) [44] which have high structural similarity to the predicted structures of the subset of
MGnify we chose. Furthermore, we are concerned with which of these have high structural similarity
to PDB entries annotated with the same EC number as predicted by HiFi-NN. Of the 2 million
MGnify sequences we select 116,385 and their corresponding structures - these sequences both
have high confidence HiFi-NN annotations (above 0.7), and no BLASTp annotation (supplementary
information section G). We then use Foldseek [46] to calculate the pairwise TM Score [47] between
this set of structures and the structures available in the PDB.

Attesting to the ’dark matter’ nature of these sequences, only 1,652 of these structures have a
minimum TM score of 0.5 to their closest match in the PDB (0.5 being the recommended cutoff
suggested in [47]). We then consider an agreement between the HiFi-NN annotations and the structural
similarity if, for a given structure from MGnify, of the hits in the PDB with a TM score greater than
0.5 at least one has the same EC as that annotated by HiFi-NN (supplementary information section
G). We show examples of structural superimpositions alongside a sequence similarity network of
dark matter annotations in (Fig. 4). There are several limitations to validating these annotations in
silico, for example due to the fact that not all EC numbers are represented in the PDB. Ultimately,
these annotations will have to be validated experimentally.

4 Conclusion and Discussion

Here we develop and benchmark the performance of a new deep learning model for enzyme annotation,
HiFi-NN (Hierarchically-Finetuned Nearest Neighbor search). Our model is a contrastive deep
learning-based method that differs from previous models in 2 key aspects: (1) we use the inherent
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hierarchy of the EC annotation system as a natural augmentation method and (2) supplement the
training set with microbial sequences sampled from diverse environments. It outperforms the current
state-of-the-art method and tool of choice in bioinformatics, BLASTp, as well as all other deep
learning tools, when assessed with a microbial enzyme benchmarking dataset [35]. The fact that our
model outperforms other models on the task of microbial enzyme annotation, combined with the
information that it performs particularly well at the low sequence identity range (compared to the
look-up dataset), led us to conclude that HiFi-NN is well-suited for annotating the microbial dark
matter [13], [14]. To that end, we have curated a representative subset of the MGnify database [12]
and annotated sequences with HiFi-NN. Our model annotates a significant portion of this set.

The annotation outcomes of every bioinformatic tool or deep learning model are, in part, affected
by the choice of parameters. The selection of parameters for a given annotation task have to be
carefully chosen each time. We are not necessarily able to directly compare the confidence score we
established for HiFi-NN (discussed in supplementary section F) and the E-value thresholds used for
BLAST [4], or confidence scores used in other methods, such as CLEAN [10]. To that effect, we
believe each tool used for annotation has their place and different advantages and disadvantages. We
therefore do not claim there is any tool that could overall be considered the "best" method. However,
here we have shown evidence of HiFi-NN performing particularly well on microbial, low-identity
sequences (compared to the look-up set), which is why we propose its usage for the task of annotating
microbial dark matter sequences. Following on from these findings, we are expanding on this work
by a) training larger models that are supplemented with tens of millions and hundreds of millions of
diverse sequences from our knowledge graph, respectively, b) annotating the entirety of MGnify [12],
and c) generating comprehensive wet lab validations for HiFi-NN annotations.
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Supplementary information

A Related work

A.1 Deep metric learning

Contrastive learning Contrastive learning involves comparing examples to each other and imposing
a loss such that similar examples will be close in feature space and dissimilar examples far away. It
has proven an effective tool for representation learning and has lead to state of the art performance
on several image classification and text classification benchmarks as well as providing a means of
aligning the feature spaces of data from multiple modalities [26].

Triplet loss The triplet loss was originally proposed in [27] as a solution to the problem of facial
recognition. The aim is to learn a feature space fθ(x) in which embeddings of the same face
(the anchor) under different poses (positives) are closer to each other than those of different faces
(negatives). Formally, given a set of training examples X and a function fθ(x) ∈ RD we aim to
minimise:

L(θ) =

N∑
i=1

[
||fθ(xa

i )− fθ(x
p
i )||

2
2 − ||fθ(xa

i )− fθ(x
n
i )||22 + γ

]
+

, (1)

where γ denotes a margin term and the superscripts a, p and, n denote an anchor, positive and
negative respectively. Typically fθ is a Siamese neural network [36] with the same weights used to
embed each instance involved in the triplet.

A.2 EC number classification

Preliminary work The task of assigning multiple labels to a test instance can be tackled in many
different ways. DeepFRI [30] uses a neural network architecture with a softmax output layer and
is trained in a supervised manner. The authors attempt to alleviate the issues that come with an
imbalanced data set by using a weighted binary cross entropy loss function. Similarly, ProteInfer
[28] is trained in a supervised manner and therefore faces a similar problem. The authors of
CLEAN [10] showed that ProteInfer failed to maintain predictive power for underrepresented classes.
DeepECtransformer [49] also treats the task of EC annotation as a supervised learning problem,
however they include an unsupervised pre-training step in their method. The class imbalance is
addressed by the use of a focal loss function. ECPred [29] opts for an alternative method using an
ensemble of classifiers, one for each 4th level EC number. However, coverage only extends to 858 EC
classes, a problem not faced by the current most widely used annotation tool, BLASTp [4]. HECNet
[48]incorporates the inherent hierarchy in the EC labeling system by including a hierarchical triplet
loss as an inital training loss upstream of a feed forward neural network with a softmax loss function.
Our method is similar in the use of a triplet loss, however we benefit from the use of ESM-2 as the
pre-trained sequence encoder. The latest deep learning tool to attempt functional annotation of protein
sequences, [10], pairs an optimised feature space with a nearest neighbours classifier. This is a step
towards deep learning based functional annotation which can handle class imbalance and the authors
showed that for certain data sets it significantly outperforms BLASTp. Building on the work of [10]
we use a nearest neighbours classifier on an optimised feature space to annotate protein sequences.
Our method differs from [10] in how we represent the classes. Rather than a set of class prototypes
(embeddings representing a single EC number) we use each example in the training set as an example
of their associated class. This has a few practical benefits; it is straightforward to incorporate new
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EC numbers into our representation, a practitioner can choose to trade off precision and recall at
inference time by varying the choice of k, and we can incorporate label density information into
our confidence estimates. The practical drawbacks of our approach, having to store the entirety of
the training set, are largely alleviated by the use of approximate nearest neighbour algorithms, e.g.
FAISS [31]

k-NN The method we propose is similar in spirit to BLASTp and has been shown to be effective
for annotating GO terms [32] and CATH annotations [17]. We transform a ’lookup’ dataset to our
optimised feature space and then perform a nearest neighbour search against this lookup dataset. The
annotations of the k nearest neighbours are then transferred to the query protein. Importantly, we
only need to transform the training set once. Then at inference time we embed the query sequences
and perform a k-NN lookup against the already embedded training set.

B Methods

B.1 Training set construction

All clustering was performed using the tool MMSeqs2 [22] using iterative profile search with the
highest sensitivity setting (7.5) for identities below 50%. At each iteration we removed a set of
clusters and added only the representatives of these clusters to the test set. We ensure the same EC
labels across training and validation datasets by removing sequences in the validation set for which
there is no sequence in the training set which has the same EC number.

B.1.1 Supplementing Swissprot

We hypothesized that for the purpose of annotating functional / microbial dark matter, contrastive
deep learning models would benefit from inclusion of highly diverse sequences into the training
set - not just in sequence space, but in contextual and environmental diversity, too. Since public
sequence databases lack consistent metadata collection or labelling such as biome or temperature
information, we supplemented the Swissprot-based training set with a subset of sequences derived
from a proprietary metagenomic graph database optimised for diverse representation across these
parameters. Sequences derived from this database were collected from 5 continents, spanning 60
percent of WWF biomes [23], a pH range from 1.5 to 11.5, and a 108 ◦C temperature range. Crucially,
all sampling efforts were conducted with biodiversity stakeholder consent and engagement as well as
landowner permission, following the access and benefit sharing guidelines & regulation for digital
sequence informaiton (DSI) as layed out in the Nagoya Protocol [18].

Figure 1: Supplementing Swissprot with 3 million sequences from our in-house knowledge graph. We
add sequences to include representation across EC numbers for which Swissprot has few examples.

B.2 Contrastive learning

Hierarchical triplet loss We apply the triplet loss across each level of the hierarchy, a variation
of the ladder loss introduced in [34]. We optimise a weighted combination of these loss terms. The
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Table 1: Positive and negative labels for a given anchor
Anchor: 1.1.1.1

Level Positive Negative

1 1.2.4.6 7.1.4.21
2 1.1.3.5 1.3.2.7
3 1.1.1.2 1.1.6.11
4 1.1.1.1 1.1.1.2

weighting scheme was chosen to reflect the order of similarity present in the hierarchy, i.e. root nodes
are more dissimilar than leaf nodes. The loss is as follows;

L =

|B|∑
i=1

4∑
j=1

wj

[
||fθ(xa

i )− fθ(x
pj

i )||22 − ||fθ(xa
i )− fθ(x

nj

i )||22 + γj

]
+

, (2)

where wj ∈ (1, 0.9, 0.8, 0.7) are the weights for each level of the hierarchy, |B| denotes the size
of a batch B and the choice of margins followed the same scheme as the loss weights, γj ∈
(1, 0.9, 0.8, 0.7). Positive examples for protein i at level j of the hierarchy are denoted by x

pj

i and,
likewise, negative examples are denoted as xnj

i . Again, fθ represents a Siamese neural network with
which we embed the anchor, positive and negative. The architecture we use is a two-layer multi-layer
perceptron (MLP) with a hidden dimension of 1024 and output dimension of 512. We use layer
normalisation in the penultimate layer of the model and the GELU activation function.

Triplet formation The authors of [10] use the fourth level of EC number as supervision for
constructing sets of positives and negatives given an anchor. However, the inherent hierarchy within
the EC numbering system provides a natural augmentation method. Each anchor can be compared to
a positive and negative at each of the 4 levels of the hierarchy. Our anchors are the instances in our
mini-batch. For each loss term, Lj , we sample uniformly at random the EC number of the positive
example, provided it matches the EC number of the anchor up to level j, and the negative EC number,
provided it matches up to level j − 1 and differs at level j. Once we have chosen the EC number of
the positive and negative example, we then sample uniformly at random from the set of instances
which belong to these labels.

B.3 Training details

Each Swissprot model is trained on an NVIDIA A10 GPU until convergence on a held out validation
set. The model trained on Swissprot clustered to 30% identity is trained for 3,180 epochs. Both
the models trained on Swissprot clustered to 50% and 90%, with clusters iteratively removed in
increments of 10% identity thresholds, are trained for 2000 epochs. The model we train with the
addition of 3 million sequences is trained on 8 NVIDIA A100 GPU’s for 448 epochs. Notably,
contrary to recent models which have used contrastive learning for functional annotation of protein
sequences we do not use any hard negative mining during training. We believe this illustrates the
effectiveness of the multiple levels of comparison between protein sequences in our loss function.
It is likely that improvements to this model could be made by incorporating negative mining whilst
maintaining the hierarchical comparisons in the triplets. Each model is trained with a batch size of 8
using the ADAMW optimiser [33] with a learning rate of 0.0003 and default parameters otherwise.
The learning rate is decayed according to a cosine annealing schedule to a minimum of 0.000001.

C Performance relative to BLASTp

We compare our method to the current annotation tool widely used for protein function annotation.
We run the DIAMOND BLAST [40] version of the tool with default parameters and an e-value
cutoff of 1e-3 with the highest sensitivity setting, –ultra-sensitive, so we achieve the best possible
performance at low percent identities.
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C.1 Extending into the midnight zone

To serve as a comparison to BLASTp and to illustrate the utility of protein language model embeddings
in moving past homology based annotation at low sequence identities we created a data set following
the procedure used for the ProteinNet [21] data set. We cluster Swissprot to sequence identities
ranging from 10% to 90% in increments of 10, removing a set of clusters at each iteration and adding
only the representatives of these clusters to the validation set. We choose clusters that have a minimum
of 5 sequences to avoid validation sets which are composed entirely of protein fragments (typically
very short proteins which have no homologs in the rest of the data set) or mis-annotated sequences.
The total number of clusters we remove from the training set at each clustering is 300, we then take
one sequence from each cluster and add it to the validation set representing the chosen sequence
identity. This gives us 9 validation sets with 300 sequences each, each sequence corresponding to
an entire cluster. The remaining set of sequences comprises our training set. After clustering we
found that there were 830 EC numbers across all our validation sets which did not exist in the training
set. It would be impossible for any method to correctly annotate these EC terms and so we remove
sequences corresponding to these EC numbers from our validation sets. This ensures we preserve the
sequence similarity thresholds we desire. We have a total of 163,632 sequences in our training set.
The resulting composition of our validation sets is outlined in table 2 and the performance of each of
these sets outlined in figure 2. We use the training set as our lookup set for annotation. We report the
sample average of each metric due to the differing test set sizes.

Figure 2: HiFi-NN can annotate proteins to low sequence identity better than homology based
approaches.

Table 2: Size of test set for each clustering identity threshold with the number of EC numbers these
sets cover.

% Identity Clustering # Sequences in test set # EC numbers

10 218 129
20 216 127
30 207 133
40 200 138
50 195 157
60 202 141
70 197 144
80 197 143
90 212 167

C.2 50% sequence identity

The second training set we construct was designed to study the effect of a larger training set and a
larger test set. We clustered Swissprot to 50% identity and removed 3000 cluster representatives as
the test set. As outlined in the previous paragraph, we then ensure that each EC number which exists
in the test set has at least a single representative in the training set. This gives us a final test set size of
1,977 sequences covering 644 EC numbers and a training set size of 166,404 sequences covering
2,808 EC numbers (≈ 49% of the total number within Swissprot). The performance of HiFi-NN with
these data set splits is outlined in figure 3. As before, we report the sample average of each metric.
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Figure 3: Comparison of HiFi-NN and BLASTp on Swissprot clustered to 50% identity.

C.3 Time based split

To test how HiFi-NN performs in the context of new sequences arriving to a database we decided to
construct a test set from a time based split of Swissprot. Specifically, we construct a set of sequences
which have been added to Swissprot since the 31st of July, 2023. At the time of writing this is a set of
244 sequences spanning 135 EC numbers. As we can see in figure 4, there is little advantage gained
from the addition of a diverse set of metagenomic sequences. The reason for this may be due to the
sequence diversity of the test set, our method particularly excelling at low sequence identities. In
addition, BLASTp performs quite well on this data set. We use the same benchmarking set up as
before where we BLAST against the HiFi-NN training set to ensure a fair comparison.

Figure 4: Performance of each method on a time based split of Swissprot. The addition of diverse
metagenomic sequences seems to endow no discernible advantage to the model for this data set.

D Choice of k nearest neighbours

The effect of varying the k nearest neighbours on performance on the 50% identity cluster represen-
tatives data set is outlined in figure 5. It is worth noting that this is a choice made at inference. A
practitioner can trade off precision and recall by varying the number of nearest neighbours they wish
to retrieve. As a consequence, we provide a confidence score threshold for improving precision and
recall for a fixed choice of k. The confidence score threshold takes into account both distances to
labels and the density of a label amongst the k nearest neighbours. As such, it becomes more useful
as k is increased, for k = 1 it will trivially assign a confidence of 1.0 to all annotations. For lower
values of k a distance based cutoff is recommended.
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Figure 5: Performance of model as a function of the k nearest neighbours retrieved.

E When not to annotate

To establish a threshold at which we refuse to annotate a protein sequence we use the test set derived
from Swissprot clustered to 50% and add sequences from Swissprot which have not been annotated
with an EC number and have an annotation score of 5 (a measure of the reliability of the annotations
associated with a protein, on a scale of 1-5). The results are illustrated in figure 6. The lookup set
used for this study is the training set derived from the 50% clustering. We take the 95th percentile of
the distances to the test set which has an EC, a distance of 1066.

Figure 6: Distance to closest hit in Swissprot clustered to 50% and annotated with an EC number.
We see that false positives are almost unavoidable, however the tradeoff between false positives and
negatives can be controlled by using a distance threshold on predictions.

F Confidence scores for multi-label k-nearest neighbours

Why we need confidence scores The practical utility of an annotation tool necessitates a reliable
confidence score. To this effect there are two broad categories of approaches which we may pursue,
confidence scores based on distances from a query to an example, with associated labels, and
confidence scores based on the density of labels in the neighbours [37].

Related work The relative distances between queries and neighbours has been optimised as part of
the training process and so distance based confidence measures are a natural candidate. Conformal
prediction provides a framework for computing such confidence measures through the use of non
conformity scores calibrated to a validation set. These non conformity scores have been extended
to the case of multi-label classification by considering the non conformity of the entire set of labels
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Figure 7: Precision and recall as a function of the confidence threshold.

predicted [41] [42] for a given test instance relative to the power set of the labels. However, in the
context of EC number annotation the powerset of all labels is simply too large to have practical
application. [10] makes use of statistical properties of the distances between and within EC numbers
in order to calculate its confidence measure. This involves fitting a Gaussian Mixture Model to the
distribution of within class distances and between class distances.

Our method The approach we opt for uses information from both the density of the labels amongst
k nearest neighbours as well as their associated distances. Specifically, we extend probability density
estimates for local neighbourhoods [38][39] to the multi-label setting. The setup is as follows; we
have a set of real valued vectors, x1, ..., xn ∈ RD and a finite set of labels Y . The aim is to learn
a classifier which maps from the input space X to the powerset of the labels, assigning scores in
proportion to the relevance of a given label to the test data point. For an instance, x, and its associated
labelset Y ⊆ 2Y we will denote the neighbours of x using N(x) and a distance vector for each label
l as

y⃗x,t(l) =

{
d(t, x), if l ∈ Y

0, otherwise

where d(t, x) is a distance metric between two vectors t, x ∈ RD. We then define the probability
of an instance t having label l as a softmax over the distances between t and each instance in the
neighbourhood of t with label l,

pt,l =

∑
x∈N(t) e

−y⃗x,t(l)/T∑
x∈N(t) e

−d(t,x)/T
, (3)

where T is a scaling parameter which controls the relative influence of nearby points. We set T = 100
for all experiments.

Confidence on the Price data set In figure 7, we see further validation that increasing the sequence
diversity of the training set improves the method. The median confidence score for all correct
predictions changes from 0.17 to 0.65. The model becomes more confident in its correct predictions,
this is likely due to the fact that our confidence measure is based on the Euclidean distance to the
nearest neighbour’s and the relative density of a label within the k nearest neighbours. Increasing the
number of sequences per EC class and the diversity of such sequences should help on both fronts.

G Annotating the microbial dark matter

Selection of sequences to annotate To isolate microbial dark matter sequences, we employed a
multi-tiered approach leveraging sequence data from MGnify [12] which was clustered at a 90%
identity threshold. This was followed by a further clustering step at 30% identity. Subsequently, we
applied a sequence length filter, retaining only those sequences with lengths ranging from 100 to 600
base pairs. To generate a representative subset, we utilized SeqKit [45] to randomly sample 2 million
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Figure 8: Density of confidence scores for correctly predicted EC numbers in the Price data set.

sequences, using a random seed value of 42 to ensure reproducibility. These selected sequences were
then subjected to comprehensive functional annotation via the HiFi-NN pipeline.

Selecting sequences for structural validation We only annotate sequences which have a Euclidean
distance to their nearest neighbour of less than 1066 (as discussed in section E) and we use a
confidence threshold of 0.1 to avoid spurious annotations. For comparison, CLEAN [10] does not
use any threshold and so for the benchmarking performed in section 3.2, we report recall, precision,
and F1 score for CLEAN [10], HiFi-NN and others models without thresholds. We however decided
to implement a threshold of 0.1 for this task to ensure higher precision and avoid over-annotation
(see Figure 6 in this supplementary discussion). The number of sequences which satisfy this criterion
is 1,673,827. By comparison, of the two million sequences, BLAST annotates 548,587.

Aware that a portion of these may have been mis-annotated we then curate a subset of these annotations
with even higher precision, with which to compare the structures of. To this effect, we take the
annotations which have a confidence score greater than 0.7 and only those sequences which have not
been annotated by BLASTp. We define an ’agreement’ in the following way: If HiFi-NN annotates
sequence X with EC 1.1.1.1 and the matching structures in the PDB have associated EC numbers
1.2.3.4 and 1.1.1.1, we say that there is agreement up to the 4th level of EC number between HiFi-NN
and the structure search. The resulting number of ’agreements’ per level are as follows; 607 have no
match between the EC numbers, 1045 agree to the first level of the EC hierarchy, 691 to the second,
465 to the third and 165 to the fourth. There are caveats to this approach, we applied no filter to the
pLDTT (a measure of confidence) of the predicted structures and there are EC numbers which have
no representation in the PDB and therefore would produce no matches.
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