
Harmonic Prior Self-conditioned Flow Matching for
Multi-Ligand Docking and Binding Site Design

Hannes Stark∗, Bowen Jing, Regina Barzilay, Tommi Jaakkola
Massachusetts Institute of Technology, CSAIL

Abstract

A significant amount of protein function requires binding small molecules, includ-
ing enzymatic catalysis. As such, designing binding pockets for small molecules
has several impactful applications ranging from drug synthesis to energy storage.
Towards this goal, we first develop HARMONICFLOW, an improved generative
process over 3D protein-ligand binding structures based on our self-conditioned
flow matching objective. FLOWSITE extends this flow model to jointly generate
a protein pocket’s discrete residue types and the molecule’s binding 3D struc-
ture. We show that HARMONICFLOW improves upon the state-of-the-art gener-
ative processes for docking in simplicity, generality, and performance. Enabled
by this structure model, FLOWSITE designs binding sites substantially better than
baseline approaches and provides the first general solution for binding site design.

1 Introduction

Figure 1: Binding site design. Given
the backbone (green) and multi-ligand
without structure, FLOWSITE generates
residue types and structure (orange) to
bind the multi-ligand and its jointly gen-
erated structure (blue). The majority of
the pocket is omitted for visibility.

Designing proteins that can bind small molecules has
many applications, ranging from drug synthesis to energy
storage or gene editing. Indeed, a key part of any pro-
tein’s function derives from its ability to bind and inter-
act with other molecular species. For example, we may
design proteins that act as antidotes that sequester toxins
or design enzymes that enable chemical reactions through
catalysis, which plays a major role in most biological pro-
cesses. We develop FLOWSITE to address this design
challenge by building on recent advances in deep learn-
ing (DL) based protein design [Dauparas et al., 2022] and
protein-molecule docking [Corso et al., 2023].

Specifically, we aim to design protein pockets to bind a
certain small molecule (called ligand). We assume that
we are given a protein pocket via the 3D backbone atom
locations of its residues as well as the 2D chemical graph
of the ligand. We do not assume any knowledge of the
3D structure or the binding pose of the ligand. Based
on this information, our goal is to predict the amino acid
identities for the given backbone locations (see Figure 1).
We also consider the more challenging task of designing
pockets that simultaneously bind multiple molecules and ions (which we call multi-ligand). For this
unaddressed task (discussed further in the related work in Appendix D) we design FLOWSITE.

∗Correspondence to hstark@mit.edu

Machine Learning for Structural Biology Workshop, NeurIPS 2023.

Figure 2: Overview of FlowSite. The generative process starts from a protein pocket’s backbone
atoms, initial residue types ã0, and initial ligand positions x0. Our joint discrete-continuous self-
conditioned flow updates them to at, xt by following its vector field defined by the model outputs
ãt1, x̃t1. This integration is repeated until reaching time = 1 with the produced sample a1, x1.

FLOWSITE is a flow-based generative model over discrete (residue identities) and continuous (ligand
pose) variables. Our flow matching training criterion guides the model to learn a self-conditioned
flow that jointly generates the contact residues and the (multi-)ligand 3D binding pose structures.
To achieve this, we first develop HARMONICFLOW as a suitable generative process for 3D poses of
(multi-)ligands. FLOWSITE extends this process to residue types. Starting from initial residue types
and ligand atom locations sampled from a harmonic prior FLOWSITE updates them by iteratively
following the learned vector field, as illustrated in Figure 2.

The HARMONICFLOW component of FLOWSITE performs the task known as docking, i.e., it real-
izes the 3D binding pose of the multi-ligand. As a method, it is remarkably simple in comparison to
existing generative processes for docking, including the state-of-the-art diffusion process of DIFF-
DOCK [Corso et al., 2023] that operates on ligand’s center of mass, orientation, and torsion angles.
HARMONICFLOW simply updates the cartesian coordinates of the atoms, yet manages to produce
chemically plausible molecular structures without restricting ligand flexibility to torsions. More-
over, HARMONICFLOW outperforms DIFFDOCK’s diffusion in multiple new pocket-level docking
tasks on PDBBind. For instance, HARMONICFLOW achieves 24.4% of its predictions to be within
root-mean-square-distance (RMSD) below 2Å as opposed to 16.3% for DIFFDOCK’s diffusion.

Having established HARMONICFLOW as an improved generative process over ligand positions, we
extend it to include discrete residue types to obtain FLOWSITE. We also adopt an additional ”fake-
ligand” data augmentation step where side chains are treated as ligands in order to realize additional
training cases. Altogether, FLOWSITE is able to recover 47.0% of binding site amino acids compared
to 39.4% of a baseline approach. This nearly closes the gap to an oracle method (51.4% recovery)
with access to the ground truth 3D structure/pose of the ligand. Next to technical innovations such
as self-conditioned flow matching or equivariant refinement TFN layers, our main contributions are:

1. The first application and investigation of flow matching for real-world biomolecular struc-
ture generation tasks and comparisons with diffusion model approaches.

2. FLOWSITE as the first deep learning solution to design binding sites for small molecules
and a novel elegant framework to jointly generate discrete and continuous data.

3. HARMONICFLOW which improves upon the state-of-the-art generative process for gener-
ating 3D ligand binding structures in performance, simplicity, and applicability/generality.

2 Method

Overview and definitions. As visualized in Figure 2, FLOWSITE is a flow-based generative model
that jointly updates discrete residue types and continuous ligand positions. The inputs are a protein
pocket’s backbone atoms y ∈ RL×4×3 for L residues with 4 atoms each and the chemical graph of a
(multi-)ligand. Based on the ligand connectivity, its initial coordinates x ∈ Rn×3 are sampled from
a harmonic prior, and we initialize residue types a ∈ {1, . . . , 20}L with an initial token (we drop
the chemical information of the ligands in our notation for brevity). In Section 2.1, we first explain
HARMONICFLOW for structure generation before covering how FLOWSITE extends it to discrete
residue types in Section 2.2. The architectures of both are detailed in Appendix A.2.

2

2.1 HarmonicFlow Structure Generation

Conditional Flow Matching. Given the data distribution p1 of bound ligand structures and any
easy-to-sample prior p0 over Rn×3, we wish to learn an ODE that pushes the prior forward to the data
distribution when integrating it from time 0 to time 1. For this, we use conditional flow matching as
detailed in Appendix A.1 where our simple choice of conditional probability path is pt(x|x0,x1) =
N (x|tx1+(1− t)x0, σ

2), which gives rise to the conditional vector field ut(x|x0,x1) = x1−x0.
Notably, we find it helpful to parameterize vθ to predict x1 instead of (x1 − x0).

Training with the conditional flow matching loss then boils down to 1) Sample data x1 ∼ p1(x1)
and prior x0 ∼ p0(x0). 2) Interpolate between between the points. 3) Add noise to the interpolation
to obtain x. 4) Evaluate and minimize LCFM = ∥vθ(x, t) − x1∥2 with it. Inference is just as
straightforward. We sample from the prior x0 ∼ p0(x0) and integrate from t = 0 to t = 1 with
an arbitrary ODE solver. We use an Euler solver, i.e., we iteratively predict x1 as x̃1 = vθ(xt, t),
and then calculate the step size scaled velocity estimate from it and add it to the current point
xt+∆t = xt +∆t(x̃1 − x0). Training and inference algorithms are in Appendix A.3.

Figure 3: Harmonic Prior. Initial positions for the
same single multi-ligand from an isotropic Gaussian
(left) and from a harmonic prior (right). (Bound struc-
ture for this multi-ligand is in Figure 1).

Harmonic Prior. Any prior can be used
for p0 in the flow matching framework.
We choose a harmonic prior as in Eigen-
Fold [Jing et al., 2023] that samples atoms
to be close to each other if they are con-
nected by a bond. We identify this as
an especially valuable inductive bias when
dealing with multiple molecules and ions
since atoms of different molecules are al-
ready spatially separated at t = 0 as visu-
alized in Figure 3.

This prior is constructed based on covalent
bonds that define a graph with adjacency
matrix A from which we can construct the
graph Laplacian L = D −A where D is
the degree matrix. The harmonic prior is then p0(x0) ∝ exp(− 1

2x
T
0 Lx0) which can be sampled as

a transformed gaussian.

Structure Self-conditioning. With this, we aim to bring AlphaFold2’s [Jumper et al., 2021] suc-
cessful recycling strategy to flow models for structure generation. Recycling enables training a
deeper structure predictor without additional memory cost by performing multiple forward passes
while only computing gradients for the last. For flow matching, we achieve the same by adapting
the discrete diffusion model self-conditioning approach of Chen et al. [2023] as follows:

Instead of defining the vector field vθ(xt, t) as a function of xt and t alone, we additionally condition
it on the prediction x̃t1 of the previous integration step and use vθ(xt, x̃t1, t). At the beginning
of inference the self-conditioning input is a sample from the harmonic prior x̃0

1 ∼ p0(x̃
0
1). In

all following steps, it is the flow model’s output (its prediction of x1) of the previous step x̃t1 =

vθ(xt−∆t, x̃
t−∆t
1 , t−∆t). To train this, in a random 50% of the training steps, the self-conditioning

input is a sample from the prior x̃0
1. In the other 50%, we first generate a self-conditioning input

x̃t+∆t
1 = vθ(xt, x̃

0
1, t), detach it from the gradient computation graph, and then use vθ(xt, x̃t+∆t

1 , t)
for the loss computation. Algorithms 3 and 4 show these training and inference procedures.

2.2 FlowSite Binding Site Design

In the FLOWSITE binding site design framework, HARMONICFLOW x̃t+∆t
1 = vθ(xt, x̃

t
1, t) is aug-

mented with an additional self-conditioned flow over the residue types to obtain (x̃t+∆t
1 , ãt+∆t

1) =

vθ(xt, x̃
t
1,at, ã

t
1, t). The flow no longer produces x̃t+∆t

1 as an estimate of x1 and then inter-
polates to xt+∆t but instead produces (x̃t+∆t

1 , ãt+∆t
1) from which we obtain the interpolation

(xt+∆t,at+∆t) and use it for the next integration step (see Figure 4). The start a0, ã
0
1 are initialized

as a mask token while the structures x0, x̃
0
1 are drawn from a harmonic prior.

3

Table 1: HARMONICFLOW vs. DIFFDOCK DIFFUSION. Comparison on PDBBind splits for
docking into Distance-Pockets (residues close to ligand) and Radius-Pockets (residues within a ra-
dius of the pocket center). The columns ”%<2” show the fraction of predictions with an RMSD to
the ground truth that is less than 2Å (higher is better). ”Med.” is the median RMSD (lower is better).

Sequence Similarity Split Time Split
Distance-Pocket Radius-Pocket Distance-Pocket Radius-Pocket

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med.

DIFFDOCK DIFFUSION 28.4 3.1 16.3 3.9 26.6 3.2 15.5 4.1
HARMONICFLOW 31.8 3.0 24.4 3.2 45.9 2.3 37.8 2.7

Figure 4: FlowSite self-conditioned updates.
Residue type predictions ãt1 from invariant GAT
layers and position predictions x̃t1 from equivari-
ant TFN layers are used as self-conditioning in-
puts and to interpolate to the updates at, xt.

This joint discrete-continuous data flow is
trained with the same self-conditioning strategy
as in structure self-conditioning, but with the
additional discrete self-conditioning input ã1

1
that is either a model output or a mask token. To
the training loss we add the cross-entropy Ltype
between a and ãt1. In practice, we find that the
a1 prediction ãt1 already carries most informa-
tion that is useful for predicting a1 and we omit
the interpolation at as model input to obtain the
simpler (x̃t+∆t

1 , ãt+∆t
1) = vθ(xt, x̃

t
1, ã

t
1, t).

This formulation admits a direct interpretation
as recycling Jumper et al. [2021] and a clean
joint discrete-continuous process without defin-
ing a discrete data interpolation.

Fake Ligand Data Augmentation. This strategy is based on the evidence of Polizzi & DeGrado
[2020] that a protein’s sidechain-sidechain interactions are similar to sidechain-ligand interactions
for tight binding. In our optional data augmentation, we train with 20% of the samples having a
”fake ligand”. Given a protein, we construct a fake ligand as the atoms of a randomly selected
residue that has at least 4 other residues within 4Å heavy atom distance, as visualized in Figure 6.

3 Experiments

We evaluate FLOWSITE with the PDBBind and Binding MOAD datasets detailed in Appendix F.
Every reported number is averaged over 10 generated samples for each ligand. Precise experimental
details are in Appendix E and code to reproduce each experiment is at https://anonymous.
4open.science/r/wolf. Additional multi-ligand docking results are in Appendix C.2 and we
provide detailed flow matching investigations and ablations in Appendix C.1.

3.1 HarmonicFlow Structure Generation Capability

Task Setup. This subsection only uses the HARMONICFLOW component of FLOWSITE - the ar-
chitecture only contains refinement TFN layers, and there is no sequence prediction. The inputs are
the (multi-)ligand’s chemical graph and the protein pocket’s backbone atoms and residue types (see
Appendix Table 6 for experiments without residue type inputs). From this, the binding structure
of the (multi-)ligand has to be inferred. There is also no fake ligand data augmentation. We dock
to Distance-Pockets and Radius-Pockets as described in Appendix A.5 and we provide preliminary
blind docking results in Appendix C.

Baseline. We compare with the state-of-the-art diffusion process of DIFFDOCK [Corso et al., 2023].
Note that this is not the full DIFFDOCK docking pipeline: Both HARMONICFLOW and DIFFDOCK’s
diffusion can generate multiple samples and, for the task of docking, a further discriminator (called
confidence model in DIFFDOCK) could be used to select the most likely poses. We only compare the
3D structure generative models and neither use language model residue embeddings. See Appendix
E for details on retraining DIFFDOCK.

4

https://anonymous.4open.science/r/wolf
https://anonymous.4open.science/r/wolf

Table 2: Binding Site Recovery. Comparison on PDBBind and Binding MOAD sequence similarity
splits for recovering residues of binding sites. Recovery is the percentage of correctly predicted
residues, and BLOSUM score takes residue similarity into account. 2D ligand refers to a simple
GNN encoding of the ligand’s chemical graph as additional input. The GROUND TRUTH POS row
has access to the, in practice, unknown ground truth 3D crystal structure of the ligand and protein.

Binding MOAD PDBBind
Method BLOSUM score Recovery BLOSUM score Recovery

PIFOLD (no ligand) 35.2 39.4 40.7 43.5
PIFOLD (2D ligand) 35.7 40.4 42.2 44.5
RANDOM LIGAND POS 38.2 41.8 41.5 43.7

FLOWSITE 44.3 47.0 47.1 48.5

GROUND TRUTH POS 48.4 51.4 51.3 51.2

PDBBind docking results. In Table 1, we find that our flow matching based HARMONICFLOW
outperforms DIFFDOCK’s diffusion in producing ligand structures close to the ground truth for
both splits of PDBBind. This shows that DIFFDOCK’s restriction of the generative process to the
lower dimensional manifold of rotations, torsions, and translations is not necessary. Flow match-
ing’s straighter paths, along with our well-chosen prior and self-conditioning, can achieve better
performance (we investigate flow matching further in Section C.1). Furthermore, the sampled con-
formations in Figure 7 and videos of the generation process show that HARMONICFLOW produces
chemically plausible structures and well captures the physical constraints of interatomic interactions.

3.2 FlowSite Binding Site Recovery

Setup. The input to FLOWSITE is the binding pocket/site specified by its backbone and the chemical
identity of the ligand. We use two metrics, sequence recovery (percentage of correctly predicted
residues) and our new residue similarity aware BLOSUM score defined in Appendix A.6.

Baselines. PIFOLD (no ligand) is the architecture of Gao et al. [2023a] and does not use any ligand
information. In PIFOLD (2D ligand), we first process the ligand with PNA [Corso et al., 2020] mes-
sage passing and pass its features as additional input to the PIFOLD architecture. Lastly, GROUND
TRUTH POS and RANDOM LIGAND POS use the architecture of FLOWSITE without the ligand
structure prediction layers. Instead, the ligand positions are either the ground truth bound struc-
ture or sampled from a standard Normal at the pocket’s alpha carbon center of mass. The oracle
GROUND TRUTH POS method also uses fake ligand data augmentation.

Pocket Recovery Results. Table 2 shows that FLOWSITE consistently is able to recover the original
pocket better than simpler treatments of the (multi-)ligand, closing the gap to the oracle method that
has access to the ground truth ligand structure. The joint structure generation helps in determining
the original residue types (keeping in mind that these are not necessarily the only or best). RANDOM
LIGAND POS further confirms that inferring approximate ligand coordinates, like HARMONICFLOW
in FLOWSITE, is crucial for recovering the binding pocket.

4 Conclusion

We proposed the HARMONICFLOW generative process for binding structure generation and
FLOWSITE for binding site design. Our HARMONICFLOW improves upon the state-of-the-art gen-
erative process for docking in simplicity, applicability, and performance in various docking settings.
We investigated how flow matching contributes to this, together with our technical innovations such
as self-conditioned flow matching, harmonic prior ligands, or equivariant refinement TFN layers.

With FLOWSITE, we leverage our superior binding structure generative process and extend it to dis-
crete residue types, resulting in a joint discrete-continuous flow model for designing ligand binding
pockets. This is an important task for which FLOWSITE is the first general solution. FLOWSITE is
a step toward binding site design, but recovery results cannot replace biological validation - this is
future work we pursue. Additionally, we will address enzyme design by incorporating more prereq-
uisites for catalytic activity besides binding the reactants.

5

https://anonymous.4open.science/r/wolf

Acknowledgments

We thank Jason Yim, Gabriele Corso, Rachel Wu, Felix Faltings, Jeremy Wohlwend, MinGyu Choi,
Juno Nam, Soojung Yang, Nick Polizzi, Jody Mou, Michael Plainer, Julia Balla, Shangyuan Tong,
and Peter Holderrieth for insightful discussions and feedback.

References
Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying

framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2022.

H. Berman, K. Henrick, and H. Nakamura. Announcing the worldwide Protein Data Bank. Nat
Struct Biol, 10(12):980, Dec 2003.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling, 2023.

Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane. Posebusters: Ai-based docking
methods fail to generate physically valid poses or generalise to novel sequences, 2023.

Andrew Campbell, William Harvey, Christian Weilbach, Valentin De Bortoli, Tom Rainforth, and
Arnaud Doucet. Trans-dimensional generative modeling via jump diffusion models, 2023.

Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv
preprint arXiv:2302.03660, 2023.

Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood training of schrödinger
bridge using forward-backward SDEs theory. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=nioAdKCEdXB.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning, 2023.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Dif-
fusion steps, twists, and turns for molecular docking, 2023.

J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky,
A. Courbet, R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan,
B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, and D. Baker. Robust
deep learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56,
2022. doi: 10.1126/science.add2187.

Zhangyang Gao, Cheng Tan, Pablo Chacón, and Stan Z. Li. Pifold: Toward effective and efficient
protein inverse folding, 2023a.

Zhangyang Gao, Cheng Tan, and Stan Z. Li. Knowledge-design: Pushing the limit of protein design
via knowledge refinement, 2023b.

Mario Geiger, Tess Smidt, Alby M., Benjamin Kurt Miller, Wouter Boomsma, Bradley Dice, Kos-
tiantyn Lapchevskyi, Maurice Weiler, Michał Tyszkiewicz, Simon Batzner, Martin Uhrin, Jes
Frellsen, Nuri Jung, Sophia Sanborn, Josh Rackers, and Michael Bailey. Euclidean neural net-
works: e3nn, 2020.

Thomas A Halgren, Robert B Murphy, Richard A Friesner, Hege S Beard, Leah L Frye, W Thomas
Pollard, and Jay L Banks. Glide: a new approach for rapid, accurate docking and scoring. 2.
enrichment factors in database screening. Journal of medicinal chemistry, 2004.

6

https://openreview.net/forum?id=nioAdKCEdXB

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d, 2022.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
Alexander Rives. Learning inverse folding from millions of predicted structures. bioRxiv, 2022.
doi: 10.1101/2022.04.10.487779. URL https://www.biorxiv.org/content/early/
2022/09/06/2022.04.10.487779.

Wengong Jin, Jeremy Wohlwend, Regina Barzilay, and Tommi Jaakkola. Iterative refinement graph
neural network for antibody sequence-structure co-design, 2022.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional diffu-
sion for molecular conformer generation. arXiv preprint arXiv:2206.01729, 2022.

Bowen Jing, Ezra Erives, Peter Pao-Huang, Gabriele Corso, Bonnie Berger, and Tommi S Jaakkola.
Eigenfold: Generative protein structure prediction with diffusion models. In ICLR 2023-Machine
Learning for Drug Discovery workshop, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching, 2023.

Lucien F. Krapp, Fernando A. Meireles, Luciano A. Abriata, and Matteo Dal Peraro. Context-aware
geometric deep learning for protein sequence design. bioRxiv, 2023. doi: 10.1101/2023.06.19.
545381. URL https://www.biorxiv.org/content/early/2023/06/19/2023.
06.19.545381.

Haitao Lin, Yufei Huang, Meng Liu, Xuanjing Li, Shuiwang Ji, and Stan Z. Li. Diffbp: Generative
diffusion of 3d molecules for target protein binding, 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
ing for generative modeling. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow, 2022.

Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis
for developing protein–ligand interaction scoring functions. Accounts of Chemical Research, 50
(2):302–309, 2017.

Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. Tankbind:
Trigonometry-aware neural networks for drug-protein binding structure prediction. Advances in
neural information processing systems, 2022.

Karolis Martinkus, Jan Ludwiczak, Kyunghyun Cho, Wei-Ching Liang, Julien Lafrance-Vanasse,
Isidro Hotzel, Arvind Rajpal, Yan Wu, Richard Bonneau, Vladimir Gligorijevic, and Andreas
Loukas. Abdiffuser: Full-atom generation of in-vitro functioning antibodies, 2023.

Andrew T McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew
Ragoza, Jocelyn Sunseri, and David Ryan Koes. Gnina 1.0: molecular docking with deep learn-
ing. Journal of cheminformatics, 13(1):1–20, 2021.

Oscar Méndez-Lucio, Mazen Ahmad, Ehecatl Antonio del Rio-Chanona, and Jörg Kurt Wegner.
A geometric deep learning approach to predict binding conformations of bioactive molecules.
Nature Machine Intelligence, 3(12):1033–1039, Dec 2021a. ISSN 2522-5839. doi: 10.1038/
s42256-021-00409-9. URL https://doi.org/10.1038/s42256-021-00409-9.

7

https://www.biorxiv.org/content/early/2022/09/06/2022.04.10.487779
https://www.biorxiv.org/content/early/2022/09/06/2022.04.10.487779
https://www.biorxiv.org/content/early/2023/06/19/2023.06.19.545381
https://www.biorxiv.org/content/early/2023/06/19/2023.06.19.545381
https://doi.org/10.1038/s42256-021-00409-9

Oscar Méndez-Lucio, Mazen Ahmad, Ehecatl Antonio del Rio-Chanona, and Jörg Kurt Wegner.
A geometric deep learning approach to predict binding conformations of bioactive molecules.
Nature Machine Intelligence, 3(12):1033–1039, 2021b.

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: Learn-
ing stochastic dynamics from samples, 2023.

David L Nelson and Michael M Cox. Lehninger Principles of Biochemistry, Fourth Edition. Cold
Spring Harbor Laboratory, fourth edition edition, 2004.

Nicholas F. Polizzi and William F. DeGrado. A defined structural unit enables de novo design
of small-molecule–binding proteins. Science, 369(6508):1227–1233, 2020. doi: 10.1126/
science.abb8330. URL https://www.science.org/doi/abs/10.1126/science.
abb8330.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch
couplings, 2023.

Zhuoran Qiao, Weili Nie, Arash Vahdat, Thomas F. Miller III au2, and Anima Anandkumar. State-
specific protein-ligand complex structure prediction with a multi-scale deep generative model,
2023.

Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell,
Pietro Lió, Carla Gomes, Max Welling, Michael Bronstein, and Bruno Correia. Structure-based
drug design with equivariant diffusion models, 2023.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
bridge matching, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Hannes Stärk, Octavian-Eugen Ganea, Lagnajit Pattanaik, Regina Barzilay, and Tommi Jaakkola.
Equibind: Geometric deep learning for drug binding structure prediction, 2022.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint, 2018.

René Thomsen and Mikael H Christensen. Moldock: a new technique for high-accuracy molecular
docking. Journal of medicinal chemistry, 49(11):3315–3321, 2006.

Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow
matching, 2023a.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport, 2023b.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Yogesh Verma, Markus Heinonen, and Vikas Garg. Abode: Ab initio antibody design using con-
joined odes, 2023.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation, 2023a.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation, 2023b.

8

https://www.science.org/doi/abs/10.1126/science.abb8330
https://www.science.org/doi/abs/10.1126/science.abb8330

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
Baek, and David Baker. De novo design of protein structure and function with rfdiffusion. Na-
ture, 620(7976):1089–1100, Aug 2023.

Andy Hsien-Wei Yeh, Christoffer Norn, Yakov Kipnis, Doug Tischer, Samuel J. Pellock, Declan
Evans, Pengchen Ma, Gyu Rie Lee, Jason Z. Zhang, Ivan Anishchenko, Brian Coventry, Longxing
Cao, Justas Dauparas, Samer Halabiya, Michelle DeWitt, Lauren Carter, K. N. Houk, and David
Baker. De novo design of luciferases using deep learning. Nature, 614(7949):774–780, Feb 2023.
ISSN 1476-4687. doi: 10.1038/s41586-023-05696-3. URL https://doi.org/10.1038/
s41586-023-05696-3.

Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yu Guang Wang. Graph denoising diffusion for
inverse protein folding, 2023.

Yangtian Zhang, Huiyu Cai, Chence Shi, Bozitao Zhong, and Jian Tang. E3bind: An end-to-end
equivariant network for protein-ligand docking, 2023.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=6K2RM6wVqKu.

9

https://doi.org/10.1038/s41586-023-05696-3
https://doi.org/10.1038/s41586-023-05696-3
https://openreview.net/forum?id=6K2RM6wVqKu
https://openreview.net/forum?id=6K2RM6wVqKu

Figure 5: FlowSite architecture. The refinement TFN layers of HARMONICFLOW first update the
ligand coordinates xt−∆t multiple times to produce the structure prediction x̃t1 from which x̃t1 is
computed. The TFN’s invariant features and x̃1 are fed to invariant layers to produce side chain
angles α̃ as auxiliary training targets and the new residue estimate at.

A Method Details and Explanations

A.1 Conditional Flow Matching

Given the data distribution p1 of bound ligand structures and any easy-to-sample prior p0 over Rn×3,
we wish to learn an ODE that pushes the prior forward to the data distribution when integrating
it from time 0 to time 1. The ODE will be defined by a time-dependent vector field vθ(·, ·) :
Rn×3 × [0, 1] 7→ Rn×3. Starting with a sample x0 ∼ p0(x0) and following/integrating v through
time will produce a sample from the data distribution p1.

To see how to train vθ, let us first assume access to a time-dependent vector field ut(·) that would
lead to an ODE that pushes from the prior p0 to the data p1 (it is not straightforward how to construct
this ut). This gives rise to a probability path pt by integrating ut until time t. If we could sample
x ∼ pt(x) we could train vθ with the unconditional flow matching objective [Lipman et al., 2022]

LFM = Et∼U [0,1],x∼pt(x)∥vθ(x, t)− u(x, t)∥
2. (1)

Among others, Tong et al. [2023b] show that to construct such a ut (that transports from prior p0 to
p1), we can use samples from the data x1 ∼ p1(x1) and prior x0 ∼ p0(x0) and define ut via

ut(x) = Ex1∼p1(x1),x0∼p0(x0)
ut(x|x0,x1)pt(x|x0,x1)

pt(x)
(2)

where we can choose easy-to-sample conditional flows pt(·|·, ·) that give rise to simple conditional
vector fields ut(·|·, ·). We still cannot efficiently compute this ut(x) and use it in LFM because
we do not know pt(x), but there is no need to: it is equivalent to instead train with the following
conditional flow matching loss since∇θLFM = ∇θLCFM .

LCFM = Et∼U [0,1],x1∼p1(x1),x0∼p0(x0),x∼pt(x|x0,x1)∥vθ(x, t)− ut(x|x0,x1)∥2. (3)

A.2 FLOWSITE Architecture

A.2.1 Architecture Overview

Here, we provide an overview of the FLOWSITE architecture (visualized in Appendix Figure 5)
that outputs ligand positions x̃1 and uses them for a residue type prediction ã1. The structure
prediction is produced by a stack of our SE(3)-equivariant refinement TFN layers that are crucial for
the performance of HARMONICFLOW’s structure generation. This is followed by invariant layers
to predict the invariant residue types. The precise architecture definition is in Appendix A.2 and an
architecture visualization in Figure 5.

Radius Graph Representation. We represent the (multi-)ligand and the protein as graphs where
nodes are connected based on their distances. Each protein residue and each ligand atom is a node.

10

These are connected by protein-to-protein edges, ligand-to-ligand edges, and edges between ligand
and protein. While only a single node is assigned to each residue, they contain information about all
backbone atom positions (N, Ca, C, O).

Equivariant refinement Tensor Field Network (TFN) layers. Based on TFN [Geiger et al.,
2020], these layers capture the important inductive bias of SE(3)-equivariance (translating and rotat-
ing the input will equally translate and rotate the output). They are a remarkably simple yet effective
tweak from previous message passing TFNs [Jing et al., 2022; Corso et al., 2023], where we instead
update and refine ligand coordinates with each layer akin to EGNNs [Hoogeboom et al., 2022].

The k-th refinement TFN layer takes as input the protein positions y, current ligand positions xt,
and features hk−1 (with h0 being zeros for the ligand and vectors between N, Ca, C, O for the pro-
tein). We construct equivariant messages for each edge via a tensor-product of neighboring nodes’
invariant and equivariant features. The messages include the structure self-conditioning informa-
tion by using the interatomic distances of the self-conditioning input xt1 to parameterize the tensor
products. We sum the messages to obtain new node features hk+1 and use them as input to an
O(3) equivariant linear layer to predict intermediate refined ligand coordinates x̂k1 . Before passing
x̂k1 to the next refinement TFN layer, we detach them from the gradient computation graph for the
non-differentiable radius graph building of the next layer.

After a stack of K TFN refinement layers, the positions x̂K1 are used as final prediction x̃t+∆t
1 .

While x̃t+∆t
1 is supervised with the conditional flow matching loss LCFM = ∥x̃t+∆t

1 − x1∥2 the
intermediate positions x̂k1 contribute to an additional refinement loss Lrefine =

∑K−1
k=1 ∥x̂k1 −x1∥2.

Invariant Network. The inputs to this part of FLOWSITE are the TFN’s ligand structure prediction
x̃1, the protein structure y, the invariant scalar features of the refinement TFN layers, and the self-
conditioning input at1. From the protein structure, we construct on PiFold’s [Gao et al., 2023a]
distance-based invariant edge features and node features that encode the geometry of the backbone.
For the edges between protein and ligand, we construct features that encode the distances from a
ligand atom to all 4 backbone atoms of a connected residue.

These are processed by a stack of graph attention layers that update ligand and protein node features
as well as edge features for each type of edge (ligand-to-ligand, protein-to-protein, and between
the molecules). For each edge, the convolutional layers first predict attention weights from the
edge features and the features of the nodes they connect. We then update a node’s features by
summing messages from each incoming edge weighted by the attention weights. Then, we update an
edge’s features based on its nodes’ new features. A precise definition is in Appendix A.2. From the
residue features after a stack of these convolutions, we predict new residue types at+∆t together with
side chain torsion angles α. We use those in an auxiliary loss Ltorsion defined as in AlphaFold2’s
Appendix 1.9.1 [Jumper et al., 2021]. Thus, the complete loss for FLOWSITE is a weighted sum of
LCFM ,Lrefine,Ltype, and Ltorsion, while HARMONICFLOW only uses LCFM and Lrefine.

A.2.2 Architecture Details

Here, we detail the FLOWSITE architecture as visualized in Figure 5 in more detail. The first half of
the architecture is an equivariant Tensor Field Network [Thomas et al., 2018] while the second part
is an invariant architecture with graph attention layers similar to the architecture of PIFOLD [Gao
et al., 2023a] where edge features are also initialized and updated.

Radius Graph. The protein and (multi-)ligand are represented as graphs: each residue corresponds
to a node, and each ligand atom is a node. Edges are drawn between residue nodes if they are within
50 Å, between ligand nodes if they are within 50 Å, and between the two molecules’ nodes if they
are within 30 Å. The locations of the residue nodes are given by their alpha carbons, while the atom
locations provide the node positions for the ligand nodes.

Node Features. The ligand features as input to the TNF and to the invariant part of the architecture
are atomic number; chirality; degree; formal charge; implicit valence; the number of connected
hydrogens; hybridization type; whether or not it is in an aromatic ring; in how many rings it is; and
finally, 6 features for whether or not it is in a ring of size 5 or 6.

The initial receptor features for the TFN are scalar feature encodings of the invariant residue types
together with vector features, which are three vectors from the alpha carbon to N, C, and O.

11

For the invariant graph attention layer stack, the residue inputs are the invariant geometric encodings
of PIFOLD [Gao et al., 2023a]. Additionally, they contain the residue type self-conditioning infor-
mation via embeddings of the previously predicted features ãt1 and the invariant scalar node features
of the last refinement TFN layer.

Additionally, radial basis encodings of the sampling time t of the conditional flow are added to all
initial node features.

Edge Features. For the Tensor Field Network, the edge features are a radial basis embedding
of the alpha carbon distances for the protein-to-protein edges, atom distances for the ligand-to-
ligand edges, and alpha carbon to ligand atom distances for the edges between the protein and
the ligand. Additionally, the ligand-to-ligand edges features obtain information of the structure
self-conditioning by also adding the radial basis interatomic distance embeddings of the previously
predicted ligand coordinates x̃t1 to them.

Meanwhile, for the invariant graph attention part of the architecture, the ligand-to-ligand edge fea-
tures are only radial basis embeddings of the interatomic distances. The protein-to-protein edge
features are given by radial basis encodings of all pairwise distances between the backbone atoms
N, C, Ca, O, and an additional virtual atom (as introduced by PIFOLD) associated with each residue.
The edges between the protein and ligand are featurized as the embeddings of the four possible
distances between a single ligand atom and the four backbone atoms of a residue.

Tensor Field Network. The equivariant part of FLOWSITE uses our equivariant refinement TFN
layers based on tensorfield networks [Thomas et al., 2018] and implemented using the e3nn library
[Geiger et al., 2020]. These rely on tensor products between invariant and equivariant features. We
denote the tensor products as ⊗w where w are the path weights. Further, we write the i-th node
features after the k-th layer as hki for the equivariant Tensorfield network layers. h0

i is initialized as
described above in the Node Features paragraph. Lastly, Ni denotes the neighbors of the i-th node
in the radius graph.

Equivariant TFN Refinement Layer. Each layer has a different set of weights for all four types of
edges: ligand-to-ligand, protein-to-protein, ligand-to-protein, and protein-to-protein. The layers first
update node features before updating ligand coordinates based on them. For every edge in the graph,
a message is constructed based on the invariant and equivariant features of the nodes it connects.
This is done in an equivariant fashion via tensor products. The tensor product is parameterized by
the edge embeddings and the invariant scalar features of nodes that are connected by the edge. To
obtain a new node embedding, the messages are summed:

hk+1
i ← hki + BN

(
1

|Ni|
∑
j∈Ni

Y (r̂ij) ⊗ψij hkj

)
with ψij = Ψ(eij ,h

k
i ,h

k
j)

(4)

Here, BN is the (equivariant) batch normalization of the e3nn library. The orders of all features are
always restricted to a maximum of 1. The neural networks Ψ have separate sets of weights for all
4 kinds of edges. Using these new node features and the previous layer’s ligand position update x̂k

(or the input positions x̂0 = xt for the first layer), the next ligand position update x̂k+1 is produced
via an O(3) equivariant linear layer Φ of the e3nn library:

x̂k+1 ← x̂k+1 +Φ(hk+1) (5)

Invariant Graph Attention Layers. These layers are based on PIFOLD and update both node and
edge features. The initial features are described in the paragraphs above. We denote these as hli and
elji for the l-th graph attention layer to disambiguate with the features hki of the equivariant refine-
ment TFN layers. When aggregating the features for the i-th node, attention weights are first created
and then used to weight messages from each neighboring node. With || denoting concatenation and
Ω, Ξ, and Π being feed-forward neural networks, the update is defined as:

12

Algorithm 1: Conditional Flow Matching training with x1 prediction and simple constant width
gaussian conditional path.
Input: Training data distribution p1, prior p0, σ, and initialized vector field vθ
while Training do

x0 ∼ p0(x0); x1 ∼ p1(x1); t ∼ U(0, 1);
µt ← tx1 + (1− t)x0;
x ∼ N (µt, σ

2I);
LCFM ← ∥vθ(x, t)− x1∥2;
θ ← Update(θ,∇θLCFM) ;

return vθ

Algorithm 2: Conditional Flow Matching inference with x1 prediction and simple constant
width gaussian conditional path.
Input: Prior p0, number of integration steps T, and trained vector field vθ
steps← 1;
∆t← 1/T ;
t← 0;
x0 ∼ p0(x0);
xt ← x0;
while steps ≤ T − 1 do

x̃1 ← vθ(xt, t) ;
xt ← xt +∆t(x̃1 − x0) ;
t← t+∆t ;

return xt

wji ← Π(hlj ||elji||hli)

aji ←
expwji∑

a∈Ni
expwai

vj = Ξ(elji||hlj)

hl+1
i =

∑
j∈Ni

ajivj .

(6)

We drop the global context attention used in PIFOLD as we did not find them to be helpful for
sequence recovery in any of our experiments. This was with and without ligands.

Based on the new node features, the edge features are updated as follows:

el+1
ji = Ω(hl+1

j ||elji||h
l+1
i) (7)

A.3 Flow Matching Training and Inference

In Section 2.1, we lay out the conditional flow matching objective as introduced by Lipman et al.
[2022] and extended to arbitrary start and end distributions by multiple works concurrently [Albergo
& Vanden-Eijnden, 2022; Albergo et al., 2023; Pooladian et al., 2023; Tong et al., 2023b]. We
presented conditional flow matching in this more general scenario where the prior p0 and the data
p1 can be arbitrary distributions, as long as we can sample from the prior.

Many choices of conditional flows and conditional vector fields are possible. For different applica-
tions and scenarios, some choices perform better than others. We find it to already work well to use a
very simple choice of conditional probability path pt(x|x0,x1) = N (x|tx1+(1−t)x0, σ

2), which
gives rise to the conditional vector field ut(x|x0,x1) = x1 − x0. With this conditional flow and
with parameterizing vθ to predict x1, the optimization and inference is remarkably straightforward
as algorithms 1 and 2 show.

13

Algorithm 3: Conditional Flow Matching training with x1 prediction and simple constant width
gaussian conditional path.
Input: Training data distribution p1, prior p0, σ, and initialized vector field vθ
while Training do

x0 ∼ p0(x0); x1 ∼ p(x1); t ∼ U(0, 1); s ∼ U(0, 1);
µt ← tx1 + (1− t)x0;
x ∼ N (µt, σ

2I);
x̃1 ∼ p0(x̃1);
if s > 0.5 then

x̃1 ← vθ(x, x̃1t));

LCFM ← ∥vθ(x, x̃1t)− x1∥2;
θ ← Update(θ,∇θLCFM) ;

return vθ

Algorithm 4: Conditional Flow Matching inference with x1 prediction and simple constant
width gaussian conditional path.
Input: Prior p0, number of integration steps T, and trained vector field vθ
steps← 1;
∆t← 1/T ;
t← 0;
x̃1 ∼ p(x0);
x0 ∼ p(x0);
xt ← x0;
while steps ≤ T − 1 do

x̃1 ← vθ(x, x̃1t) ;
xt ← xt +∆t(x̃1 − x0) ;
t← t+∆t ;

return xt

A.4 Self-conditioned Flow Matching Training and Inference

In Section 2.1, we also explain the self-conditioning training and inference procedure. When addi-
tionally using self-conditioning, the training and inference algorithms are only slightly modified and
still very simple as presented in algorithms 3 and 4.

A.5 Pocket Definitions

We test docking on the pocket level since that is the structure modeling capability required for the
binding site design task (in Appendix C, we show preliminary results for docking to the whole
protein). We define the binding pocket in two ways. The Distance-Pocket definition follows prior
work [Méndez-Lucio et al., 2021a; Zhou et al., 2023] and includes any residue that has a heavy atom
within 12 Å of any ground truth ligand heavy atom. This type of pocket might allow the models to
reason where the ground truth ligand was based on which residues are included. Therefore, we
additionally use Radius-Pockets: first, we select residues within 5 Å heavy atom distance of any
ligand atom. The center of mass of these residues’ alpha carbons is the pocket center. The final
pocket includes all residues with an atom in a radius around the pocket center. This radius is the
distance between the pocket center and the farthest ligand heavy atom plus 10Å.

A.6 BLOSUM Score

Next to sequence recovery, we also evaluate with our BLOSUM Score in an attempt to penalize
amino acid predictions less if the predicted residue type is similar yet different from the original
residue. With A ∈ R20×20 being the BLOSUM62 matrix, X ∈ Rn×20 the one hot encoded ground
truth residues types and X̂ ∈ Rn×20 the predicted residues types the BLOSUM Score is:

14

Figure 6: Visualization of Fake Ligand creation. Depicted is a fake ligand created for the Ubiquitin
protein. Out of all residues that have at least 4 contacts with other residues (apart from those that are
within 7 locations in the chain) a residue is randomly selected as the fake ligand. Then we remove
the residue itself from the protein and all residues that are within 7 locations in the chain.

Score(X, X̂) =
1T diag(XAX̂T)

1T diag(XAXT)
(8)

A.7 Fake Ligand Data Augmentation Visualization

In Figure 6, we visualize the construction of our fake ligands as described in Section 2.2. When
constructing the fake ligand from a residue, we drop the backbone oxygen and nitrogen of the amino
acid and keep the carbon, alpha carbon, and the side chain as the ligand’s atoms.

B Discussion

HARMONICFLOW has the ability to produce arbitrary bond lengths and bond angles. This distin-
guishes it from DIFFDOCK [Corso et al., 2023], which only changes torsion angles, translation, and
rotation of an initial seed conformer. Thus, unlike DIFFDOCK, HARMONICFLOW would be able to
produce unrealistic local structures. That this is not the case, as shown in Figure 7 attests to how
HARMONICFLOW learns physical constraints. Still, we argue that the role of deep learning genera-
tive models should be to solve the hard problem of finding the correct coarse structure. If one desires
a conformer with low energy with respect to some energy function, this can be easily and quickly
obtained by relaxing with that energy function.

C Additional Results

C.1 Ablations and Flow-Matching Investigation

Table 3: Flow matching investigation. Variations
of flow matching, diffusion, and architecture choices
compared with our HARMONICFLOW on a PDBBind
sequence similarity split with Radius-Pockets.

Method %<2 %<5 Med.

EIGENFOLD DIFFUSION 21.0 65.2 3.8
VELOCITY PREDICTION 16.4 64.6 3.7
STANDARD TFN LAYERS 16.6 71.9 3.4
NO SELF-CONDITIONING 20.7 69.3 3.4

HARMONICFLOW σ = 0 25.4 69.9 3.2
HARMONICFLOW σ = 0.5 24.4 69.8 3.2

Investigations. EIGENFOLD DIFFUSION,
as described in 3.1 is an adaption of Jing
et al. [2022]’s diffusion process. This es-
sentially replaces the flow matching based
generative process of HARMONICFLOW
with a diffusion process. In VELOC-
ITY PREDICTION, the TFN model pre-
dicts (x1−x0) instead of x1 meaning that
LCFM = ∥vθ − (x1 − x0)∥2. In STAN-
DARD TFN LAYERS, our refinement TFN
layers are replaced, meaning that there are
no intermediate position updates - only the

15

last layer produces an update. NO SELF-
CONDITIONING does not use our structure
self-conditioning. SIGMA=0 uses σ = 0 for the conditional flow, corresponding to a deterministic
interpolant for training.

Results. Table 3 shows the importance of our self-conditioned flow matching objective, which
enables refinement of the binding structure prediction x̃t1 next to updates of xt at little additional
training time - a 12.8% increase in this experiment. Furthermore, the refinement TFN layers improve
structure prediction substantially. Lastly, parameterizing the vector field to predict x1 instead of
(x1 − x0) appears more suitable for flow matching applications in molecular structure generation.

C.2 Multi-Ligand Docking with Binding MOAD

Table 4: Multi-Ligand Docking. Structure genera-
tion performance on Binding MOAD’s multi-ligands.
”%<2” means the fraction of predictions with an
RMSD to the ground truth less than 2Å (higher bet-
ter). ”Med.” is the median RMSD (lower better).

Method %<2 %<5 Med.

EIGENFOLD DIFFUSION 39.7 73.5 2.4
HARMONICFLOW 44.4 75.0 2.2

Binding MOAD multi-ligand docking re-
sults. For binding site design, it is often nec-
essary to model multiple ligands and ions
(e.g., reactants for an enzyme). We test
this with Binding MOAD, which contains
such multi-ligands. Since no deep learn-
ing solutions for multi-ligands exist yet and
traditional docking methods would require
side-chain atom locations, we compare with
EIGENFOLD’s [Jing et al., 2023] Diffusion
and provide qualitative evaluation in Appendix Figure 7. For EIGENFOLD DIFFUSION, we use the
same model as HARMONICFLOW, including its improved coordinate update layers and predict x0

(in what corresponds to x0 prediction in diffusion models), which we found to work better. Table
4 shows HARMONICFLOW as viable for docking multi-ligands - thus, the first ML method for this
task with important applications besides binding site design.

C.3 Docking without residue idenitities

Table 5: HARMONICFLOW vs. DIFFDOCK DIFFUSION without residue idenitites. Comparison
on PDBBind splits for docking without residue identities into Distance-Pockets (residues close to
ligand) and Radius-Pockets (residues within a radius of the pocket center). The columns ”%<2”
show the fraction of predictions with an RMSD to the ground truth that is less than 2Å (higher is
better). ”Med.” is the median RMSD (lower is better). *These runs do not yet use self-conditioning.

Sequence Similarity Split Time Split
Distance-Pocket Radius-Pocket Distance-Pocket Radius-Pocket

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med.

DIFFDOCK DIFFUSION 27.1 3.2 14.3 4.3 22.5 3.6 12.5 4.8
HARMONICFLOW 29.9 3.0 19.2* 3.4* 31.5* 3.0* 29.2* 3.2*

For our binding site design, it is important that the structure modeling of the ligand is accurate given
the evidence that having a good model of the (multi-)ligand structure is important for recovering
pockets and given the interlink between 3D structure and binding affinity / binding free energy. In
the main text Section 3.1, we investigated HARMONICFLOW’s performance for docking with known
residue identities. However, when using HARMONICFLOW for binding site design, the residue
identities are not known a prior, and structure reasoning abilities in this scenario are required.

C.4 Blind Docking

In blind docking, the binding site/pocket of the protein is unknown, and the task is to predict the
binding structure given the whole protein. While in, e.g., drug discovery efforts and in our binding
site design task, the pocket is known, many important applications exist where discovering the bind-
ing site is necessary. In these experiments, the runs take longer to converge than in the pocket-level
experiments. Thus, the DiffDock runs were trained for 500 epochs while the HARMONICFLOW

16

Table 6: HARMONICFLOW vs. DIFFDOCK DIFFUSION for blind docking. Comparison on
PDBBind splits for blind docking where the binding pocket of the protein is not known, and the
whole protein is given as input. The columns ”%<2” show the fraction of predictions with an
RMSD to the ground truth that is less than 2Å (higher is better). ”Med.” is the median RMSD in Å
(lower is better).

Sequence Split Time Split
Method %<2 %<5 Med. %<2 %<5 Med.

DIFFDOCK DIFFUSION 10.7 40.6 5.9 12.6 44.1 5.6
HARMONICFLOW 10.1 41.9 5.8 20.4 49.4 5.0

runs were trained for 250 epochs instead of the 150 epochs in the pocket-level experiments. Table
6, shows that HarmonicFlow is also bett

C.5 Predicted Complex Visualizations

We visualize generated structures of HARMONICFLOW in Figure 7 from the PDBBind test set under
the time-based split of Stärk et al. [2022] in which there are no ligands whose SMILES string was
already in the training data. The generated complexes show very chemically plausible ligand struc-
tures even though there are no local structure constraints as in DIFFDOCK and HARMONICFLOW
has full flexibility in modeling bond angles and bond lengths.

In Table 5, we provide the docking results without residue identities and find that HARMOICFLOW
substantially outperforms DIFFDOCK’s diffusion generative process, justifying HARMONICFLOW’s
use in FLOWSITE for binding site design.

D Related Work

D.1 Main Related Work

Binding Site Design. This task has not been addressed by deep learning yet. While deep learning
has been successful in designing proteins that can bind to other proteins [Watson et al., 2023],
designing (multi-)ligand binders is different and arguably harder in various aspects. For example,
no evolutionary information is directly available, unlike when modeling interactions between amino
acids only. The existing approaches, such as designing 6 drug binding proteins Polizzi & DeGrado
[2020] or a single enzyme Yeh et al. [2023], build on expert knowledge and require manual steps
(additional important related work is in Appendix D). Therefore, we develop FLOWSITE as a more
general and automated approach and the first deep learning solution for designing pockets that bind
small molecules.

Deep learning for Docking. Designing binding sites with high affinity for a ligand requires rea-
soning about the binding free energy, which is deeply interlinked with modeling ligand binding 3D
structures. This task of molecular docking has recently been tackled with deep-learning approaches
[Stärk et al., 2022; Lu et al., 2022; Zhang et al., 2023] including generative models [Corso et al.,
2023; Qiao et al., 2023]. These generative methods are based on diffusion models, building on DIFF-
DOCK [Corso et al., 2023], which combines diffusion processes over the ligand’s torsion angles and
position with respect to the protein. For the task of multi-ligand docking, no deep learning solutions
exist yet, and we provide the first with HARMONICFLOW. We refer to Appendix D for additional
important related work on this and the following topics.

Protein Design. A significant technical challenge for protein design is jointly modeling structure
and sequence. Inverse folding approaches [Dauparas et al., 2022; Gao et al., 2023a; Yi et al., 2023;
Hsu et al., 2022; Gao et al., 2023b] attempt this by designing new sequences given a protein structure.
This is akin to our task where the protein pocket’s backbone structure is given, and we aim to design
its residue types to bind a (multi-)ligand. However, the only inverse folding method that models
small molecules is Carbonara [Krapp et al., 2023], which is restricted to the 31 most common ligands
of PDB and requires their 3D structure and position relative to the protein to be known. For general
binding site design, this would not be the case, and predicting them with traditional docking methods
would not be possible since they require the pocket side chain’s 3D structure.

17

Flow Matching. This recent generative modeling paradigm [Lipman et al., 2022; Albergo &
Vanden-Eijnden, 2022; Albergo et al., 2023] generalizes diffusion models [Ho et al., 2020; Song
et al., 2021] in a simpler framework. Flow matching admits more design flexibility and multiple
works [Tong et al., 2023b; Pooladian et al., 2023] showed how it enables learning flows between
arbitrary start and end distributions in a simulation-free manner. It is easily extended to data on
manifolds [Chen & Lipman, 2023] and comes with straighter paths that enable faster integration.

We provide the first applications of flow matching to real-world biomolecular tasks (multi-ligand
docking and binding site design). While Klein et al. [2023] explored flow matching for 3D
point clouds, their application was limited to overfitting on the Boltzmann distribution of a single
molecule. We explain flow matching in Appendix A.1.

D.2 Additional Related Work

D.3 Flow Matching, Stochastic Interpolants, and Schrodinger Bridges

While our exposition of flow matching in the main text focused on the works of Lipman et al. [2022]
and Tong et al. [2023b], the innovations in this field were made by multiple papers concurrently.
Namely, Action Matching [Neklyudov et al., 2023], stochastic interpolants [Albergo & Vanden-
Eijnden, 2022], and rectified flow [Liu et al., 2022] also proposed procedures for learning flows
between arbitrary start and end distributions.

An improvement to learning such flows would be if their transport additionally performs the optimal
transport between the two distributions with respect to some cost. With shorter paths with respect to
the cost metric, even fewer integration steps can be performed, and integration errors are smaller.
Towards this, Tong et al. [2023b] and Pooladian et al. [2023] concurrently propose mini-batch OT
where they train with conditional flow matching but define the conditional paths between the optimal
transport solution within a minibatch. They show that in the limit of the batch size, the flow will
learn the optimal coupling.

This can be extended to learning Schrodinger bridges in a simulation-free manner [Tong et al.,
2023a] by learning both a flow and a score or via an iterative flow-matching and coupling definition
procedure [Shi et al., 2023] akin to rectified flows. Simulation-free here means that the learned
vector fields no longer need to be rolled out / simulated during training, which is memory and time-
consuming and prohibits learning Schrodinger bridges for larger applications. This was required for
previous procedures for learning Schrodinger bridges [Bortoli et al., 2023; Chen et al., 2022].

D.4 Antibody Design

Another domain where joint sequence and structure design has already been heavily leveraged is
antibody design [Jin et al., 2022; Verma et al., 2023; Martinkus et al., 2023]. In this task, the goal
is to determine the residue types of the complementary determining regions/loops of an antibody to
bind an epitope. These epitopes are proteins, and we have the opportunity to leverage evolutionary
information. A modeling approach here only has to learn the interactions with the 20 possible amino
acids that the epitope is built out of. Meanwhile, in our design task, where we wish to bind arbitrary
small molecules, we are faced with a much wider set of possibilities for the ligand.

D.5 Small molecule design

Another frontier where designing structure and ”2D” information simultaneously has found appli-
cation is in molecule generation. For instance, Vignac et al. [2023a] and Vignac et al. [2023b] show
how a joint diffusion process over a small molecule’s positions and its atom types can be used to
successfully generate novel realistic molecules. This task was initially tackled by EDM [Hooge-
boom et al., 2022] and recently was used to benchmark diffusion models with changing numbers of
dimensions [Campbell et al., 2023].

Often, it is relevant to generate molecules conditioned on context. In particular, a highly valuable
application, if it works well enough, would be generating molecules conditioned on a protein pocket
to bind to that pocket [Lin et al., 2022; Schneuing et al., 2023]. These applications would be most
prominent in the drug discovery industry, where the first step in many drug design campaigns is
often to find a molecule that binds to a particular target protein that is known to be relevant for a

18

disease. In our work with FLOWSITE, we consider the opposite task where the small molecule is
already given, and we instead want to design a pocket to bind this molecule. Here, the applications
range from enzyme design (for which the first step of catalysis is binding the reactants [Nelson &
Cox, 2004]) over antidote design to producing new biomedical marker proteins for use in medicinal
diagnosis and biology research.

D.6 Protein-Ligand Docking

Historically, docking was performed with search-based methods [Trott & Olson, 2010; Halgren
et al., 2004; Thomsen & Christensen, 2006] that have a scoring function and a search algorithm.
The search algorithm would start with an initial random conformer and explore the energy land-
scape defined by the scoring function before returning the best scoring pose as the final prediction.
Recently, such scoring functions have been parameterized with machine learning approaches [Mc-
Nutt et al., 2021; Méndez-Lucio et al., 2021b]. In these traditional docking methods, to the best of
our knowledge, only extensions of Autodock Vina [Trott & Olson, 2010] support multiligand dock-
ing. However, this still requires knowledge of the complete sidechains, which is not available in our
binding site design scenario.

E Experimental Setup Details

In this section, we provide additional details on how our experiments were run next to the ex-
act commands and code to reproduce the results available at https://anonymous.4open.
science/r/wolf. In all of the paper, we only consider heavy atoms (no hydrogens).

Training Details. For optimization, we use the Adam optimizer [Kingma & Ba, 2014] with a
learning rate of 0.001 for all experiments. The batch size for pure structure prediction experiments is
4, while that for binding site recovery experiments is 16. To choose the best model out of all training
epochs, we run inference every epoch for experiments that do not involve structure modeling and
every 5 epochs for the ones that do. The model that is used for the test set is the one with the best
metric in terms of sequence recovery or fraction of predictions with an RMSD below 2 Å. When
training for binding site recovery, we limit the number of heavy atoms in the ligand to 60. We note
that for the structure prediction experiments for Binding MOAD in Table 4, the dataset construction
for both methods had a mistake where ligands were selected based on their residue ID, which is
incorrect because a ligand in a different chain could have the same residue ID - we will correct this
in the next version of the manuscript. All models were trained on a single A100 GPU. The models
that involve structure prediction were trained for 150 epochs, while those without structure modeling
and pure sequence prediction converge much faster in terms of their validation metrics and are only
trained for 50 epochs. The DIFFDOCK models are all trained for 500 epochs.

Hyperparameters. We tuned hyperparameters on small-scale experiments in the Distance-Pocket
setup for HARMONICFLOW and transferred these parameters to FLOWSITE, whose additional pa-
rameters we tested separately. The tuning for both methods was light, and we mainly stuck with
the initial settings that we already found to work well. By default, our conditional probability path
pt(x|x0,x1) = N (x|tx1 + (1 − t)x0, σ

2) uses σ = 0.5 for which we also tried 0.1, 0.3, 0.5, 0.8.
The number of integration steps we use is 20 for all methods, including EIGENFOLD DIFFUSION
and DIFFDOCK DIFFUSION. The number of scalar features we use is 32, and we have 8 vector
features and 6 of our equivariant refinement TFN layers.

DIFFDOCK DIFFUSION baseline. This only uses the score model, the diffusion generative model
component of DIFFDOCK [Corso et al., 2023]. We do not use the confidence model, which is
a significant part of their docking pipeline. Such a discriminator could also be used on top of
HARMONICFLOW, and here, we only aim to compare the generative models. For this, we use
the code at https://github.com/gcorso/DiffDock to train DIFFDOCK with our pocket
definitions using the same number of scalar features and vector features using 5 of its default TFN
layers followed by its pseudo torque convolution and center-convolution. We train all experiments
with DIFFDOCK for 500 epochs.

EIGENFOLD DIFFUSION baseline. Here, we use an identical architecture as for HARMONICFLOW
and only replace the flow matching training and inference with the diffusion training and inference
approach of EIGENFOLD [Jing et al., 2023]. The models were trained in the same settings, and most

19

https://anonymous.4open.science/r/wolf
https://anonymous.4open.science/r/wolf
https://github.com/gcorso/DiffDock

parameters that we use in HARMONICFLOW were first optimized with EIGENFOLD DIFFUSION
since we used it initially.

F Dataset Details

We use PDBBind version 2020 with 19k complexes to evaluate the structure generation capability
of flow matching and the ability of FLOWSITE to design binders for a single connected ligand.
We employ two dataset splits. The first is based on time, which has been heavily used in the DL
community [Stärk et al., 2022; Corso et al., 2023]. The second is sequence-based with a maximum
of 30% chain-wise similarity between train, validation, and test data. Buttenschoen et al. [2023]
found DL docking methods to be significantly more challenged by sequence similarity splits.

For many binding pocket design tasks, it is required to bind multi-ligands. For example, when
designing enzymes for multiple reactants. Such multi-ligands are present in Binding MOAD. We
use its 41k complexes with a 30% sequence similarity split carried out as described above. We
construct our multi-ligands as all molecules and ions that have atoms within 4Å of each other. An
example of an enzyme with all substrates in the pocket as multi-ligand is in Figure 1.

F.1 PDBBind

We use PDBBind dataset [Liu et al., 2017] with protein-ligand complexes of high binding affinity
extracted and hand curated from the Protein Data Bank (PDB) [Berman et al., 2003]. For this, we
use two splits.

Splits. Firstly, the time split proposed by Stärk et al. [2022], which now is commonly used in the
machine learning literature when benchmarking docking approaches, although Buttenschoen et al.
[2023] among others found many shortcomings of this split, especially for blind docking. Chiefly
among them is the fact that of the 363 test complexes, only 144 are not already included in the train-
ing data if a protein is counted the same based on UniProtID. The split has 17k complexes from 2018
or earlier for training/validation, and the mentioned 363 test samples are from 2019. Additionally,
there is no ligand overlap with the training complexes based on SMILES identity. The data can be
downloaded from https://zenodo.org/record/6408497 as preprocessed by These files
were preprocessed by Stärk et al. [2022] with Open Babel before ”correcting” hydrogens and flip-
ping histidines with by running reduce https://github.com/rlabduke/reduce. For
benchmarking traditional docking software, this preprocessed data should not be employed since
the hydrogen bond lengths are incorrect. For our deep learning approaches that only consider heavy
atoms, this is not relevant.

Secondly, a sequence similarity, which Buttenschoen et al. [2023] found to be a more difficult split
than the time split for the blind docking scenario. To create this split, we cluster each chain of every
protein with 30% sequence similarity. The clusters for training, validation, and test are then chosen
such that each protein’s chains have at least 30% sequence similarity with any other chain in another
part of the split. This way, we obtain 17741 train, 688 validation, and 469 test complexes. After
filtering for complexes that have at least one contact (a protein residue with a heavy atom within
4Å), 17714 train complexes remain while no validation or test complexes are filtered out.

Dataset Statistics. In Figure 8, we show the number of atoms per ligand in two histograms, while
Figure 9 shows the number of contacts (a protein residue with a heavy atom within 4Å) per ligand.
These statistics are for the training data.

F.2 Binding MOAD Dataset

Split. The sequence similarity split that we use for BindingMOAD is carried out equivalently as for
PDBBind described in Section F.1. This way, we obtain 56649 of Binding MOAD’s biounits for
training, 1136 for validation, and 1288 as the test set. We discarded some of the biounits and only
ended up with 54575 of them since 2.1k of them did not contain any other atoms besides protein
atoms and waters. From these, we only use the complexes denoted as the first biounit to reduce
redundancy and have only one biounit per PDB ID after which 38477 training complexes remain.
We further filter out all ligands that have only one contact (a protein residue with a heavy atom

20

within 4Å) with their protein to obtain 36203 train, 734 validation, and 756 test proteins with a
unique PDB ID for each of them.

Dataset Statistics. Here, we provide statistics for the Binding MOAD training data. In Figure 10,
we show the number of ligands per protein that is obtained under our definition of ligands and multi-
ligands. Each ligand in the depicted histogram can either be a multi-ligand or a single molecule.
Each multi-ligand is only counted once. In Figure 11, we show the number of atoms per ligand in
two histograms, while Figure 12 shows the number of contacts per ligand.

21

Figure 7: HARMONICFLOW generated complexes. Generated complexes of HARMONICFLOW
for eight randomly chosen complexes in the PDBBind test set in the Distance-Pocket setup with a
time-split where none of the ligands were seen during training.

22

10 20 30 40 50
Ligand heavy atoms

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

Less than 50 atoms, more than 0

50 60 70 80 90 100
Ligand heavy atoms

0

10

20

30

40

50

60

70

80

Fr
eq

ue
nc

y

Less than 100 atoms, more than 50

Figure 8: Number of atoms per ligand: PDBBind. Histograms showing the number of heavy
atoms for all ligands under our ligand definition. This includes many ions, which can be important
to filter out if not relevant to the desired application.

0 5 10 15 20 25 30
Ligand number of contacts

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Ligand size less than 50 atoms, more than 0

0 10 20 30 40
Ligand number of contacts

0

20

40

60

80

100

120

Fr
eq

ue
nc

y
Ligand size less than 100 atoms, more than 50

Figure 9: Number of protein contacts per Ligand: PDBBind. Histograms showing the number of
contacts that each ligand has with its protein. A contact is defined as having a residue with a heavy
atom within 4A of any ligand heavy atom.

0 5 10 15 20 25 30
Number of ligands per protein

0

2000

4000

6000

8000

10000

12000

14000

Fr
eq

ue
nc

y

Less than 30 ligands

20 30 40 50 60 70 80 90 100
Number of ligands per protein

0

200

400

600

800

Fr
eq

ue
nc

y

More than 15 Ligands

Figure 10: Number of Ligands per Protein: Binding MOAD. Histograms showing the number of
(multi-)ligands per protein in the Binding MOAD dataset under our ligand definition. Each ligand
here can be a multi-ligand. In that case, it is only counted once.

23

0 10 20 30 40 50
Ligand heavy atoms

0

10000

20000

30000

40000

Fr
eq

ue
nc

y

Less than 50 atoms, more than 0

50 60 70 80 90 100
Ligand heavy atoms

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Less than 100 atoms, more than 50

Figure 11: Number of atoms per ligand: Binding MOAD. Histograms showing the number of
heavy atoms for all ligands under our ligand definition. This includes many ions, which can be
important to filter out if not relevant to the desired application.

0 10 20 30 40
Ligand number of contacts

0

5000

10000

15000

20000

25000

30000

Fr
eq

ue
nc

y

Ligand size less than 50 atoms, more than 0

0 10 20 30 40 50 60 70
Ligand number of contacts

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

Ligand size less than 100 atoms, more than 50

Figure 12: Number of protein contacts per Ligand: Binding MOAD. Histograms showing the
number of contacts that each ligand has with its protein. A contact is defined as having a residue
with a heavy atom within 4A of any ligand-heavy atom.

24

	Introduction
	Method
	HarmonicFlow Structure Generation
	FlowSite Binding Site Design

	Experiments
	HarmonicFlow Structure Generation Capability
	FlowSite Binding Site Recovery

	Conclusion
	Method Details and Explanations
	Conditional Flow Matching
	FlowSite Architecture
	Architecture Overview
	Architecture Details

	Flow Matching Training and Inference
	Self-conditioned Flow Matching Training and Inference
	Pocket Definitions
	BLOSUM Score
	Fake Ligand Data Augmentation Visualization

	Discussion
	Additional Results
	Ablations and Flow-Matching Investigation
	Multi-Ligand Docking with Binding MOAD
	Docking without residue idenitities
	Blind Docking
	Predicted Complex Visualizations

	Related Work
	Main Related Work
	Additional Related Work
	Flow Matching, Stochastic Interpolants, and Schrodinger Bridges
	Antibody Design
	Small molecule design
	Protein-Ligand Docking

	Experimental Setup Details
	Dataset Details
	PDBBind
	Binding MOAD Dataset

