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Abstract

Machine learning has revolutionized computational protein design, enabling signif-
icant progress in protein backbone generation and sequence design. For protein
sequence design, encoder-decoder models have achieved state-of-the-art accuracy,
which has translated to experimental success. Here, we introduce Frame2seq, a
structure-conditioned masked language model for protein sequence design that, in
contrast to autoregressive design methods, generates sequences in a single pass.
On the CATH 4.2 test dataset, Frame2seq outperforms the state-of-the-art au-
toregressive method, ProteinMPNN, achieving 49.1% sequence recovery (2.0%
improvement) with over six times faster inference. In addition, Frame2seq accu-
rately estimates the error in its own predictions. To probe the ability of Frame2seq
to generate novel designs beyond native-like sequence space, we experimentally
test 26 Frame2seq designs for de novo backbones with low identity to the start-
ing sequences. We show that Frame2seq successfully designs soluble (22/26),
monomeric, folded, and stable proteins (17/26), including a design with 0% se-
quence identity to native. The speed and accuracy of Frame2seq will accelerate
exploration of novel sequence space across diverse design tasks, including chal-
lenging applications such as multi-objective optimization.

1 Introduction

Proteins are molecules that drive cellular processes in all living systems. The ability to design proteins
with new functions thus has widespread applications in biotechnology and medicine. Traditionally,
computational protein design has relied on physics-based principles and simulations. Recently,
machine learning methods learning directly from data have enabled promising advances, such as
highly accurate structure prediction with AlphaFold2 [9] and comparable methods [4} 12, [17], as well
as inverting these models for protein design [3 14} 2 [7, [15 [18]].

Computational protein design has achieved high experimental success rates in diverse applications,
including generation of new protein folds [3}15]] and symmetrical oligomers [15}16]], protein-protein
binder design [[15], and motif-scaffolding [[14}[15]]. Essentially all of these methods first generate a
protein backbone followed by fixed backbone sequence design as a second step.

ProteinMPNN is a state-of-the-art encoder-decoder model that autoregressively predicts protein
sequences given a backbone [3]]. ProteinMPNN has been experimentally validated to yield successful
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monomeric proteins and protein assemblies. Alternative methods built on encoder-only architectures
have also been proposed, such as PiFold [6]. PiFold outperforms ProteinMPNN on native sequence
recovery but has not been experimentally validated [6].

In this work, we introduce FrameZse(ﬂ a structure-conditioned masked language model that designs
protein sequences. Frame2seq is a bidirectional encoder and achieves fast inference due to single-pass
sequence generation. Through in silico and experimental evaluation, we demonstrate that Frame2seq
is a state-of-the-art fixed-backbone design method and produces soluble, monomeric, stable proteins.
Importantly, we demonstrate that our model pseudo-log-likelihood is highly correlated with prediction
success. We also test and experimentally validate the ability of Frame2seq to explore novel sequences
with undetectable similarity to the starting protein. We expect this ability to enable particularly
challenging applications of sequence design such as multi-objective optimization.

2 Methods

2.1 Datasets

We train Frame2seq on the non-redundant CATH 4.2 [13]] data splits of single chain proteins up to
length 500 as described by [8]. There are 18024, 608, and 1120 chains with no topological overlap in
the training, validation, and test sets, respectively. These splits are clustered for structural diversity
and allow to test generalization across many folds [8]. To perform direct comparisons, we benchmark
against models trained on the same dataset.

2.2 Structure-conditioned masked language model

Frame2seq is a translation- and rotation-invariant encoder-only model that takes protein backbones
as input and generates protein sequences (Figure[T). In a single inference pass, Frame2seq designs
complete protein sequences. We preserve the invariance property using invariant point attention (IPA)
[9]. We compute rotations and translations from input backbone coordinates to construct coordinate
frames as described for AlphaFold2 [9]. To obtain sequence embeddings, we compute phi, psi,
and omega torsions, along with absolute position embedding. To obtain pairwise embeddings, we
compute inter-residue distances lifted into a radial basis and relative position indices between pairs
of residues. Coordinate frames, sequence embeddings, and pairwise embeddings pass through a
repeating stack of node and edge update operations followed by a final node update and transition to
sequence dimension. IPA layers and transition layers comprise the node updates. We update edges by
passing pairwise embeddings and updated sequence embeddings into two layers of MLP. Frame2seq
is trained to minimize a categorical cross entropy loss for a native sequence recovery objective.
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Figure 1: Model architecture. Frame2seq is composed of regularized invariant point attention layers
and sequence embedding transitions followed by pairwise embedding updates. Arrows indicate
information flow through model components.

"Frame2seq code is available at https:/github.com/dakpinaroglu/Frame2seq
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Table 1: Computational benchmark of model performance and speed over CATH 4.2 held out
test dataset targets. Sequence recovery is median of average. AlphaFold2 high confidence rate is
percentage of targets that achieve pLDDT > 90. AlphaFold2 success rate is percentage of targets that
achieve LDDT-Ca > 90. GPU speed (s) is mean of average.

AlphaFold2 high AlphaFold2 success
Sequence confidence rate (%) 1 rate (%) T GPU
recovery speed

(%)T  With MSA  Without MSA ~ With MSA  Without MSA &) 4

Native - 66.25 2.59 48.48 1.34 -
ProteinMPNN  47.10 53.21 4.82 39.02 3.21 2.71
Frame2seq 49.11 53.21 4.02 38.39 3.04 0.44

2.3 Attention regularization for IPA layers

We hypothesize that introducing tolerable difficulty during training allows for better model perfor-
mance. To increase training difficulty without halting the model’s ability to minimize the categorical
cross entropy loss, we explore feature dropouts and attention regularization for IPA. We implement
regularized IPA layers by randomly masking attention weights between pairs of residues during
training (Algorithm[T)). We find that a masking rate of 20% is optimal and results in improved model
performance (Table|S2). We attribute this improvement to rendering the training task sufficiently but
not overly more difficult.

3 Results

3.1 Frame2seq recovers native sequence from structure.

We benchmarked Frame2seq against a ProteinMPNN model trained on the CATH 4.2 dataset without
backbone noise. We evaluated the performance of both models when provided no ground truth
sequence as context and found that Frame2seq was more accurate than ProteinMPNN. Specifically,
Frame2seq achieves 49.1% native sequence recovery, outperforming ProteinMPNN by 2.0%. We pre-
dicted structures for the native sequences, ProteinMPNN designs, and Frame2seq designs using all 5
AlphaFold2 models with 3 recycles and no templates. We calculated AlphaFold2 high confidence rate
(%) and AlphaFold2 success rate (%), both with and without MSAs. We found that ProteinMPNN and
Frame2seq achieve similar high confidence and success rates. Both models are outperformed by the
native sequences when MSAs are provided, which is expected given the inclusion of native sequences
in the AlphaFold2 training set (Figure[S2). When averaged over the test dataset targets, Frame2seq
inference speed is approximately 6.2 times faster than ProteinMPNN (Table[I). This difference is
due to Frame2seq’s single-pass and ProteinMPNN’s autoregressive sampling formulation.

Incorrect residue predictions of fixed-backbone design methods reveal their underlying compositional
bias for certain amino acid types. Compositional bias difference is calculated by subtracting the
predicted number of residue type occurrences from true and dividing by the total number. We
calculated compositional bias difference for ProteinMPNN and Frame2seq for all amino acid types
and found that Frame2seq has overall less bias (Figure 2JA).

We next investigated how the performance of ProteinMPNN and Frame2seq depended on residue
burial. To measure burial, we computed the average Cj3 distance for 8 closest residues (A) (lower
for core residues, higher for surface residues). We found that residue burial has a similar effect on
both models, with the expected behavior that core residues are easier to recover than surface residues.
Frame2seq’s 2.0% native sequence recovery improvement over ProteinMPNN is primarily at the
surface residues of the targets (Figure[ST).

3.2 Frame2seq accurately estimates the error in its own predictions

We investigated the ability of Frame2seq to discriminate accurate from inaccurate predictions.
Towards this goal, we analyzed how well model pseudo-log-likelihood (PLL) correlates with native
sequence recovery. For both native and sampled sequences, we computed model PLL and found it to
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Figure 2: In silico analysis of Frame2seq. (A) Difference in compositional bias between Protein-
MPNN and Frame2seq. (B) Correlation between Frame2seq native sequence recovery and model
pseudo-log-likelihood averaged over sequence for native (dark blue, Spearman correlation = 0.94)
and sampled (light blue, Spearman correlation = 0.89) sequences. (C) Per-residue model pseudo-log-
likelihood for correct residue identity (native) and incorrect residue identity (non-native) predictions.
Incorrect prediction outliers below 3 times the interquartile range are not shown. (D-F) Frame2seq
attends to second-shell interactions, bulky side chains, and side chains pointing towards attending
residue with IPA regularization (right). Distribution of attention to residues by the attending residue
(orange sphere) with IPA (left) and regularized IPA (right). Attention value increases from white to
dark blue. Side chains are only shown for residues with attention. (D) PDBID 6X1K. (E) PDBID
1P68. (F) PDBID 2LVS.

strongly correlate with native sequence recovery (Figure 2B). Frame2seq scores native and sampled
sequences favorably when the model predicts accurately. Frame2seq prefers its own predictions over
the native sequences, which is expected due to model bias and the possibility of finding alternative
sequences that fold into the input structure. We additionally found model PLL to discriminate
accurately between native and non-native predictions when computed per position (Figure[2[C).

3.3 IPA regularization enforces side chain awareness

With IPA regularization, Frame2seq learns node updates from the context of a restricted local
environment. When attention between pairs of residues is randomly dropped, the model attends to
alternative residues that provide the most context for sequence prediction (Figure 2D-F). We found
that this enforced Frame2seq to allot more attention to residues with bulkier side chains (Figure
|Z|D—F), alternative residues with side chains oriented towards the attending residue (Figure |Z[E), and
longer-range second shell interactions (Figure 2E-F). Training with restricted attention capacity
contributes to model’s improved performance (Table[S2).

3.4 Frame2seq designs stable sequences onto de novo backbones

In silico evaluation of Frame2seq demonstrates its ability to generate realistic protein sequences in
principle. However, experimental validation of a design method is essential, because even one or a
few incorrect amino acids in a protein, while causing a small difference in sequence recovery, can be
detrimental to protein stability. Beyond testing for its ability to output native-like proteins, we used
our model to design sequences onto de novo backbones to have low (zero to fifty percent) sequence
identity to the native sequence. This is a challenging task for a model that only learns from the native
sequences associated with ground truth backbones. However, we found that Frame2seq’s generative
capabilities extend beyond the naturally occurring sequence space as we successfully designed novel
low sequence identity proteins.



3.4.1 Design and characterization of low sequence identity proteins

We generated low sequence identity sequences for the backbones of a de novo Rossmann 2x2 fold
(PDBID 2LV8)[10]] and the first computationally designed de novo fold, Top7 (PDBID 1QYS)[11]].
To achieve low sequence identity to native, we restricted Frame2seq model logits to exclude the
true residue identity at each or randomly chosen position(s) before sampling sequences. We then
predicted structures for each candidate using all 5 AlphaFold2 models with no MSAs, no templates,
and 3 recycles. We filtered our designs by calculating an average pLDDT and computing structural
deviation from the true backbones, and selected designs with pLDDT > 89 and predicted backbone
heavy atom RMSD < 1.15 A. We searched our design sequences against non-redundant protein
sequences and the PDB database and found minimal to no matches. Frame2seq designs with less
than 20% sequence identity to the native yield zero matches, and above 20% identity designs are
most significantly matched to the native.

We experimentally evaluated twenty-six sequences (eight and eighteen designed onto the de novo
Rossmann and Top7 backbones, respectively). Out of the total 26, 25 of our designs express in E.
coli, 22 are soluble, 17 are monomeric and folded (Figure[3]A). 16 of these experimentally successful
designs do not melt at up to 95 °C. We demonstrate experimental success over all sequence identity
bins we explored, including 0% (Figure [3B). Figure BIC-E highlights biophysical characterization of a
Top7 design with 0% sequence identity to the starting protein (PDBID 1QYS). This novel protein,
Top0, is monomeric when assessed by size exclusion chromatography (Figure [3C), folds into the
expected secondary structure as measured by circular dichroism (Figure [3D), and does not melt at up
to 95 °C (Figure3E). This design challenge shows that Frame2seq successfully samples unexplored
sequence space for de novo backbones while likely maintaining a near-identical structure as assessed
by AlphaFold2 predictions (Figure 3F).
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Figure 3: Experimental evaluation of Frame2seq designs. (A) Number of designs for the de novo
Rossmann fold (PDBID 2LVS) and Top7 (PDBID 1QYS) backbones that achieve experimental
success (filled bars). (B) Number of experimentally successful designs (filled bars) for different
sequence identity bins. (C-E) Experimental characterization of a low sequence identity design, Top0,
with 0% sequence identity to the native Top7. (C) Size exclusion chromatography profile for the
Top0 design. (D) Circular dichroism (CD) spectra of the Top0O design. (E) Changes in CD signal
(mean residue ellipticity) of the TopO design as a function of temperature. (F) AlphaFold2 prediction
for the Top0 design (colored by pLDDT) aligned to the 1QYS X-ray structure (gray).

4 Conclusion

Frame2seq is a structure-conditioned masked language model for protein sequence design. Compared
to the state-of-the-art experimentally verified alternative, Frame2seq demonstrates improved sequence
recovery with significantly reduced inference time. Our implementation of IPA regularization
increases local context awareness for sequence design. We show that Frame2seq learns to estimate
the error in its own predictions both per-residue and over entire sequences and that model scores



are predictive of accuracy. While native sequence recovery is a common measure of performance
for fixed-backbone design methods, the true measure of success for such a method would assess
its ability to expand over the conditional sequence space exploited by nature without being limited
to a single observed sequence. We assess Frame2seq’s true success by designing for low sequence
identity, down to zero percent. Given de novo backbones as input, Frame2seq successfully designs
stable, soluble, monomeric proteins that expand beyond the naturally occurring sequence space.
We believe our method establishes a foundation for striking a balance between sufficient recovery
of evolutionarily relevant sequence and sufficient divergence from a single observed example. We
expect our method will be uniquely useful for multi-objective design applications where satisfaction
of multiple functional criteria might require exploring larger sequence spaces to generate successful
pareto-optimal solutions.
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S Supplementary Material

5.1 Model details
5.1.1 Model architecture and training

The IPA components are based on the AlphaFold2 Structure Module [9]] PyTorch implementation
from OpenFold [[L]. Our model contains 8 IPA layers followed by Structure Module transition layers.
Unless it is the last IPA layer, the node transitions are followed by edge transitions (7 total). We set the
hidden dimension to 128 and the Structure Module transition dimension to 512. Frame2seq contains
approximately 10M trainable parameters. Frame2seq models are trained with early stopping, for 144
or 200 epochs over the full dataset, which takes approximately 4 or 6 days on a single NVIDIA A40
GPU. We trained models using the Adam optimizer with the Noam scheduler.

Table S1: Frame2seq hyperparameters.

Parameter Value Description

dnode 128  Node dimension

degge 128  Edge dimension

Nipa-layers 8 IPA layers

Nipa-heads 4 IPA attention heads
ipa-scalar-key 16 IPA scalar key dimension
ipa-scalar-value 16 IPA scalar value dimension
ipa-point-key 4 IPA point key dimension
dipa-point-value 6 IPA point value dimension

The IPA layers encode the sequence embedding, the edge embedding and the coordinate frames, then
predict and update the sequence embedding. The edge embeddings are updated by standard message
passing with 2 fully connected layers.

We train models with partial native sequence as input node features according to the following mask
rate:

oWith 75% probability, all amino acids are replaced with a masked residue token.

oWith 25% probability, a sampled 0-100% of amino acids are provided for featurization.

5.1.2 Regularized invariant point attention layers

We adopt the invariant point attention from [9]] and implement attention regularization via a dropout.
Attention between pairs of residues is randomly masked at a 20% rate during training via the dropout
in Algorithm I]line 9.
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Algorithm 1 Regularized invariant point attention (IPA)

1: function REGULARIZED IPA(s;, z;;, T3):
2. qf kP, v! = LinearNoBias(s;)

_h
3 (ﬂp, K" = LinearNoBias(s;)

T

_h . .

4: v;? = LinearNoBias(s;)
. h _ . .

5: bij = LinearNoBias(z;;)
. _ 2

6: we = 9 Nquery points

7: wyr, = \/g
—hp

T Ry -
-’ :wL(;qu Ky — Loy (o q — 7, ok,

)

9: aﬁlj = softmax; (Dropouto_g(a?j))
10: 6? = Zj a?jzij
1 of =3 alsvh

12: o7 =T ! ozj ahl(Tjo‘_"?p)

i i ij

—hp
0;

~ . ~ _h
13: S; = Linear (concath’p(oh ol 0,7

19V T ))
14: return s;

15: end function

5.1.3 Ablation study

We ablate TPA regularization and edge update operations to study their effects on the performance of
Frame2seq.

Table S2: Ablation study. Sequence recovery is median of average.

Sequence recovery  Sequence recovery

Ablation at 100 epochs (%) T  at final epoch (%) 1
No IPA regularization 4431 —

No edge update operations 44.32 —
Baseline 46.53 —
Ensemble 47.79 49.11

We ensemble 3 baseline models that are independently trained. We report Frame2seq’s performance
as an ensemble.

5.2 Further in silico analysis
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Table S3: Computational benchmark of model speed over CATH 4.2 held out test dataset targets.

CPU speed (s) and GPU speed (s) is reported as mean of average for ProteinMPNN and Frame2seq
inference.

Method CPU speed (s) |  GPU speed (s) |
ProteinMPNN 13.70 2.71
Frame2seq 6.79 0.44
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5.3 Experimental methods

5.3.1 Protein expression and purification

Designs were ordered with an N-terminal 6xHis-tag and thrombin cleavage site and were purchased
from Twist Biosciences in a pET-28a+ vector. DNA was purified by transforming into DH5a E. coli
cells, picking a single colony into LB-Kan[50], and miniprepping.

To screen for solubility and expression of the designs, chemically competent BL21(DE3) were
transformed with DNA encoding designs using manufacturer’s protocol and plated onto LB-Kan[50]
plates at 37 °C. A single colony was inoculated into 5 mL of LB-Kan[50] media at 37 °C or 18 °C
with 220 rpm shaking overnight. The next day, 1 mL of culture was pelleted and stored at -80 °C, and
protein expression was started in the remainder of the culture by adding 1 mM IPTG and growing
at 30 °C or 18 °C. Cells were allowed to grow overnight, and were pelleted by centrifugation and
stored at -80 °C. Cells were lysed either by using B-PER Bacterial Protein Extraction Reagent or
by passing through a microfluidizer and centrifuged to pellet insoluble components. Lysate from
uninduced cells, total induced cells, the supernatant of induced cells, and the pellet of induced cells
were analyzed by SDS-PAGE to determine the solubility and expression level of protein designs.

For soluble designs, protein expression was scaled up. A single colony from a fresh transformation
was inoculated into 5 mL of LB-Kan[50] media at 37 °C with 220 rpm shaking overnight. The next
day, the entire overnight culture was added into either 250 mL or 500 mL of TB-Kan[50] with 220
rpm shaking at 37 °C. At OD = 0.4-0.6, protein expression was induced by adding IPTG to a final
concentration of 1 mM. Temperature was reduced by transferring the cultures to a preheated 30 °C
incubator, or by transferring cultures to a 4 °C cold room for 30 min before being transferred to
a precooled 18 °C incubator. Cultures were allowed to grow overnight. Cells were harvested by
centrifugation at 5,000 x g for 15 min at 4 °C.

Cell pellets were resuspended in 2 mL of resuspension buffer (30 mM sodium phosphate monobasic
pH 7.5, 300 mM sodium chloride, 10 mM imidazole pH 7.5, 1 mg/mL Hen Egg White Lysozyme, and
15 U/mL Benzonase) per g of cell pellet. Cells were allowed to incubate in resuspension buffer for 30
minutes at room temperature with gentle shaking. Cells were additionally lysed either by passing
the cell suspension through a microfluidizer three times, or by sonication on ice at 15% amplitude
for 2 minutes using 5 s on/ 5 s off cycles. Insoluble components were pelleted by centrifugation at
20 k x g for 20 min at 4 °C. Supernatant was decanted and incubated with 2 mL of pre-equilibrated
50% Ni-NTA resin slurry for 1 hr at 4 °C with gentle end-over-end shaking. The resin was washed
four times with 20 mL of 30 mM sodium phosphate monobasic pH 7.5, 300 mM sodium chloride,
and 20 mM imidazole pH 7.5. Proteins were eluted with 10 mL of 30 mM sodium phosphate pH
7.5, 300 mM sodium chloride, and 250 mM imidazole pH 7.5. Proteins were then dialyzed against
at least 100X volumes of 1X PBS three times for at least 8 hours each at 4 °C, except for the 37%
sequence identity design to 2LV8, which was dialyzed at room temperature. If large molecular weight
contaminants were observed, they were removed using a 30 kDa MWCO Amicon concentrator and
collecting the flow-through fraction. Protein concentrations were quantified by using a Bradford
assay against a dilution series of a 1 mg/mL BSA standard or by measuring absorbance at 280 nm
and calculating concentration using extinction coefficients as provided by ExPasy.

Protein purity was assessed by SDS-PAGE. Samples were prepared by mixing protein, 4X Laemmli
buffer, | mM DTT, and water to a total volume of 15 uL and then denatured by incubation at 95 °C
for 10 min. 10 pL of sample was loaded onto a 4-20% Tris-Glycine gel and run at 180 V for 45 min.
Gels were stained with Coomassie dye, destained with water, and imaged using a Bio-Rad Gel-Doc
EZ Imager.

5.3.2 Size-exclusion chromatography

Chromatography was done using an Agilent 1200 series HPLC attached to a Superdex S200 10/300
GL column and a UV detector. The UV detector was configured to detect signal at 230 nm using 360
nm as a baseline. 0.1 mg or 0.05 mg of protein with a concentration ranging from 0.2 to 3 mg/mL
after purification was injected at a flow rate of 0.8 mL/min. All runs were done isocratically using 1X
PBS as running buffer. Sizes were estimated using a linear regression model between elution time
and molecular weight using BioRad Gel Filtration Standards.
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5.3.3 Circular dichroism

Protein samples were diluted to 0.03 - 0.075 mg/mL in 1X PBS and added to a cuvette with a 1 or
2 mm path length. CD was completed using a Jasco J-710 spectrometer measuring from between
200 — 280 nm at a rate of 50 nm / min. Protein concentrations were adjusted as needed to keep the
High-Tension Voltage within the linear range of the instrument. A thermal melt was performed from
25-195 °C at aramp rate of 1 °C / min while measuring signal at 220 nm. Proteins were cooled back
to 20 °C and were re-scanned to measure secondary structure after the thermal melt.

5.3.4 Low sequence identity designs

Table S4: Protein sequence for low sequence identity design, TopO.

Sequence Protein
identity sequence

0% MGSSHHHHHHSSGLVPRGSHMMLRINLIVTQENEKLNFNFEISDREKFAAIIKQIEE
‘ IVRALNSEKITVEVESKSREQSQRYSEVMEALMKKENFTNLDIKYNNNKIEITATK

Table S5: DNA insert sequence for low sequence identity design, Top0.

Sequence DNA insert
identity sequence

ATGTTACGTATTAACCTGATCGTGACTCAAGAGAATGAGAAACTGAACTTCAACT
TCGAGATTTCTGACCGAGAGAAGTTTGCTGCCATTATTAAGCAGATAGAGGAGAT
0% CGTGCGTGCCCTGAATAGTGAAAAGATAACGGTCGAAGTCGAGTCGAAGTCAAG
° AGAACAATCCCAGCGATACTCAGAGGTGATGGAAGCGCTTATGAAGAAGGAGAA
TTTCACAAACCTGGACATAAAGTACAATAACAACAAGATCGAAATAACGGCCACC
AAGTGA
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