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Abstract

Molecular docking is a critical process in structure-based drug discovery to predict
the binding conformations between a protein and a small molecule ligand. Recently,
deep learning-based methods have achieved promising performance over traditional
physics-based search-and-score methods. Despite their success on accurately
predicting the binding poses of the small molecule ligands, modeling of protein
flexibility and dynamics still remains largely unexplored for docking. We observe
that models that do not account for the protein flexibility suffer a large performance
drop in cases where proteins undergo large conformational changes upon ligand
binding. To address this gap, we developed FlexiDock, a compositional alternating
neural diffusion process, which include two diffusion models to explicitly model the
conformational flexibilities of proteins and ligands, respectively. The compositional
diffusion process is inspired by the induced-fit model in flexible docking. We found
the compositional diffusion is able to improve the structural prediction of the
proteins upon ligand binding. Our method also offers promising insights into
modeling proteins’ conformational switches.

1 Introduction

The physical interactions between proteins (receptor) and their binding partners (ligands) can be
modulated by drugs in the forms of small molecule ligand, peptides and antibodies. Molecular docking
computationally predicts the preferred position, orientation, and conformation of one molecule to a
second when a ligand and a target are bound to each other to form a stable complex under ambient
conditions. Therefore, molecular docking is critical for drug discovery: an efficient and accurate
docking algorithm can speed up the development of a potential drug candidate for a biological target.

Recently, many deep learning based methods such as EquiBind [27], DiffDock [5] have been
developed for blind docking, where the models do not assume any prior knowledge about the binding
pocket. Although DiffDock achieved SoTA performance on docking small molecule ligands to
the bound (holo) structure of proteins, it still performs relatively poorly when the input protein
conformation is the unbound (apo) structures. Since holo structures are unavailable, drug discovery
scientists usually have the need to perform blind docking for newly designed ligands with apo
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structures. The drastic performance drop in the apo-setting is due to absence in explicitly modeling
the proteins’ conformational flexibilities, and is the key limitation of rigid docking compared to
flexible docking [2]. Unfortunately, DiffDock [5] cannot be extended trivially to jointly model the
receptor and ligand flexibilities as the decomposition over the product spaces used in DiffDock is no
longer applicable.

To alleviate this, we developed FlexiDock, a compositional diffusion process containing two diffusion
models to explicitly model the conformations of the small molecule ligand and protein receptor,
respectively. The reverse diffusion process of our models can be used in flexible docking setting
between an apo-structure of a protein and a small molecule ligand. Our model draws inspiration
from the classic induced-fit theory [12], which states the binding of ligand can induce the protein
conformation changes so that the overall energy of the binding complex is minimized.

The main contributions of this work are:

1. formulated composition of two independently trained diffusion models
2. developed a ligand-conditioned receptor (LCR) score module to model the conformation

changes of proteins using conditioned diffusion model
3. developed a truncated reverse diffusion process for the LCR score model at inference phase

to make fine-grained adjustment to protein conformation
4. achieved improved performance in blind docking in apo-setting on the PDBBind dataset

and showed promises on modeling proteins’ apo-holo conformational switches

2 Related work

Rigid-body blind docking. In this setting, protein receptor is assumed to be rigid without con-
formational flexibility. The ML model is tasked to identify the binding pocket on the receptor and
predict a pose for a given small molecule ligand. Models such as EquiBind [27] and TANKBind [17]
are regression-based methods leveraging SE(3)-equivariant neural networks to predict the key points
or interatomic distance matrix of the ligand and the receptor. DiffDock [5] formulates this task as a
diffusion generative modeling method: the diffusion process modify the ligand’s relative position
to the receptor by roto-translation, and conformation by rotating the torsional bond angles. As they
disregard the flexibilities of the protein receptors, the holo conformation of the receptor is typically
used in rigid-body setting. It has been shown that the docking performances of decrease significantly
with apo-structures as inputs [30, 5].

Molecular docking via co-folding. With the seminal success of protein folding algorithms like
AlphaFold2 [10], these methods tackle the molecular docking challenge using a receptor-ligand
co-folding approach. For instance, DPL [19] and NeuralPLexer [22] solve the structure of the
receptor-ligand complex from a protein sequence and a ligand’s structure. These models modify the
neural architectures used for protein folding to incorporate the receptor-ligand binding geometry,
such as contact prediction, to achieve the accurate prediction of receptor-ligand complex structures.
NeuralPLexer can also be applied in both holo and apo blind docking settings and has been shown
to outperform DiffDock in the holo-setting [22]. However, both settings fail to model the receptor
flexibilities from the initial conformation.

Diffusion models for protein structures Diffusion generative models [24, 26, 6] has shown great
promise in modeling proteins’ 3D structures, with applications ranging from full suites of protein
design problems [7, 29], to specific problems such as side-chain packing [33]. Some diffusion models
for protein formulate their diffusion process in the Cartesian space using the backbone atoms [28]
or amino acid residue frames [15, 32]. FoldingDiff’s [31] diffusion process works exclusively in
modeling the backbone angles, which can be used to reconstruct the 3D backbone structures. [1]
uses a combination of Cartesian coordinates and internal angels. These protein structural diffusion
models make gradual changes to the protein conformations and have shown promise in modeling
multiple conformations for a given protein [9]. In particular, SBalign [25] explicitly predicts the
conformational changes between apo and holo states of proteins using diffusion Schrödinger Bridges,
a diffusion process designed to interpolate between two modes of data. However, they have not been
applied in the flexible docking setting.

2



Figure 1: Overview of FlexiDock. Left: in the training phase, we train two independent diffusion
models responsible for modeling the conformational flexibilities of the receptor and ligand, respec-
tively. The two forward diffusion processes add noise to the angles of the receptor backbone and
translates, rotates, and updating the torsional angles of the ligand. Right: in inference phase, we
alternate the reverse diffusion processes to recover the position and conformation of the ligands, then
to optimize the conformation of the receptor.

3 FlexiDock

Notations: We use ΩR and ΩL to denote the continuous sample spaces associated with receptors and
ligands, respectively. Let R,L denote random variables associated with receptor and ligand, respec-
tively, and let P (R|L = l ∈ ΩL)and P (L|R = r ∈ ΩR) denote the respective conditional probability
distributions. The diffusion models in the next sections independently model the conditional proba-
bility distributions given above via the Continuous State Markov Chains MCR|L and MCL|R (for
state transitions) respectively, and we use sϕ1

(r; l, t) and sϕ2
(l; r, t), r ∈ ΩR, l ∈ ΩL, t ∈ [0, 1], to

denote the corresponding score predictor neural networks given the ligand and receptor, respectively.

From the perspective of ligand and receptor interactions, the conditional distributions P (R|L = l ∈
ΩL)and P (L|R = r ∈ ΩR) can be seen to model conformational selection ( Figure 2b bottom left)
and ligand fitting ( Figure 2b top right), whereas the joint distribution P (L,R) models the mutual fit
of ligand and receptor ( Figure 2b bottom right).

Overview: FlexiDock is composed of two independently trained score-based diffusion generative
models [26], each responsible for modeling the conformational flexibilities of the receptor r and
ligand l, respectively (Fig. 1). Notably, the two diffusion processes only add noises to the molecule
of interest while keeping its binding partner’s relative position and conformation fixed.

We adopt the score model and diffusion process from DiffDock [5] to model the translation, rotation,
and torsion angles of the small molecule ligands conditioned on the protein backbones. The forward
diffusion process applies random roto-translation transformation to the ligand and torsional updates
to its rotatable bonds. The ligand score model learns to predict the three terms: t ∈ R3,C ∈
R3×3, θ(l) ∈ SO(2)m = sϕ2

(l; r, t), corresponding to the noise updates in translation, rotation,
and torsion angles at each diffusion step. Separately, we use another diffusion process to add noise
to the internal angles of the receptor backbones while keeping the relative positions, orientations,
and poses of the ligand fixed. Similar to the ligand score model, we train a ligand-conditioned
receptor (LCR) score model (Sec. A.1) to learn the angular updates on the protein backbones:
θ ∈ SO(2)n×6 = sϕ1(r; l).

In the inference phase, our framework is designed to work in the flexible docking setting, in contrast
to rigid-body docking in holo setting (Fig. 2), we optimize the relative positions and conformations
for both the ligand and receptor. To do that, we alternate the two reverse diffusion processes for
ligand and receptor: the former finds the binding region on the receptor for the ligand and generates a
bound pose, whereas the latter optimize the receptor to better fit for the ligand’s current conformation.
We term this process as alternating inference, which we proved to asymptotically converge to the the
joint distribution of ligand-receptor complex comformations (Sec. A.2). We also invent a truncated
reverse diffusion process to mitigate the over-correction of receptor conformations (Sec. A.3).
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(a) (b)

Figure 2: Holo vs apo settings for blinding docking. (a) the holo structure of the protein receptor is
provided and remains rigid in the docking process, only the ligand’s conformations and positions are
optimized. (b) the conformations of both the receptor and ligands are optimized during apo flexible
docking. Red arrows denote the process of optimizing ligand conformation towards a rigid receptor;
blue arrows denote receptor conformational change; whereas the purpose arrow indicates an interative
mutual fit process.

4 Results

4.1 Experimental setup

We conduct our experiments on the PDBBind dataset [16] and the dataset collected by Saldaño et
al. [23]. The PDBBind dataset contains over 19,000 holo structures of receptor-ligand complexes
collected from the Protein Data Bank (PDB) [3], whereas the Saldaño dataset curates 90 pairs of
apo/holo PDB IDs corresponding to ligand-induced conformational change. We used the preprocessed
PDBBind v2020 dataset generated in [27] for model training and evaluation. We follow the blind
docking setup from [5] for both holo and apo settings. Briefly, all the docking methods receive
two inputs: the ligand with predicted seed conformation from RDKit [13] and the holo or apo
conformation of the protein receptor. For experiments on the PDBBind test set, the apo structures are
predicted by ESMFold [15] from their primary sequences. To evaluate the generated conformations,
we first align the generated receptor conformation to its holo-structure using the backbone atoms (N ,
Cα, and C) with the Kabsch algorithm [11], then compute the backbone RMSD for receptor and
heavy-atom RMSD for ligand, respectively. Both ligand- and receptor- RMSDs use the conformations
in the holo-structure of the complexes as ground truth. Additionally, we compute the TM-score [34]
for the receptor conformation to measure the global similarities between the optimized apo receptor
conformation and the holo conformation.

4.2 Rigid-body docking performs poorly in apo setting

To motivate flexible apo docking methods, we first examined the performance of DiffDock, the
state-of-the-art rigid-body docking method, on both holo and apo settings. Consistent with [5], we
also observed a drastic performance drop in terms of predicting the correct ligand conformations.
The percentage of generated ligands conformations below 2Å decrease from 54.45% to 34.33% on
the PDBBind dataset (Table S1). We next asked the potential causes of this drop by performing
error analysis focusing on the input apo protein conformations. We found a strong correlation
(Spearman’s ρ=0.298) between the drop in ligand RMSD and the backbone RMSD between ESMFold
predicted apo structures and holo structures (Fig. S1). It suggests that rigid-body docking methods
such as DiffDock exhibit deteriorated performance when docking ligands to receptors with large
conformational discrepancies between their apo and holo states. After all, rigid-body docking methods
ignores the conformational flexibilities of the protein receptors. These observations indicate the need
to develop a model to explicitly model the proteins’ conformational flexibitliy to help optimize the
apo structures. We hypothesize that an apo conformation optimized towards its holo counterpart will
improve the docking performance for both the receptor and the ligand.
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Figure 3: FlexiDock’s LCR model improves apo structures to move closer to holo structures by local
adjustments.

4.3 FlexiDock improve protein conformation prediction

We asked if the additional reverse diffusion process designed to optimize apo structures towards
its holo counterpart can be coupled with the reverse diffusion processes for ligands. We found
that FlexiDock’s alternating inference is able to marginally improve the percentage of receptor
conformation below the 2Å threshold (56.58% to 58.36%) (Table 1). This improvement is greater
(56.58% to 60.5%) when we apply truncated inference for the receptors’ reverse diffusion process.
This is due to the time prediction model’s ability to accurately quantify the structural differences
between a pair of apo and holo conformations (Fig S2). Therefore, the time prediction model guides
the reverse diffusion process to prevent over correcting the receptor conformation. Interestingly,
we found FlexiDock turns to move the apo structures closer to holo structures via local adjustment,
evidenced by the improvement in RMSD while keeping the TM-score almost unchanged (Fig 3).

Table 1: PDBBind flexible docking. All methods receive a small molecule and a ESMFold-ed
apo protein structures as input. RMSD and TM-score are calculated using the receptor and ligand
conformations from the holo structures as references.

Top-1 receptor backbone Top-1 ligand
K Model inference RMSD

%<2 ↑
RMSD
%<5 ↑

median
RMSD↓

median
TM-score↑

RMSD
%<2 ↑

RMSD
%<5 ↑

median
RMSD↓

DiffDock no alternation 56.58 80.43 1.59 0.965 32.74 52.67 4.61
FlexiDock alternating inference 58.36 80.78 1.72 0.952 32.74 52.67 4.611
FlexiDock alternating inference; w. truncation 60.50 80.78 1.47 0.965 32.74 52.67 4.61

DiffDock no alternation 56.58 80.43 1.59 0.965 43.42 76.87 2.37
FlexiDock alternating inference 0.72 20.22 8.01 0.594 12.46 60.50 4.252
FlexiDock alternating inference; w. truncation 57.30 80.78 1.58 0.963 45.20 76.16 2.23

Next, we asked whether the apo structures transformed by FlexiDock’s LCR model can result in
better docked poses for ligands. To do that, we extend the alternating inference approach to iterate
for K = 2 rounds. This procedure emulates the iterative mutual fit idea, whereby each iteration
is a reverse diffusion process rather than a step in the reverse diffusion process. We found that the
receptor structures optimized by LCR indeed lead to improved ligand poses by 2% on the RMSD<2%
criterion (Table 1). However, the receptor conformations can hardly be improved by one more round
alternating inference. We reason that one round of LCR inference already led to the convergence of
the receptor conformation, any more denoising would lead to suboptimal receptor conformations.
This is supported by the observation that K = 2 rounds of inferences without truncation leads to
deformed receptor conformations (Table 1).

Table 2: Predicting apo-holo conformational switch on the Saldaño dataset. All methods receive a
small molecule and an apo protein structures as input. RMSD and TM-score are calculated using the
receptor and ligand conformations from the holo structures as references.

Top-1 receptor backbone Top-1 ligand
Model inference RMSD

%<2 ↑
RMSD
%<5 ↑

median
RMSD↓

median
TM-score↑

RMSD
%<2 ↑

RMSD
%<5 ↑

median
RMSD↓

DiffDock no alternation 25.49 84.31 3.23 0.832 13.73 58.82 3.95
FlexiDock alternating inference 0 66.67 4.53 0.667 13.73 58.82 3.95
FlexiDock alternating inference; w. truncation 31.27 92.16 2.68 0.836 13.73 58.82 3.95
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To assess how well FlexiDock can model the fold-switching between apo and holo pairs, we applied
it to the Saldaño dataset [23]. Notably, the apo structures in this dataset are resolved by biochemical
experiments, whereas the apo structures in the PDBBind dataset are predicted by ESMFold, many of
which resemble their holo counterparts. This dataset offers the ability to assess the naturally occurring
conformational switches induced by ligand binding. Consistent with the performance we observed
from the PDBBind dataset, we demonstrate that FlexiDock’s LCR score model with the truncated
inference procedure improved both the RMSD<2% and RMSD<5% criteria by over 6% (Table 2),
suggesting our method is able to simulate the ligand-induced conformational changes to some extent.

4.4 Qualitative case studies

Next, we examine a few FlexiDock-generated holo structures and contrasting them with their apo
counterparts. We observed FlexiDock mostly modifies the backbone angles in the coiled regions to
enable the modeling of protein domain movements (Sec. C.3).

5 Conclusion

In this work, we tackled the problem of flexible molecular docking by a compositional diffusion
approach. Our approach explicitly models the conformational flexibilities of both the receptor and
ligand, achieving competitive performance on recovering the complex structures. Qualitative analysis
reveals that FlexiDock primarily adjust receptors’ coiled regions. Our method shows promises in
modeling and sampling proteins’ diverse and dynamic conformations, which are crucial for many
drug discovery and protein engineering applications.
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Supplementary Material

A Additional methodological details of FlexiDock

A.1 Ligand-conditioned receptor (LCR) score model for apo structure optimization

The LCR score model predicts the score of the internal angles on the backbone of a receptor
θ ∈ SO(2)n×6 = sϕ1(r; l), where n is the number of amino acid residues in the receptor. We
adopted the same set of six angles along the protein backbone from FoldingDiff [31], including three
dihedral torsion angles and three bond angles for each amino acid residues. These six angles dictate
the backbone conformation of the protein and can be converted to 3D Cartesian coordinates by the
Natural Extension Reference Frame (NeRF) algorithm [20]. In contrast to the torsional updates in the
ligand’s torsional diffusion process for rotatable bonds, which applies vector rotations in the Cartesian
space directly [8], our method updates the angles and uses NeRF to reconstruct the protein backbone
from updated angles, producing exact Cartesian coordinates (Sec. D). Our method is suitable for
modeling the conformational changes for macro-molecules like proteins.

The LCR model is implemented as an SE(3)-invariant tensor product network with similar architec-
tures to DiffDock’s models [5] and operates on heterogeneous geometric graphs constructed from
the structures of protein-ligand complexes. The nodes in the graph represent ligand (heavy) atoms,
receptor residues (using the position of Cα atoms), and receptor backbone atoms (N , Cα, and C).
The edges among the nodes are constructed using the same criteria used in DiffDock.

Compared to the ligand score model, the LCR model operates on a multiscale representation of the
protein-ligand complex, where the receptor are composed of backbone atoms N , Cα, and C rather
than Cα alone. Additionally, instead of pooling the entire geometric heterogenous graph, the scalar
outputs corresponding to the receptor’s internal angles are produced by mean-pooling the scalar
representations of the receptor residue nodes, followed by a fully connected layer. This architectural
design enables the LCR model to perform node-level regression task on the receptor graph to predict
the internal angles on the amino acid residues. It’s worth noting that both the LCR and the ligand
score models contain cross ligand-receptor convolution layers to explicitly learn from inter-molecular
interactions when making predictions on one of the two molecules.

Algorithm 1 Inference procedure for LCR, which returns a sample from P (R|L = l, R = r)

1: Inputs: Score predictor sϕ1
(r; l, t), Ligand conformation l, Initial Receptor conformation rN

2: Outputs: Sampled receptor r0
3: for n = N to 1 do
4: t = n/N,∆σ2 = tσ2

5: Predict score α = sϕ1
(rn; l, t)

6: z ∼ N (0,∆σ2I)
7: ∆θ ← (α∆σ2 + z) mod 2π
8: rn−1 ← A(∆θ, rn), where A : SO(2)n×6 × ΩR → ΩR

9: end for
return Sampled receptor r0

A.2 Alternating inference and composition mechanism of two diffusion processes

We propose to compose two diffusion processes during the inference time, which we term as
alternating inference. Alternating inference emulates the induced-fit theory [12], which describes
the molecular docking process in apo setting (Fig. 2b) as a two-step process: the ligand first finds
its binding region on the protein receptor with the receptor conformation fixed, then it induces the
protein receptor to change its conformation to fit the ligand. Alternating inference allows the above
two steps to be repeated alternatively (a Gibbs sampling type procedure) for K > 0 steps or until
convergence is achieved i.e., wherein the RMSD between the conformations at steps k and k + 1 are
within a certain threshold.

More formally, given input ligand and receptor conformations (l0, r0), k ∈ {1, . . . ,K} the score
functions sϕ1

(r; l) and sϕ2
(l; r), we iteratively denoise using the two diffusion models (which

model the conditional distributions P (L|R = r), P (R|L = l)) to obtain new ligand and receptor
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conformations (lk, rk). Details of the iterative denoising procedure are provided in algorithm 2. In
what follows, under certain assumptions, we argue and establish that such an alternating procedure of
composing two independently trained diffusion models yields samples (lK , rK) from the true joint
distribution P (L,R) asymptotically. We relegate the reasoning behind why our assumptions are
valid and the proofs to the appendix. The assumptions and theorem statements are also stated more
formally in Appendix B.
Assumptions 1 (Diffusion Model Assumptions). (a) The Markov Chains MCL|R and MCR|L in-

duced by the diffusion models P (L|R = r), P (R|L = l) are both irreducible and aperiodic.
(b) Existence of Stationary distributions for the Markov chains: Markov chains when run individually,

converge to their respective stationary distributions P (L|R = r) and P (R|L = l) respectively.
(c) The score functions are bounded for all inputs |sϕ1

(r; l)|, |sϕ2
(l; r)| < ∞ ∀r ∈ ΩR, l ∈ ΩL.

Also, the score functions are smooth with bounded gradients ∀r ∈ ΩR, l ∈ ΩL.
(d) The noise injected and removed via both the Markov Chains have a consistent noise profile such

that the step sizes η1, << c1, η2 << c2 . This is to ensure bounded transition dynamics during
the inference procedure.

Assumptions 1(c) and (d) are only (approximately) required in practice to ensure that the diffusion
model outputs do not behave in an arbitrary fashion - and to ensure convergence to the respective
stationary distributions.
Theorem 1 (Convergence of Alternating Inference). For any given initialization of r0 ∈ ΩR, l0 ∈ ΩL

and given Assumptions 1, running the alternating process as given in Algorithm 2 will produce a
sequence of states (lk, rk), k ∈ {1, . . . ,K} that converges to the joint distribution P(L, R) asymptoti-
cally.

The immediate consequence of the theorem is that we can use two independently trained diffusion
models in an alternating fashion as an alternative to learning more complex diffusion models which
jointly captures receptor and ligand flexibility without sacrificing on correctness.

Algorithm 2 Alternating Inference for Compositional Diffusion Models

1: Inputs: Diffusion models which independently model P (L|R = r) and P (R|L = l), Number
of alternating rounds = K, initial conformations r0 ∈ ΩR, l0 ∈ ΩL

2: Outputs: Samples from the joint distribution P (L,R)
3: Procedure:
4: for k = 1 to K:
5: Sample lk ∼ P (L|R = rk−1) using DiffDock
6: Sample rk ∼ P (R|L = lk) using LCR (Algorithm 1)
7: return (rK , lK) ∼ P (L,R)

A.3 Time prediction model and truncated reverse diffusion process

During inference, a critical distinction between the reverse diffusion processes of ligand and receptor
lies in their initial states: a ligand starts from a random location and conformation, whereas a receptor
starts from a fixed location and a well-formed apo structure. The reverse diffusion process for the
receptor only need to model the changes from apo to holo conformations, a process more analogous to
image denoising than sampling a diffusion model to generating images from noise. Therefore, rolling
out the full reverse diffusion process (t = T → t = 0) in practice may result in over-correction of the
input apo structures, leading to conformations far from the desired holo structures.

To combat this issue, we develop a truncated (reverse) diffusion process that initiates the reverse
diffusion schedule at t = T − t̂ rather than at t = T . t̂ is determined by a time prediction model
t̂ = gϕtp(r, l).

We train this time prediction model using the same noised data from training the LCR model:
{(l0, rt, t), . . . }. The time prediction model also share the same architecture with the LCR model,
except that it used mean-pooling over the all the receptor residue nodes on the geometric graph to
produce a single SE(3)-invariant scalar as the predicted time t̂. We found that the predicted time
effectively quantifies the structural differences between an input receptor conformation with its holo
counterpart (Fig. S2).
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B Statements and proofs

We’ll restate the assumptions and theorem statements before the proof for ease of readability.

Let L,R be random variables corresponding to the ligand and receptor which takes values in ΩL,ΩR

respectively. Let P (L,R) denote the joint distribution of ligands and receptors which form a mutual
fit (i.e. holo structure of receptor with correct post of ligand). Our goal is to sample from this joint
distribution.

Let the DiffDock and LCR diffusion models, model the conditional probability distributions P (L|R =
r), P (R|L = l) which induce the Markov Chains MCL|R,MCR|L respectively. Then, if the
following assumptions hold,
Assumptions 2 (Diffusion Model Assumptions). (a) The Markov Chains MCL|R and MCR|L in-

duced by the diffusion models P (L|R = r), P (R|L = l) are both irreducible and aperiodic.
(b) Existence of Stationary distributions for the Markov chains: Markov chains when run individually,

converge to their respective stationary distributions π1, π2 for P (L|R = r) and P (R|L = l)
respectively.

(c) The score functions are bounded for all inputs |sθ1;l(r)|, |sθ2;r(l)| < ∞ ∀r ∈ ΩR, l ∈ ΩL.
Also, the score functions are smooth with bounded gradients ∀r ∈ ΩR, l ∈ ΩL.

(d) The noise injected and removed via both the Markov Chains have a consistent noise profile such
that the step sizes η1, << c1, η2 << c2 . This is to ensure bounded transition dynamics during
the inference procedure.

the following statement holds as well:

Statement: Regardless of the initial values for l0, r0, the alternating Gibbs Sampling Procedure
which uses the Markov Chains defined by the neural score matching diffusion models will produce
sequence of samples lK , rK from the joint distribution P (L,R) as K →∞.

Before, we begin with the proof, adding some preliminaries about Markov Chains:

Irreducibility: A Markov chain is said to be irreducible if there exists a non-zero probability of
transitioning (can be more than 1 step to transition) from any state to any other state.

Aperiodicity: A Markov Chain is said to be aperiodic if there are no fixed number of steps at which
the chain returns to the starting state for any possible starting state.

Detailed Balance Condition: It is a condition that ensures the existence of a stationary distribution
of a Markov chain. For a distribution π to satisfy the condition with respect to a transition matrix P,
the following condition must hold for states a, b: π(a)P (a→ b) = π(b)P (b→ a)

Proof. We will follow a three step approach to prove the statement. We will first establish the detailed
balance condition for the Gibbs Sampling procedure and show that it is satisfied. Subsequently we
will look at the irreducibility and aperiodicity of the Gibbs Sampler Markov Chain and then finally
the convergence to the stationary distribution.

Lets start by considering two joint states (lk, rk) and (lk+1, rk+1). The associated transition prob-
abilities are given by P (lk → lk+1|rk) and P (rk → rk+1|lk+1). The transition probability from
(lk, rk)→ (lk+1, rk+1) is given by

P ((lk, rk)→ (lk+1, rk+1)) = P (lk → lk+1|rk)P (rk → rk+1|lk+1)

and the reverse transition probability from (lk+1, rk+1)→ (lk, rk) is given by

P ((lk+1, rk+1)→ (lk, rk)) = P (lk+1 → lk|rk+1)P (rk+1 → rk|lk)
The detailed balance condition for the Gibbs Sampler is then given by

P (lk, rk)P (lk → lk+1|rk)P (rk → rk+1|lk+1) = P (lk+1, rk+1)P (lk+1 → lk|rk+1)P (rk+1 → rk|lk)
To show that the detailed balance condition holds, we call upon the definitions of conditional
probabilities i.e. P (L,R) = P (L|R)P (R) = P (R|L)P (L). Substituting P (lk, rk) = P (l =
lk|R = rk)P (R = rk) and P (lk+1rk+1 = P (R = rk+1|L = lk+1)P (L = lk+1) in to the equation
followed by the definition of the Gibbs Sampler i.e. P (lk → lk+1|rk) = P (L = lk+1|R = rk) and
P (rk → rk+1|L = lk+1), we see that all the terms on the LHS and the RHS of the equation cancel
out.
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Therefore, the condition for detailed balance is satisfied for the Markov chain whose states transition
from (lk, rk)→ (l+k + 1, rk+1) and hence implies that P (L,R) is indeed the stationary distribution
of the Markov Chain generated by the Gibbs sampling procedure [14].

Now, for any states (l, r) and (lk+1, rk+1) of the Markov chain, given the Gibbs sampling procedure
and the properties of the two Markov chains of the conditional distributions, it is clear to see that
P (L = lk+1|R = rk) > 0 for any rk and P (R = rk+1|L = lk) > 0 for any lk. Therefore our
Markov Chain is irreducible (pathway to go from any state to any other state). Also since we are
using Gibbs sampling and alternatively sampling from P (L|R) and P (R|L) - theres no fixed loops
bound to occur - and our Markov Chain doesn’t get trapped into periodic cycles, and therefore our
Markov Chain is aperiodic as well.

Now, given that our Gibbs samplers Markov Chain has a stationary distribution and is also aperiodic
and irreducible, we use the Fundamental Theorem of Markov Chains [18] to say that we have a
guaranteed convergence to P (L,R) regardless of the starting state as K →∞.
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C Additional results

C.1 Rigid-body docking performs poorly in apo setting

We examined the performance of DiffDock, the state-of-the-art rigid-body docking method, on both
holo and apo settings. Consistent with [5], we also observed a drastic performance drop in terms of
predicting the correct ligand conformations. The percentage of generated ligands conformations below
2Å decrease from 54.45% to 34.33% on the PDBBind dataset (Table S1). We next asked the potential
causes of this drop by performing error analysis focusing on the input apo protein conformations. We
found a strong correlation (Spearman’s ρ=0.298) between the drop in ligand RMSD and the backbone
RMSD between ESMFold predicted apo structures and holo structures (Fig. S1). It suggests that
rigid-body docking methods such as DiffDock exhibit deteriorated performance when docking ligands
to receptors with large conformational discrepancies between their apo and holo states. After all,
rigid-body docking methods ignores the conformational flexibilities of the protein receptors. These
observations indicate the need to develop a model to explicitly model the proteins’ conformational
flexibitliy to help optimize the apo structures. We hypothesize that an apo conformation optimized
towards its holo counterpart will improve the docking performance for both the receptor and the
ligand.

Table S1: RMSD-based metrics from Apo and Holo settings. The docking performance of DiffDock
drop significantly in Apo setting compared to Holo setting, where the perfect apo protein structures
are given to the model. All receptors from PDBBind test set (n=268) are used.

Top-1 Ligand RMSD Backbone RMSD
Settings %<2 ↑ median ↓ %<2 ↑ median ↓
Holo 54.48 1.87 100 0
Apo ESMFold proteins 34.33 4.32 55.97 1.65

Figure S1: Correlation among backbone and ligand RMSDs from apo and holo settings (on all
receptors from PDBBind test set, n=268). Spearman’s rho is shown in the figure. Each dot in the
scatter plots correspond to a PDB ID (protein-ligand pair). Top-1 pose are selected using DiffDock’s
confidence model.
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C.2 Time model accurately predicts the structural differences between apo and holo
conformations

We found that the time prediction model’s ability to accurately quantify the structural differences
between a pair of apo and holo conformations (Fig S2).

Figure S2: Time prediction model accurately predict the differences between apo and holo structures.
Scatter plots show the predicted time on y-axis and structural differences measurements on x-axis
(RMSD, TM-score, and pLDDT) for protein complexes in the PDBBind test set. The strctural
differences are calculated between ESMFold-predicted apo structures and their holo structures.
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C.3 Qualitative case studies

We examine a few FlexiDock-generated holo structures and contrasting them with their apo coun-
terparts. Figure S3 shows three examples from the PDBBind test set. As demonstrated by the close
TM-score, the predicted backbone structures from our model shares very similar folds with the input
apo structures. However, we found our model is able to modify the backbone angles around the coiled
regions to move an entire alpha-beta domain in AKT1 closer to its holo conformations (Fig S3a,
S3b). We also noticed that it can significantly lower the backbone RMSD of the viral protein VP1 by
modifying the coiled regions (Fig. S3c). Similarly, we observed our model is able to bend the coiled
regions of input apo conformations while keeping the alpha-helixes and beta-sheets intact (Fig. S4).
These observations suggest that our model has learned to retain the relative stable secondary struc-
tures in a protein and modify the coiled regions towards a more favorable conformation upon ligand
binding. We also noted that the improvement of local structural alignment metrics such as RMSD
are independent of the ligand-binding regions, giving our method the advantage of modeling large
domain movements involved in apo/holo conformational switches. However, more investigations
are needs to enable modeling of fold-switching proteins [4], where certain regions of the protein can
assume distinct stable secondary and tertiary structures [21].

(a) (b)

(c)

Figure S3: Examples of predicted protein backbones from the PDBBind test set. Holo, apo, and
predicted receptor protein backbone structures are colored in cyan, magenta, and yellow, respectively.
(a) AKT1 in Complex with Covalent-Allosteric AKT Inhibitor 15c (b) AKT1 in Complex with
Covalent-Allosteric AKT Inhibitor 27 (c) deaminated P domain from norovirus strain Saga GII-4 in
complex with Fuc
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(a) (b)

(c)

Figure S4: Examples of predicted protein backbones from the Saldano dataset. Holo, apo, and
predicted receptor protein backbone structures are colored in cyan, magenta, and yellow, respectively.
(a) nudix enzyme AP4A hydrolase in complex with ATP (b) PCAF bromodomain with small chemical
ligand NP2 (c) Riboflavin kinase Mj0056 from Methanocaldococcus jannaschii in complex with CDP
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D Model training

This section provides additional details on the training of the LCR score model sϕ1
(r; l, t) and the

time prediction model gϕtp
(r; l). For the ligand score model sϕ2

(l; r, t), we adopted the trained
model checkpoint from the DiffDock [5] publication and refer readers to the original publication.

The training procedures are similar for the LCR (Algorithm 3) and the time prediction models
(Algorithm 4). The training dataset is composed of holo structures of protein-ligand pairs (r, l) in the
same Cartesian coordinate space. We then apply the forward diffusion process to generated noised
receptor conformations while keeping the ligand fixed, such that the noised receptor-ligand complex
becomes (rt, l). To enable the angular noising of the receptor conformation and to ensure the noised
receptor rt sharing the same orientation and position relative to the receptor r, the transformation
action for the receptor takes the following form:

rt = A(∆θ, r) = AAlign(ANeRF (Aθ(r) + ∆θ), r)

where Aθ : ΩR → SO(2)n×6 computes the internal angles from the receptor conformation; ANeRF :
SO(2)n×6 → ΩR denotes the Natural Extension Reference Frame (NeRF) algorithm [20] that
reconstructs a protein receptor’s backbone coordinates from its internal angles. We use the following
empirical bond lengths for the NeRF algorithm: N−Cα = 1.46Å, Cα−C = 1.54Å, C−N = 1.34Å.
Lastly, AAlign : Rn×3 × Rn×3 → Rn×3 aligns a pair of Cartesian coordinates by minimizing their
RMSD using the Kabsch algorithm [11].

Algorithm 3 Training procedure for LCR score model sϕ1(r; l, t)

1: Inputs: Training pairs {(r, l)}
2: foreach r, l do
3: Sample t ∼ Uni([0, 1])
4: Sample ∆θ from diffusion kernel pt(·|0)
5: Compute rt ← A(∆θ, r)
6: Predict score α ∈ SO(2)n×6 = sϕ1

(rt; l, t)
7: Take optimization step on loss L(ϕ1) = ∥α−∇ log pt(∆θ|0)∥2

Algorithm 4 Training procedure for the time prediction model gϕtp
(r; l)

1: Inputs: Training pairs {(r, l)}
2: foreach r, l do
3: Sample t ∼ Uni([0, 1])
4: Sample ∆θ from diffusion kernel pt(·|0)
5: Compute rt ← A(∆θ, r)
6: Predict time t̂ = gϕtp(rt; l)

7: Take optimization step on loss L(ϕtp) = ∥t̂− t∥2

With the noised ligand-receptor complexes {(rt, l)}, the LCR score model and the time predictor
model are trained with squared loss to predict the score of the angular noise and the diffusion time,
respectively.

Training details. We use Adam [? ] as optimizer for the LCR and time predictor models. Both
models used for evaluation use the exponential moving average of the weights during training, and we
update the moving average after every optimization step with a decay factor of 0.999. We use a batch
size of 16 and learning rate of 1e-4. We train models for up to 200 epochs with an early stopping
patience of 5 epochs by monitoring validation loss as the convergence criterion. The LCR model was
trained on eight 24GB NVIDIA A10G GPUs and converged at 35 epochs. The time predictor model
was trained on a single GPU and converged at 40 epochs.

Hyperparameters. Both LCR and time predictor adopt the SE(3)-invariant tensor product network
architecture from DiffDock [5], with detailed hyperparameters shown in Table S2.
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Table S2: Hyperparameters of the SE(3)-invariant tensor product networks used in this study.
Models Conv. layers # scalar features # vector features # parameters

LCR 5 24 6 4.8M
Time predictor 4 12 3 488k
DiffDock score model 6 48 10 20.3M
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