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Abstract

RNA molecules provide an exciting frontier for novel therapeutics. Accurate
determination of RNA structure could accelerate development of therapeutics
through an improved understanding of function. However, the extremely large
conformation space has kept the RNA 3D structure space largely unresolved.
Using recent advances in generative modeling, we propose DiffRNAFold, a latent
space diffusion model for RNA tertiary structure design. Our preliminary results
suggest that DiffRNAFold generated molecules are similar in 3D space to true
RNA molecules, providing an important first step towards accurate structure and
function prediction in vivo.

1 Introduction

RNA tertiary structure design is quickly becoming an essential part of drug discovery and therapeutic
development. In this section we motivate why RNA design is important and why diffusion denoising
models are fitting for this task.

1.1 Why RNA?

Despite the devastation of the COVID pandemic, we must appreciate the global response to diagnosing,
treating and immunizing a large fraction of the world’s population with the rapid development of
mRNA based vaccines. While the groundwork for these vaccines was laid a few decades back,
the pandemic activity greatly accelerated the timeline for RNA based therapies. Recent reports
point to more than 400 RNA-targeting drug development programs, including 5 drugs that are
awaiting regulatory decisions [29]. These novel RNA therapeutics can be characterized into three
categories: oligonucleotides (often anti-sense), mRNA vaccines, and RNA-related small molecules.
While oncology is a major focus, many disease areas are being targeted, including metabolic and
neurological disorders.

Like many other macromolecules, ribonucleic acids (RNAs) take on specific functions within living
organisms. Some RNA (mRNA, tRNA, rRNA) are directly involved with protein synthesis, while
other, noncoding RNAs (snRNA, miRNA, siRNA) are involved with editing, regulation and even
gene knockout [28]]. An improved understanding of specific RNA function is essential in developing
therapeutics, either indirectly by understanding its effect on proteins via RNA translation or directly
by designing noncoding-RNA molecules that can inhibit a specific gene target’s expression. Moreover,
understanding the tertiary (3D) structure is imperative in determining thermodynamic feasibility and
efficacy in vivo.
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However, determining RNA structure has been denoted a grand challenge and even stated to be more
difficult than protein structure prediction [26]. The reason for this is simply the flexibility of RNA
molecules. While protein molecules, with three torsional angles at each residue, generate enough
diversity to make structure prediction difficult, RNA molecules have seven torsional angles at each
nucleotide [18]]. Thus, RNA molecules have a combinatorial explosion in terms of allowable tertiary
structures. Due to this large conformational sample space, traditional Monte-Carlo approaches that
aim to randomly sample and choose the molecules with lowest free energy, often fail to converge
in reasonable time. To overcome this issue, and partly due to the recent success of protein structure
prediction with AlphaFold [13]], deep learning based methods have been proposed [19, 23]. These
methods have shown promising results in structure prediction. With DiffRNAfold, we propose a
framework that takes this one step forward with RNA structure generation and design.

The problem of RNA design is related to, but also distinct from the problem of predicting structure.
Generating novel structures that fold stably in a natural environment, and are functionally similar to
RNA, could be the key to breakthrough therapeutics. For example, vaccine development requires
generation of designer mRNA that produces an antigen mimicking the viral protein [27]. Designed
RNA oligonucleotides have been used to correct aberrant splicing, as in the blockbuster therapeutic,
nusinersen that interrupts splicing of SMN-2 [7]]. Therefore, in this paper, we explore the use of the
recently popular diffusion based generative model for RNA design.

1.2 Why Diffusion?

Score based generative modeling and diffusion denoising models [25, 24} 14, 10, 9] are architectures
that iteratively add noise to the input samples following the diffusion stochastic differential equation
until the sample represents pure noise. The model then seeks to learn the incremental reverse
diffusion (denoising) steps and reconstruct the input. After training, the denoising diffusion part of
the model can be use to construct high quality samples from pure noise. These models have had
major success in the computer vision domain beating GANs in image and 3D shape synthesis [6}33]]
and also with the advent of stable-diffusion [20] that utilizes latent space diffusion for high quality
text-to-image generation. More recently, diffusion has achieved great results in the computational
chemistry domain, specifically for molecular docking, small molecule generation, and even protein
structure generation/dynamics [4} 11} 12} 3} 31,|30]]. Due to the recent positive results of diffusion
models for chemical structure generation, we find it a fitting model for RNA structure generation
as well. However, as RNA molecules are much larger than small molecule drugs, we seek to use a
latent space diffusion model, where we first encode the molecule’s into latent representations before
diffusing and denoising. This architecture allows for conditional generation (based on linear sequence
of nucleotides) analogous to the aforementioned text-to-image model.

2 Methods

2.1 DiffRNAFold Architecture

DiffRNAFold (see Figure[T)) consists of three major parts: (a) a graph autoencoder, (b) the latent
space diffusion denoising layers, and c) an optional language model for conditional input. At a
high level, the pipeline is as follows. The autoencoder takes RNA features and points (X)) as input
(Section [2.3), and embeds them into a robust latent space that contextualizes the RNA molecule
and simultaneously learns how to decode the latent vector back into the RNA point cloud. Next, to
enable high quality generation of RNA molecules, we diffuse (step (b)) on the latent vector by adding
Gaussian noise incrementally. The denoising layers then learn each incremental denoising step via
a 1D UNet, essentially learning to reconstruct the original latent vector from noise. If conditional
input (step (c¢)) is provided, then the linear sequence of an RNA, embedded by a language model,
is concatenated with the noisy vector before denoising. This “conditional” generation guides the
denoising layers to reconstruct a latent that describes the structure of the given 1D sequence. All of
these steps are detailed below.

2.1.1 Graph Autoencoder

See Figure [Th. We use Graph Neural Networks (GNNs). GNN layers can be broken down into
a series of steps involving message passing and aggregation. We can think of this process as a
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Figure 1: DiffRNAFold architecture visualization, inspired by [20]. (a) Graph Autoencoder to encode
RNA molecule graphs into latent representations. (b) Latent Space Diffusion and Denoising layers to
generate high quality latents. (c) Optional conditional input via language model embeddings to guide
the diffusion process.

function Z = f(X, A), where the graph’s vertex features X and adjacency matrix A are used to
transmit messages among neighboring vertices. The objective is to embed the X into a more effective
representation Z.

We make use of a particular subtype of GNN, called graph convolutional neural networks (GCN5s)
[16]. These layers can be stacked similar to traditional convolutional neural networks. In our model,
we utilize stacked graph convolutional layers, which incorporate the following message-passing rule
proposed by [16]] :

AGENE a<DiAD—%Z<l>W”)>, 70 = x (1)

At GCN layer 0, Z(® is the initial input node features X. The graph’s input adjacency matrix is
symmetrically normalized shown in (1). Note that A= A+1,and D is the degree matrix of A.
At each layer [, there is a learnable weight parameter W (). Finally, the representations are passed
through the sigmoid o (-) nonlinearity.

Following the canonical autoencoder structure [22]], we define a GNN encoder £(+) and decoders
D1 (+), Da(+). Incorporating the GCN layers, the encoder (Z = £(X, A)) takes as input the molecule
points and features X and uses the edges A in the message passing scheme defined in (1), resulting
in a refined latent representation Z.

7 is then used as input to both decoders where one reconstructs the RNA atomic point cloud P’ via
Multilayer Perceptrons (MLP) and the other reconstructs the adjacency matrix A’ via inner product.

P' =Dy(Z) = MLP(Z) @)

A'=Dy(2)=0(22Z"7) 3)
To measure the Graph Autoencoder’s reconstruction capabilities, we incorporate two methods of loss.
First, we use Chamfer Distance (CD) as the loss between the ground truth atomic coordinates P and
reconstructed coordinates P’. This loss is standard in point cloud reconstruction tasks and is
formally described as such,

ECD—Zmlnllm—yHﬁmel\m—yllz )

zGP yepP’



Secondly, we use binary cross entropy (BCE) loss between the ground truth A edges and reconstructed
edges A’. Both are summed up for the final loss of the GAE.

2.1.2 Denoising Diffusion Layers

We utilize diffusion (see Figure[Ip) on the latent representations of the RNA molecule from Sec-
tion [2.1.1] to enable high quality latent vector generation (which can then be decoded into RNA
molecules). In the forward process, the latent vector at timestep O (zg) is injected with noise over
many iterations until at timestep T, zt represents essentially a sample of noise. zT is then passed
through the denoising layers where from each timestep ¢ to ¢ — 1, the latent vector is denoised by
means of a 1D UNet convolutional layer [21]]. The goal is for the model to learn how to reconstruct the
original latent zo’, which can then be decoded into the original RNA molecule. During training, both
the forward process of adding noise and the reverse process of denoising is utilized, and is optimized
with a canonical loss function among the successful diffusion models. Using the reparameterization
trick [15]], it has been shown that predicting the original latent zq is equivalent to predicting the
source noise that was added at each timestep. Let ¢y ~ N (¢; 0, I) be the added noise. As mentioned
previously, we construct a 1D UNet that predicts this noise, which can be denoted é(z¢, t). Thus,
according to [9} (17, 20], the loss at from the denoising diffusion layers can be generalized to matching
the noise as such:

Laisf =E, conon),e [|l€o — 60(%””3] (5)

Note that upon time of generation, the forward process of injecting noise is not utilized. Rather,
sampling a vector of Gaussian noise and passing it through the denoising layers shall result in a high
quality latent that is ready for decoding.

2.1.3 Language Model for Conditional Input

The graph autoencoder and the latent space diffusion model is already capable of generating RNA
molecules. To guide the diffusion process, we utilized conditioning via concatenation of a representa-
tion of the condition and the random sample (see Figure[It). Specifically, we conditioned on RNA
sequences using pretrained embeddings from the RNABERT model [2] which uses a bidirectional
transformer language model [5] on RNA linear sequences.

2.2 Training Scheme

The DiffRNAFold model is trained in two phases. First, only the graph autoencoder is utilized and is
trained on reconstructing the RNA tertiary structures using the loss described in section 2.1.1} Then,
in phase two, the RNA tertiary structures are passed through the graph encoder, through the forward
diffusion process, back through the denoising process, and finally through the decoder. Here, the
entire model, including the denoising diffusion layers, is trained using the loss defined in section
2.1.2)

2.3 Data & Preprocessing

We obtained 2,500 molecules from the RNASolo database [1]. To overcome the large variance in
RNA sizes (50-2,000 atoms), we selected the 240 RNA molecules with a size range of 100-140 atoms.
The PDB files were then parsed into tensors using the coordinates and features, and each point cloud
was then padded with zeros to the size of 140 atoms and normalized to fit on the unit sphere prior to a
85-5-10 (train, val, test) split.

To construct our graph representation of each RNA molecule G(X, A), the atomic coordinates (P)
along with basic molecular features were organized into the feature matrix X € R**(+/) where
n = 140 is the number of points and f is the number of molecular features. The adjacency matrix
A € R™*™ represents the edges (bonds) between atoms and additional edges based on nearest-
neighbor (kK = 5) proximity. These molecular graphs were used as input to the DiffRNAFold
architecture.
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Figure 2: (a) DiffRNAFold generated molecule atomic points vs. randomly generated atomic points.
Distribution of pairwise euclidean distances between the centroid of each point cloud (diffrnafold vs.
random) and the centroids of real RNA molecule points.(b) Sample reconstructed RNA point cloud
(orange is generated | blue is real atomic points)

3 Results

Note that DiffRNAFold is a generative model that produces RNA-like structures, and thus it cannot
be compared directly with other methods that predict RNA structure. To assess DiffRNAFold’s
generative capabilities, we devised other analytical methods. Specifically, we designed an experiment
to better understand explored the 3D space occupied by DiffRNAFold’s molecular point clouds, and
their relationship to (a) real RNA molecules in our data-set, and (b) random molecular point clouds
as baseline. To accomplish this, we sampled 100 RNA molecules from DiffRNAFold, retrieved
100 real RNA molecules from our dataset at random, and generated 100 random molecular point
clouds as a baseline. We computed the pairwise Euclidean distance between the centroid of each
DiffRNAFold point cloud to each real RNA point cloud. The same was done for computing the
pairwise Euclidean distance of each Random point cloud centroid to each real RNA point cloud
centroid. In an ideal setting, the DiffRNAFold-to-Real distribution would be close to zero indicating
a similar 3D conformation space to real RNA molecules.

The distributions of these pairwise distances are shown in Figure [2a]as Violin plots. We observed
that DiffRNAFold-to-Real distances (in pink) showed median centroid Euclidean distance (0.673)
much closer to zero compared to the Random-to-Real centroid Euclidean distance (median: 2.900).
The distribution differences were statistically meaningful (Rank-sum test p-value: 2.06e-16). Thus,
DiffRNAFold’s molecular point clouds are indeed much similar in 3D space to real RNA molecules—
a crucial first step in determining RNA molecule validity. Additionally, while this first experiment
indicates the overall 3D space in which DiffRNAFold generated molecules lie in, we also provide a
small proof of concept. Figure [2b]shows the atomistic point cloud of a real RNA molecule in our
dataset (in orange) and the autoencoder reconstructed point cloud by DiffRNAFold (in blue). This
synthetic structure is visually very similar to the RNA structure suggesting that even with a small
dataset, sufficient properties of RNA structures can be obtained.

4 Conclusion & Work in Progress

With DiffRNAFold, we have proposed the first latent space diffusion model for the generation of
novel RNA tertiary structures. However, in parallel work, a latent diffusion model for other non-RNA
molecules was proposed [32] further validating and motivating our strategy. Our preliminary results
indicate a good starting point, but also point to exciting new directions. On the algorithmic side, we
plan to develop a roto-translational equivariant graph autoencoder using [8]] to obtain better latent
representations. Secondly, we plan to incorporate a hierarchical diffusion method as many RNA
3D structures can be directly informed by their 2D motifs (hairpin loops, pseudoknots, etc.). Our



work could also be improved through larger data collections, perhaps incorporating training on
accurately simulated RNA samples, or breaking up larger RNA molecules into smaller functional
domains. Lastly, we plan to incorporate more rigorous analysis of DiffRNAFold’s chemical validity,
especially in regards to the conditional generation. Overall, with this work, we hope to emphasize the
importance of research on designing RNA molecules, and promoting its application to development
of novel drug therapy.
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