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Abstract

Determining the structure of a protein has been a decades-long open question.
A protein’s three-dimensional structure often poses nontrivial computation costs,
when classical simulation algorithms are utilized. Advances in the transformer
neural network architecture achieve significant improvements for this problem, by
learning from a large dataset of sequence information and corresponding protein
structures. Yet, such methods often only focus on sequence information; other
available prior knowledge, such as protein crystallography and partial structure of
amino acids, could be potentially utilized. To the best of our knowledge, we propose
the first transformer-based model that directly utilizes protein crystallography and
partial structure information to predict the electron density maps of proteins. Via
two new datasets of peptide fragments (2-residue and 15-residue), we demonstrate
our method, dubbed CrysFormer, can achieve accurate predictions, based on a
much smaller dataset size and with reduced computation costs.

1 Introduction
Over the past decades, biologists have aimed to establish a standardized approach for experimentally
determining and visualizing the overall structure of a protein at a low cost. There have been three
general approaches to the protein structure problem: i) ones that rely on experimental measurements,
such as X-ray crystallography, NMR, or cryo-electron microscopy; see [1]; ii) protein folding
simulation tools based on thermodynamic or kinetic simulation of protein physics [2, 3]; and, iii)
evolutionary programs based on bioinformatics analysis of the evolutionary history of proteins [4, 5].

Recent advances in machine learning (ML) algorithms have inspired a fourth direction which is to
train a deep neural network model on a combination of a large-scale protein structure data set (i.e., the
Protein Data Bank [6]) and knowledge of the amino acid sequences of a vast number of homologous
proteins, to directly predict the protein structure from the protein’s amino acid sequence. Recent
research projects –such as Alphafold2 [7]– further show that, with co-evolutionary bioinformatic
information, deep learning can achieve highly accurate predictions in most cases.

Our hypothesis and contributions. While it is true that such computational methods are improving,
they are not yet complete –in terms of the types of structures that can be predicted– and suffer from
a lack of accuracy in many details [8]. X-ray crystallographic data continues to be a gold standard
for critical details describing chemical interactions of proteins. Having a robust and accurate way of
going directly from an X-ray diffraction pattern to a solved structure would be a strong contribution
to this field. Such approaches are missing from the literature, with the exception of [9].

Here, we present the first transformer-based model that utilizes protein crystallography and partial
structure information to directly predict the electron density maps of proteins, going one step beyond
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such recent approaches. While not yet ready to solve real problems, we demonstrate success on a
simplified problem. As a highlight, using a new dataset of small peptide fragments of variable unit
cell sizes –a byproduct of this work– we demonstrate that our method, named CrysFormer, can
achieve more accurate predictions than recent work [9] with less computational overheads.

2 Problem Setup and Related Work
X-ray crystallography and the crystallographic phase problem. Each spot (known as a reflection)
in an X-ray crystallography diffraction pattern is denoted by three indices h, k, l, known as Miller
indices [10]. These correspond to sets of parallel planes within the protein crystal’s unit cell that
contribute to producing the reflections. The set of possible h, k, l values is determined by the
radial extent of the observed diffraction pattern. Any reflection has an underlying mathematical
representation, known as a structure factor, dependent on the locations and scattering factors of all
the atoms within the crystal’s unit cell. In math:

F (h, k, l) =

n∑
j=1

fj · e2πi(hxj+kyj+lzj), (1)

where the scattering factor and location of atom j are fj and (xj , yj , zj), respectively. A structure
factor F (h, k, l) has both an amplitude and a phase component (denoted by ϕ) and thus can be
considered a complex number. Furthermore, suppose we knew both components of the structure
factors corresponding to all of the reflections within a crystal’s diffraction pattern. Then, in order to
produce an accurate estimate of the electron density at any point (x, y, z) within the crystal’s unit
cell, we would only need to take a Fourier transform of all of these structures, as in:

ρ(x, y, z) = 1
V ·

∑
h,k,l

|F (h, k, l)| · e−2πi(hx+ky+lz−ϕ(h,k,l)), (2)

where V is the volume of the unit cell. The amplitude |F (h, k, l)| of any structure factor is easy to
determine, as it is simply proportional to the square root of the measured intensity of the corresponding
reflection. However, it is impossible to directly determine the phase ϕ(h, k, l) of a structure factor,
and this is what is well-known as the crystallographic phase problem [11].

Solving the phase problem. Various methods have been developed to solve the crystallography phase
problem. The three commonly used methods are isomorphous replacement, anomalous scattering,
and molecular replacement [11, 12]. Also, what is known as direct methods have been successful for
small molecules that diffract to atomic resolution, but they rarely work for protein crystallography,
due to the difficulty of resolving atoms as separate objects. Alternative methods have been developed
to solve the phase problem based on intensity measurements alone, known as phase retrieval [13–15].
However, these methods have not been widely used in X-ray crystallography, because they assume
different sampling conditions or were designed for non-crystallographic fields of physics. The
iterative non-convex Gerchberg–Saxton algorithm [16, 17] is a well-known example of such methods,
but requires more measurements than is available in crystallography.

3 CrysFormer: Using 3d Maps and Partial Structure Attention
The Patterson function. We utilize the Patterson function [18], a simplified variation of the Fourier
transform from structure factors to electron density, in which all structure factor amplitudes are
squared, and all phases are set to zero (i.e., ignored), as in:

p(u, v, w) = 1
V ·

∑
h,k,l

|F (h, k, l)|2 · e−2πi(hu+kv+lw). (3)

It is important to note that a Patterson map can be directly obtained from raw diffraction data without
the need for additional experiments, or any other information. And due to the discrete size of the
input and output layers in deep learning models, we can discretize and reformulate the electron
density map –and its corresponding Patterson map– as follows: Suppose the electron density map of
a molecule in interest is discretized into a N1 ×N2 ×N3 3d grid. The electron density map can then
be denoted as e ∈ RN1×N2×N3 . The Patterson map is then formulated as follows, where ⊙ means
matrix element-wise multiplication:

p = ℜ
(
F−1 (F(e)⊙F(ê))

)
≈ ℜ

(
F−1

(
|F(e)|2

))
.

Breaking down the above expression, F(e)⊙F(ê) ≈ |F(e)|2 denotes only the magnitude part of
the complex signals, as measured through the Fourier transform of the input signal e. Here, ê denotes
an inverse-shifted version of e, where its entries follow the shifted rule as in êi,j,k = eN−i,N−j,N−k.
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Using deep learning. We follow a data-centric approach and train a deep learning model, abstractly
represented by g(θ, ·), such that given a Patterson map p as input, it generates an estimate of an
electron density map, that resembles closely the true map e. Formally, given a data distribution D
and {pi, ei}ni=1 ∼ D, where pi ∈ RN1×N2×N3 is the Patterson map that corresponds to the true data
electron density map, ei ∈ RN1×N2×N3 , deep learning training aims in finding θ⋆ as in:

θ⋆ = argmin
θ

{
L(θ) := 1

n

n∑
i=1

ℓ(θ; g, {pi, ei}) = 1
n

n∑
i=1

∥g(θ,pi)− ei∥22

}
.

Since we have a regression problem, we use mean squared error as the loss function L(θ).
Using partial protein structures. Due to the well-studied structure of amino acids, we aim to
optionally utilize standardized partial structures to aid prediction, when they are available. For
example, let uj

i ∈ RN1×N2×N3 be the known standalone electron density map of the j-th amino acid
of the i-th protein sample, in a standardized conformation. Abstractly, we then aim to optimize:

θ⋆ = argmin
θ

{
L(θ) := 1

n

n∑
i=1

ℓ(θ; g, {pi, ei,u
j
i}) = 1

n

n∑
i=1

∥g(θ,pi,u
j
i )− ei∥22

}
.

Our proposal. We propose CrysFormer, a novel, 3d Transformer model [19, 20] with a new self-
attention mechanism to process Patterson maps and partial protein structures, to directly infer electron
density maps with reduced costs. CrysFormer captures the global information in Patterson maps and
“translates” it into correct electron density map predictions, via our proposed self-attention mechanism.
CrysFormer does not need an encoder-decoder structure [19] and artificial information bottlenecks
[21] –as in the U-Net architecture– to force the learning of global information. CrysFormer is able
to handle additional partial structure information, which comes from a different domain than the
Patterson maps. By using efficient self-attention between 3d image patches, we can significantly
reduce our overall computation costs.
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Figure 1: Crysformer and its novel one-way attention
mechanism for partial structures (red and purple arrows).

The architecture of the CrysFormer. We fol-
low ideas of a 3d visual Transformer [20] by
partitioning the whole input 3d Patterson map
pi ∈ RN1×N2×N3 input into a set of smaller 3d
patches. We embed them into one-dimensional
“word tokens”, and feed them into a multi-layer,
encoder-only Transformer module. If partial
structures uj

i are also available, we will partition
them into 3d patches and embed them into addi-
tional tokens that are sent to each self-attention
layer. This way, the tokens in each layer can also
“attend” the election density of partial structures,
as a reference for final global electron density
map predictions. Finally, we utilize a 3d convo-
lutional layer to transform “word-tokens” back
into a 3d electron density map.1; see Figure 1. A
precise mathematical formulation of our model
architecture is found in the appendix.

4 New Datasets
We generate datasets of protein fragments, where input Patterson and output electron density maps
are derived from Protein Databank (PDB) entries of proteins solved by X-ray Crystallography [6].
We start from a curated basis of ∼ 24, 000 such protein structures. Then from a random subset of
about half of these structures, we randomly select and store segments of adjacent amino acid residues.
These examples are consisted of dipeptides (two residues) and 15-residues, leading to two datasets
that we introduce with this work. The latter dataset contains 15 residues, where at most 3 residues
could be shared between different examples. Using the pdbfixer Python API [22], we remove all
examples that either contain nonstandard residues.

1We also utilize 3d convolutional layer(s) at the very beginning of the execution to expand the number of
channels of the Patterson map (and potentially partial structure) inputs.
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For our dipeptide dataset, we then iteratively expand the unit cell dimensions for each example,
starting from the raw max−min ranges in each of the three axis directions, attempting to create a
minimal-size unit cell where the minimum atomic contact is at least 2.75 Angstroms (Å). For our
15-residue dataset, we instead place atoms in fixed unit cells of size 41 Å x 30 Å x 24 Å to simplify
the now much harder problem. After this, all examples that still contain atomic contacts of less than
2.75 Å are discarded. The examples are then reoriented via a reindexing operation, such that the
first axis is always the longest and the third axis is always the shortest. We also center all atomic
coordinates such that the center of mass is in the center of the corresponding unit cell.

Structure factors for each remaining example, as well as those for the corresponding partial structures
for each of the present amino acids, are generated using the gemmi sfcalc program [23] to a
resolution of 1.5 Å. An electron density and Patterson map for each example are then obtained from
those structure factors with the fft program of the CCP4 program suite [24, 25]; partial structure
densities are obtained in the same manner. We specify a grid oversampling factor of 3.0, resulting in
a 0.5 Å grid spacing in the produced maps. All these maps are then converted into PyTorch tensors.

5 Experiments
Baselines. There are no readily available off-the-self solutions for our setting, as our work is one
of the first of this kind. As our baseline, we use a CNN-based U-Net model [9]; this architecture is
widely used in image transformation tasks [26, 27].

For comparison, we have further enhanced this vanilla U-Net with i) additional input channels to
incorporate the partial structure information, despite being evidently unsound; and ii) a refining
model procedure, which retrains the U-Net using previous model predictions as additional input
channels. Both of these extensions are shown to greatly improve the performance of the vanilla
U-Net. We refer the reader to the appendix for more details on our baseline model architecture.

Metrics. During testing, we calculate the Pearson correlation coefficient between the ground truth
targets e and model predictions g(θ,p); the larger this coefficient is, the better. Let us denote a
model prediction as e′. We define ē = 1

N1N2N3

∑
i,j,k ei,j,k and ē′ = 1

N1N2N3

∑
i,j,k e

′
i,j,k. Then,

the Pearson correlation coefficient between e and e′ is as below:

PC(e, e′) =
∑N1,N2,N3

i,j,k=1 (e′
i,j,k−ē′)(ei,j,k−ē)√∑N1,N2,N3

i,j,k=1 (e′
i,j,k−ē′)+ϵ·

√∑N1,N2,N3
i,j,k=1 (ei,j,k−ē)+ϵ

, (4)

where ϵ is a small constant to prevent division by zero. To demonstrate how well our methods solve
the phase problem, we also perform phase error analysis on our models’ final post-training predictions
using the cphasematch program of the CCP4 program suite [28]. We report the mean phase errors
of our predictions in degrees, as reported by cphasematch, where a smaller phase error is desirable.
Finally, we compare the convergence speed and computation cost of both methods.

Method Mean PC(e, e′) Mean Phase Error Epochs Time per epoch (mins.)

U-Net [9] 0.735 67.40◦ 50 28.93
U-Net+R (This work) 0.775 58.67◦ 90 29.06

U-Net+PS+R (This work) 0.839 51.34◦ 90 29.31
CrysFormer (This work) 0.939 35.16◦ 35 12.37

Table 1: CrysFormer versus baselines on the dipeptide dataset. U-Net+R refers to adding the refining procedure
to U-Net training; U-Net+PS+R refers to adding further partial structures as additional channels.

Results on two-residues. A summary of our results on our dipeptide dataset, which consisted of
1, 894, 984 training and 210, 487 test cases, is provided in Table 1. Overall, CrysFormer achieves a
significant improvement in prediction accuracy in terms of both the Pearson coefficient and phase
error, while requiring a shorter time (in epochs) to converge. CrysFormer also incurs much less
computation cost which results in significantly reduced wall clock time per epoch.

We further plot the calculated average mean phase errors of the predictions of our models against
reflection resolution, see left panel of Figure 2. The predictions made by CrysFormer have lower
mean phase error, compared to baselines. This means that the CrysFormer predictions, on average,
can reproduce better the general shape, as well as finer details of the ground truth electron densities.
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Figure 2: Left: Average phase error of model predictions against reflection resolution for dipeptide dataset.
Right: Average phase error of model predictions against reflection resolution for 15-residue dataset.

Results on 15-residues. On our dataset of 15-residue examples, which consisted of only 165, 858
training and 16, 230 test cases, we trained for 80 epochs to a final average test set Pearson correlation
of about 0.747. We then performed a refining training run of 20 epochs, incorporating the original
training run’s predictions as additional input channels when training the CrysFormer, and obtained
an improved average test set Pearson correlation of about 0.77 and phase error of about 67.66. On
both of these runs, we used the Nyström approximate attention mechanism [29] when incorporating
our partial structure information to reduce time and space costs. Even still, each training epoch still
took about 6.28 hours to complete. Thus due to time considerations, we decided not to attempt to
train a U-Net on this dataset for purposes of comparison.

(a) 5E4V_1_25 (b) 3HN7_1_133
Figure 3: Visualization of two successful predictions
after a refining training run; ground truth density maps
shown in blue and predictions shown in green.

We provide visualizations of a model predic-
tion in Figure 3; more can again be found in
the appendix. We also plot the average mean
phase errors of the predictions of our models
against reflection resolution, shown on the right
in Figure 2. These results show that this is a
more difficult dataset with reduced sample size;
yet CrysFormer predictions tend to reproduce
details of the desired electron densities.

We used the Autobuild program within the
PHENIX suite [30, 31] to perform automated
model building and crystallographic refinement
on a randomly selected subset of 302 test set
predictions after the refining training run. We
found that 281 out of 302 (∼ 93%) refined to
a final atomic model with a crystallographic R-factor of less than 0.38, indicating success, when
solvent flattening was applied. Without solvent flattening, 258 out of 302 (∼ 85%) refined to such an
R-factor (performing solvent flattening is known to be especially effective for unit cells with high
solvent content). And even if no refinement was performed at all, and instead an atomic model was
repeatedly fit to our predicted electron densities, we found that 229 out of 302 (∼ 76%) of the best
such atomic models still had a crystallographic R-factor of less than 0.38.

Furthermore, after automatic map interpretation using the autobuilding routines in shelxe [32] to
obtain a poly-alanine chain from each of the 16230 test set predictions, we found that almost 74%
of the resulting models had calculated amplitudes with a Pearson correlation of at least 0.25 to the
true underlying data. Historical results indicate that further refinement would very likely produce a
"correct" model if the initial poly-alanine model has at least such a correlation.

6 Conclusion

We have shown that CrysFormer outperforms recent models for predicting electron density maps
from corresponding Patterson maps in all metrics on a newly introduced dataset (dipeptide). Also,
CrysFormer requires fewer epochs to reasonably converge and has a smaller computational footprint.
Furthermore, our “refining” procedure greatly improves training for the vanilla U-Net architecture
on our dipeptide dataset, as well as for training CrysFormer on our 15-residues dataset.
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APPENDIX

A Model Architecture of CrysFormer

The first part of our model is the preprocessing and partitioning of input Patterson maps p and
additional partial structures uj into 3d patches of size d1 × d2 × d3. We embed those patches into
one-dimensional tokens with dimension dt, using of a small MLP, and add them with a learned
positional embedding; this holds for both Patterson maps and structures, as below:

Patterson maps p

X0 = 3DCNNWc(p) ∈ Rc×N1×N2×N3

X0 = Partition(X0) ∈ R
N1
d1

×N2
d2

×N3
d3

×(cd1d2d3)

X0 = Flatten(X0) ∈ R
N1N2N3
d1d2d3

×(cd1d2d3)

X0 = MLPWc(X
0) ∈ R

N1N2N3
d1d2d3

×dt

X0 = X0 + PosEmbedding(N1N2N3
d1d2d3

)

Partial structures uj

Uj = 3DCNNWp(u
j) ∈ Rc×N1×N2×N3

Uj = Partition(Uj) ∈ R
N1
d1

×N2
d2

×N3
d3

×(cd1d2d3)

Uj = Flatten(Uj) ∈ R
N1N2N3
d1d2d3

×(cd1d2d3)

Uj = MLPWp(U
j) ∈ R

N1N2N3
d1d2d3

×dt

Uj = Uj + PosEmbedding(N1N2N3
d1d2d3

)

As shown in Figure 1, we design an efficient attention mechanism such that i) only tokens from
Patterson maps attend tokens from the partial structures; ii) the tokens from the additional partial
structures are not passed to the next layer. This is based on that the partial structure electron density
information should be used by the model as a stable reference to attend to in each layer.

This one-way attention also greatly reduces the overall communication cost. In particular, let the token
sequence length be S = N1N2N3

d1d2d3
and let dh denote the dimension of the attention head. Assuming

we have H attention heads and L layers, CrysFormer uses the following attention mechanism:
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U = ConcatJj=1(U
j) ∈ R(SJ)×dt

Ah = Softmax
(
(Wh

qX
ℓ)⊤(Concat(Wh

kX
ℓ,Wh

k′U)
)
∈ RS×(S+SJ);

V̂h = Ah
(
Concat(Wh

vX
ℓ,Wh

v′U)
)
∈ RS×dh ;

O = WoConcat
(
V̂0, V̂1, . . . , V̂H

)
∈ RS×dt ;

Xℓ+1 = Wff2(ReLU(Wff1O)),

where, omitting the layer index, Wh
q , Wh

k , Wh
v are the trainable query, key, and value projection

matrices of the h-th attention head for tokens from the Patterson map, and Wh
k′ , Wh

v′ are the
corresponding matrices for tokens from the partial structure, each with dimension dh. Further, Wff1
and Wff2 are the trainable parameters of the fully-connected layers. We omit skip connections and
layer normalization modules just to simplify notation, but these are included in practice.

As a final step, we transform the output embedding back to a 3d electron density map, as follows:

g(θ,p) = tanh(3DCNNWo
(Rearrange(MLP(XL)))) ∈ RN1×N2×N3 ,

As stated, we use as our loss function the standard mean squared error loss.

B Additional Details on Dataset Generation

To start preparing our dataset, we selected nearly 24000 representative Protein Data Bank (PDB)
entries using the following criteria: proteins solved by X-ray crystallography after 1995, sequence
length ≥ 40, refinement resolution ≤ 2.75, refinement R-Free ≤ 0.28, with clustering at 30% sequence
identity. The standardized modifications we applied to each viable coordinate file were as follows: all
temperature factors were set to 20, any selenomethionine residues were rebuilt as methionine, and all
hydrogen atoms were removed leaving only carbon, nitrogen, oxygen, and potentially sulfur.

In our dataset generation process, an effort was taken to ensure diversity by sampling from PDB
entities with low sequence similarity to each other. However, both test and training sets are taking
random samples from the conformations allowed in rotamer and Ramachandran space. Any similar
conformations would be expected to be in a different rotational orientation in the cell by the nature of
the selection process. We did not compute all-versus-all clustering or force the test and training sets
to sample distinct conformational regions. For our 15-residue dataset, in order to obtain a greater
amount of starting coordinate files, we allowed at most 3 residues to be shared between distinct
examples. To prevent potential overfitting that could arise from this sharing of subsegments, we
enforced that all examples derived from the same initial .pdb file would be placed together in either
the training or test set.

Another issue regarding ambiguity in Patterson map interpretation is the fact that an electron density
will always have the exact same Patterson map as its corresponding centrosymmetry-related electron
density. [33] provided a workaround that involved combining a set of atoms with the set of its
centrosymmetry-related atoms into a single example output. However, this also requires a separate
post-processing algorithm to separate the original and centrosymmetric densities for each of his
model’s predictions. Since we are working with real-world structures –rather than randomly placed
data– we can exploit their known properties. In particular, we know that all proteinogenic amino acids
are naturally found in only one possible enantiomeric configuration [34]. Although the mirror-image
symmetry of enantiomers is not exactly the same as centrosymmetry, we show that this is enough to
allow us to work with true electron densities of protein fragments.

C Description of Dataset Subset

Due to limitations of online storage space, we provide a subset of our generated dataset. This
subset represents a total of 200000 dipeptide examples. As expected, patterson.tar.gz contains the
generated Patterson maps, while electron_density.tar.gz contains the corresponding electron densities.
Meanwhile, partial_structure.tar.gz contains both of the partial structures for each dipeptide example
in the subset.

The dataset can be downloaded through this link:
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https://drive.google.com/drive/folders/1X7YkxDd7yTC1RTG1z3NbdRIfKLfFtkrx?usp=share_link

We will also provide a dataset of prepared .pdb coordinate files of 15-residue examples, to which
our dataset generation process can be applied in order to produce Patterson map and electron density
tensors.

D Additional Visualizations of Model Predictions

(a) U-Net+R (b) U-Net+PS+R (c) CrysFormer
Figure 4: Serine + Tryptophan

(a) U-Net+R (b) U-Net+PS+R (c) CrysFormer
Figure 5: Aspartic Acid + Valine

(a) U-Net+R (b) U-Net+PS+R (c) CrysFormer
Figure 6: Aspartic Acid + Lysine

(a) U-Net+R (b) U-Net+PS+R (c) CrysFormer
Figure 7: Alanine + Methionine

Figure 8: Visualizations for dipeptide dataset. Ground truth density maps are shown in blue, while predictions
are shown in red. The model used to generate the ground truth electron density is shown in stick representation
for reference.
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Figure 4 represents a class of examples containing a large aromatic residue, Tryptophan. U-Net+R
models consistently produce poor predictions in this case, while the CrysFormer better handles
such residues. U-Net+PS+R shows that both providing additional input channels and using the
refining procedure improves results even for U-Net architectures; yet, CrysFormer still provides
better reconstruction. Figure 5 represents an example in which the additional partial structure input
channels provided to the U-Net provided a substantial increase in prediction quality, allowing it to
produce a prediction similar to that of the CrysFormer. Figure 6 represents an example in which both
providing additional input channels to the U-Net and switching to CrysFormer provided noticeable
improvements in prediction quality. Finally, Figure 7 represents an example in which all of our
models provided a reasonably accurate prediction.

Figure 9 shows various CrysFormer on our 15-residue dataset. It is clear that as prediction quality
increases as indicated by reported Pearson correlation, finer details of the true underlying structure are
more likely to be accurately reproduced. The predictions in Figure 9 (e), (f), (g), and (h), as well as
Figure 3 (a) [rank 55%] and (b) [rank 82%], were all successfully refined using all of the mentioned
autotracing and refinement procedures. But even for relatively poor predictions such as (a) and (b),
the rough overall shape can be reproduced even though several portions have clear inaccuracies.

Figure 10 shows the results of our Autobuild refinement runs as scatterplots; clearly only a small
fraction of the subset of predictions did not refine successfully.

Figure 11 shows the scatterplot of shelxe poly-alanine autotracing results on the full 15-residue test
set. As mentioned, examples for which the amplitudes calculated from the initial poly-alanine chain
built into the model electron density prediction have a Pearson correlation coefficient with the true
underlying structure factor amplitudes of over 0.25 (shown above the red line) are extremely likely to
be successfully refined.
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(a) 4KNK_1.pd_73 CC 0.60 (Rank 11%) (b) 7F1T_1.pd_13 CC 0.66 (Rank 18%)

(c) 4XWH_1.pd_380 CC 0.75 (Rank 31%) (d) 5MSX_1.pd_193 CC 0.76 (Rank 36%)

(e) 4FBC_1.pd_121 CC 0.78 (Rank 38%) (f) 7K34_1.pd_145 CC 0.84 (Rank 57%)

(g) 7F1T_1.pd_13 CC 0.87 (Rank 63%) (h) 4TXJ_1.pd_37 CC 0.92 (Rank 90%)

Figure 9: Visualizations for 15-residue dataset. Ground truth density maps are shown in blue, while predictions
are shown in green. The model used to generate the ground truth electron density is shown in stick representation.
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Figure 10: Left Panel: Scatterplot of post-refinement model R-factors, with solvent flattening applied. Right
Panel: Scatterplot of post-refinement model R-factors, without solvent flattening applied

Figure 11: Scatterplot of the Pearson correlations of amplitudes of the poly-alanine chains autotraced by shelxe
to the ground truth amplitudes vs the Pearson correlation of the predicted and ground truth maps for all 16,203
test cases
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