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Abstract

The design of custom-tailored proteins has the potential to provide novel and
groundbreaking solutions in many fields, including molecular medicine or envi-
ronmental sciences. Among protein classes, enzymes are particularly attractive
because their complex active sites can accelerate chemical transformations by sev-
eral orders of magnitude. Since enzymes are biodegradable nanoscopic materials,
they hold an unmatched promise as sustainable, large-scale industrial catalysts.
Motivated by the enormous success of language models in designing novel yet
nature-like proteins, we hypothesised that an enzyme-specific language model
could provide new opportunities to design purpose-built artificial enzymes. Here,
we describe ZymCTRL, a conditional language model trained on the BRENDA
database of enzymes, which generates enzymes of a specific enzymatic class upon
a user prompt. ZymCTRL generates artificial enzymes distant from natural ones
while their intended functionality matches predictions from orthogonal methods.
We release the model to the community.

1 Introduction

The design of proteins with tailored properties would open the door to novel approaches to address
many global challenges, such as pandemics or environmental pollution. The protein class of enzymes
is particularly attractive, given their capability to accelerate chemical transformations by several orders
of magnitude while being biodegradable nanoscopic materials. Enormous advances have been re-
ported in the field of enzyme design in the last two decades [24]. For example, protein engineers have
successfully controlled several chemical transformations, including the Kemp elimination [35, 31],
ester hydrolysis [33], Diels-Alder [37], retro-aldol [21, 4], and Morita-Baylis-Hilman [5] reactions.
Despite these impressive advances, these enzymes often do not achieve the catalytic rates of their
natural counterparts, with kcat/KM values being several orders of magnitude lower [22].
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With their precisely arranged catalytic residues, enzymes bind their substrates in well-defined catalytic
cavities. Slight deviations from the atomic-level interplay among catalytic and other influencing
residues and cofactors might deplete enzymatic activity entirely, significantly hindering the optimisa-
tion process and our understanding thereof. This atomic interplay, however, also opens opportunities
to design improved or novel enzyme functions through targeted mutations; and although the combina-
torial space of possible mutations is astronomically large, recent advances in artificial intelligence
(AI) may allow us to find better solutions at a higher throughput.
AI has opened a new era in protein research. Besides the significant advances in structure prediction
methods [2, 46, 23], neural networks are also greatly impacting protein design. To put progress in
the field into context, in just the last three years, over 40 new neural-based protein design methods
have been reported [14], meeting unprecedented success in many cases [11, 44, 43, 9]. Many of
these new models come from breakthroughs in the Natural Language Processing (NLP) field [15],
where much of this revolution can be attributed to the Transformer, a powerful modular architecture
behind widely used applications such as Google Translator or GPT3 [7]. In the protein research realm,
Transformers have met two main applications. First, trained as denoising autoencoding models [12],
protein language models are efficient at embedding sequence representations, which then can be
coupled to various protein downstream tasks [23, 34, 32, 6]. Second, trained to meet an autoregressive
objective, i.e., predicting the next word or amino acid given a previous context, Transformers produce
models capable of generating novel protein sequences, a compelling application for protein design
that has met wide success [26, 16, 29, 18, 30]. One disadvantage of generativ Transformers, however,
is that these usually exert little control over the properties that the generated sequences will feature
when the models are used in a zero-shot fashion. There are, however, specific ways to filter or control
the generated properties, e.g., by 1) fine-tuning specific families [25], 2) prompt-engineering [18], or
3) generating sequences in a high-throughput fashion and filtering those with the desired predicted
properties [14].
While these are all powerful techniques, we ideally also want an end-to-end model that generates
sequences upon a given user-defined prompt. An example in this area in the NLP field is CTRL, a
language model trained with control tags, such as ‘style’ and ‘topic,’ which define the direction the
generated text takes. This concept was applied to protein sequences in ProGen, a protein language
model trained with labels defining the biological process, cellular component, function, or taxon-
omy [26]. While a large repertoire of ProGen models has been made public [29], the conditional
models with control tags have to date not been released.
Motivated by these exciting opportunities, we trained ZymCTRL, a language model that generates
enzymes upon a prompt that defines a specific catalytic reaction. ZymCTRL was trained on the
BRENDA database, a dataset of 37M enzyme sequences classified according to their enzymatic class
(EC). During training, we linked every sequence to its associated EC class, and the model learned
the specific sequence features that define each catalytic reaction. To avoid the known issue of lack
of representativeness for some families, we tokenized the labels in such a way that notions learned
from class EC: 1.1.1.1 (‘alcohol dehydrogenase’) can be transferred to EC: 1.22.1.1 ‘iodotyrosine
deiodinase’ because they belong to the same group ‘EC1 ‘oxydoreductases.’ ZymCTRL can be used
after a user-defined EC class to generate novel enzymes that catalyze that reaction. Our analysis
shows that ZymCTRL generates globular, stable enzymes whose alleged functions match orthogonal
function prediction methods such as ProteInfer [36]. ZymCTRL contains 36 layers totalling 738M
parameters. We make this model freely available at (https://huggingface.co/hzgz/ZymCTRL)
for the benefit of the entire community.

2 Results

We have trained a conditional language model to generate enzyme sequences that fulfil a user-defined
catalytic reaction (Fig. 1). To this end, we used the Transformer architecture’s decoder module [3]
and trained it on the BRENDA database [8] with an autoregressive objective to obtain an enzyme
language model (Methods). Language models assign probabilities to sentences p(x) and the tokens
that compose them (x), defining the problem as a next-word (or next-amino acid) prediction:

p(x) =

n∏
i=1

p(x | x<i) (1)

We trained ZymCTRL to generate sequences conditioned on a control tag, defined as the enzymatic
commission number (also enzyme class) (EC) assigned to each enzyme (Fig. 1a). To promote transfer
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learning among subclasses belonging to the same class, we also tokenized the EC numbers (Methods).
The probability distribution is decomposed as:

p(x | EC) =

n∏
i=1

p(x | x<i, EC) (2)

We trained ZymCTRL by minimizing the negative log-likelihood over the entire dataset (D). This
way, the model must learn the relationships between the EC control tag and the amino acids that
follow:

L(D) = −
D∑

k=1

p(xk | xk
<i, ECk) (3)

After training, the ZymCTRL can generate enzyme sequences in a zero-shot fashion, or that match a
user-defined EC number (Fig. 1b).

Figure 1: Training and generation process and sequences in the training database. (a) During pre-
training, a Transformer (T) model learns the relationship among sequences and their tokenized
labels in an iterative process. (b) At inference time, users can specify a target catalytic reaction as
a condition for the model’s generation. (c) Sequences in the BRENDA database classified per EC
number. Depicted are the ten largest classes.

2.1 The BRENDA dataset: Implications and redundancy

The BRENDA database is a collection of enzyme sequences with annotated EC numbers [8]. We
removed sequences with more than one label, giving a dataset with over 36M sequences (Methods),
which is the one we refer to throughout this manuscript. BRENDA’s EC numbers feature a four-level
hierarchy, with each successive number defining the catalytic activity more precisely. For example,
enzymes classified as EC: 2.1.1.13 are transferases (first level), transferring one-carbon groups
(second level), such as methyl (third level), to specifically regenerate methionine from homocysteine
(fourth level). Dashes in the hierarchy (e.g., EC: 2.1.1.-) point out a lack of specificity of functional
annotation at that level. Besides the annotation disparity among classes, there are also large deviations
in representation, with some classes significantly more populated than others. While the top 100 most
populated classes encompass 37% of the sequences in the dataset, 9% of the 6,062 classes only include
one sequence (Fig. 2c). This fact is mainly reinforced by the definition of the fourth-level class
‘1’, which in each case comprises enzymes that are non-specific or whose specificity has not been
analyzed to date (such as EC: 2.7.11.1). There are a few possibilities to partly alleviate representation
bias during training. One strategy would be to ensure an equivalent number of members per class.
While this approach would deplete representation biases during training, it would also not exploit a
significant proportion of this valuable annotated data. In contrast, we envisioned a training strategy
where the model could transfer learning from populated to underrepresented classes. In particular, we
tokenized the EC labels by subclasses (Methods) for two reasons. First, to promote that the model
transfers notions from populated to underrepresented subclasses within the same group (e.g. EC:
7.1.1.9 and 7.1.1.2) and second, to understand what are the minimal requisites for a good-quality
per-class generation.
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2.2 General quality assessment of the generated sequences

Language models assign a next-token probability given a series of previous tokens. Consequently,
different generation approaches produce text with various degrees of success [19]. We have explored
the models’ capability to emit sequences with different parameters, by measuring the distance to the
observed natural amino acid frequencies (Methods). We observe the best accuracy when sampling
with top_p = 1, top_k = 9, temperature = 1, and repetition_penalty = 1.2 (Fig. S1) and use these
parameters throughout this work. To assess the quality of the generated sequences at a zero-shot
level, we use a set of tasks inspired by the GLUE benchmark [30, 42, 10], evaluating the predicted
properties of the sequences in comparison with the training set. To this end, we crafted two datasets:
the first one, which we refer to as ‘natural’, by sampling two random sequences per class, when
possible. The second, which we denote as ‘generated’, by generating the same number of sequences
per class with ZymCTRL (Methods). The datasets contains 11,439 sequences.
We first evaluated the percentage of sequences that are predicted to be globular using IUPRED3 [13].
Since our goal is to provide high-level comparisons between the two sets, we focused on the globular
prediction model. Our analysis shows similar globularity levels between the two sets, with 97.7% of
the ZymCTRL-generated sequences predicted to be globular, versus 99.3% for the natural dataset
(Table 1).
Next, we focused on comparing the predicted structure for the two datasets. The rise of structure
prediction methods such as AlphaFold [2], OmegaFold [46] or ESMfold [23] has enabled predicting
thousands of variants in a few hours. In this case, we used OmegaFold and ESMfold to predict the
structure of the two sets given as input of a single sequence (Methods). These methods produce a
per-residue estimate of its confidence (plDDT) with values ranging from 0 to 100. This score has
been shown to correlate with protein order for AlphaFold predictions [40]: Low scores (pLDDT >
50) tend to appear in disordered regions, while high ones (pLDDT > 90) appear in ordered ones.
The mean LDDT of the generated dataset -averaging over each predicted residue- is 60.01. 38.4%
of the sequences in the dataset show values over 70, in line with previously artificially generated
datasets [16, 27]. For the natural dataset, the average LDDT is 84.78, with 88.9% of sequences with
values over 70.
Besides, we computed structure predictions using ESMfold for the set of sequences below 400 amino
acids (Methods). The results are in line with OmegaFold, with plDDT averages of 60.2 and 84.9
for the generated and natural datasets, respectively, after transferring to the 0-100 scale. These
results are concordant with our previous analysis on ProtGPT2-generated and natural sequences
using AlphaFold [2]. We previously reported a plDDT average of 75.3 for the natural dataset, these
differences are however understandable based on the nature of the two datasets; the BRENDA dataset,
comprising only functional enzymes, will on average include more globular and ordered proteins
than Uniref50.

Table 1: Comparison between the structural features of natural and the generated dataset

Program Natural Dataset Generated Dataset

IUPRED3 (globular) 99.3% 97.7%
OmegaFold (LDDT) 84.78 60.01
ESMFold (plDDT) (<400 aa.) 84.94 61.04

2.3 The generated enzymes are distant from the natural space

One of the critical properties of language models is that they can generalize on the training set and
infer novel, unseen, yet coherent texts. This is a particularly interesting property for protein design
since we are interested in designing plausible, functional sequences that are, however, distant from
natural ones, and hence have the potential to constitute novel solutions to established problems. To
understand the extent to which ZymCTRL explores novel sequences, we ran MMseqs2 [38] searches
on the generated dataset versus the BRENDA training set (Fig. 2a) and BLASTP searches against the
non-redundant protein sequence database (Fig. S4).

The sequences are distant from the training set, with alignments that show average identities and
lengths of 53.1 ± 23.2% and 337.9 ± 151.2 amino acids. This is a remarkable feature since we
aim to obtain a model that generates solutions to chemical transformations that are distant from the
protein space. Nevertheless, we observe a non-negligible set of sequences with identities over 90%;
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Figure 2: Distance of the generated sequences to the training set. a) Identities and lengths for
the alignment with the lowest E-value found with MMseqs. b) Number of clusters at 90 and 50%
redundancy per sequence label, with three distant regions depicted and extended in c-e. c) Distance in
% identity to the sequences in the dataset for the three EC classes 2.3.1.4, 1.1.1.391 d), and 3.1.1.55
e). f) Scatter plot between the identities to training set groups for generated sequences and the average
number of sequences per cluster, for 100 EC classes. g) Network visualization of natural and three
generated sequences in EC class 1.1.1.391. The generated sequences show low identities to several
clusters.

12.5% of the sequences in the set (Fig. 2a). These sequences span all major enzymatic classes and
belong to groups with diverse numbers of members, spanning six orders of magnitude (Fig. S4). We
hypothesized that those sequences might belong to specific classes with high internal redundancy, i.e.,
EC classes whose sequences are homologous and within 90% identities to themselves. Hence, we
looked at possible determinants of generation redundancy at the EC class level. To this end, we first
clustered each of the training set’s EC class sequences at 90 and 50% identity (which we denote as
cluster90 and cluster50, Fig. 2b). Then, we generated 1000 sequences of each EC class in the training
set. Panels 2c-e showcase the distance among generated and training set sequences for three EC class
examples. In principle, we did not observe differences depending on the region of the clustering scale,
for example, the model produces sequences at all identity ranges for classes 2.3.1.4 and 1.13.12.2,
even if they are at the two axis extremes. Surprisingly, EC class 1.1.1.391 shows remarkably distant
identities to the natural sequences for all its generated sequences (Fig. 2d). A more detailed feature
comparison against the other EC classes, such as 2.3.1.4, revealed that the main difference between
the two sets is the average number of members per cluster50.
To identify whether this difference is an example of a more general trend, we (1) computed identities
for each of the 1,000 generated sequences per group against the natural sequences and computed
their averages and (2) plotted these values against the number of sequences per cluster50 (Fig. 2f).
Interestingly, the analysis revealed that there is a relationship (p-value = 6.04e-11, R=0.54) between
these two variables. We had also envisioned relationships to the number of clusters or the total
number of sequences within groups; these trends were however not observed (Fig. S5). To better
exemplify the connections among generated and natural sequences within groups, we looked at the
particular example EC: 1.1.1.391, where the natural sequences form 19 clusters50 (Fig. 2g). The
generated sequences show identities in the long-range (30-40%) to many clusters, as opposed to
showing higher identities to a single cluster. Fig. 2g depicts three example sequences (blue). In other
words, rather than extending natural clusters, the model interpolates among all clusters to generate
new ones. These findings have implications for protein design, since specific user cases may require
closer (i.e 90%) or more distant (i.e <40%) sequences to the natural ones. Besides, it points towards
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the model capturing general features of the different clusters and generating new, distant groups with
interpolated properties across them.

2.4 ZymCTRL sequences catalyze their expected reactions

ZymCTRL’s key component is its ability to generate sequences with the potential to catalyse a
user-defined chemical reaction. Before proceeding to experimental characterization, it is paramount
to characterize to what extent other methods agree on the predicted functionality. To this end, we
predicted ZymCTRL sequences’ function with ProteInfer [36], a convolutional neural network for
functional annotation using unaligned amino acid sequences as input. While the use of other models
to predict protein function is not without its limitations, ProteInfer was trained with a different neural
architecture and training objective and constitutes an orthogonal method to our predictions.
We computed ProteInfer predictions for a subset of one sequence per label in the natural and generated
datasets, totalling 6,000 sequences. ProteInfer generates a set of predicted GO terms given a sequence,
and an EC number for sequences with predicted catalytic capabilities. For the natural dataset, 45.9%
of the sequences were returned with an EC prediction. Regarding the generated dataset, 30.2% of the
sequences had an EC label assigned (Table 2). Discrepancies between assignments in generated and
natural dataset could be indeed due to a lack of functionality for some of the sequences, but also to
the distance of these sequences to the natural dataset, in particular to the training set that Proteinfer
learned during training.
Out of the confidently-predicted sequences, 81.2% and 80.9% of sequences were predicted with
their correct top-level EC class (e.g. EC:1: oxydoreductases), for the natural and generated datasets,
respectively. Successive levels in the hierarchy are more challenging to predict due to the increasing
specificity of the described chemical reactions, and hence it is expected that fewer sequences will
match the predictions. In this regard, 79.6% and 76.5% of sequences were assigned to their correct
second-level class, 76.1% and 73.5% their third-level class, and 62.0% and 54.0% their complete
EC class, for the natural and generated dataset (Table 2). These results are remarkable, taking into
account that the sequences were generated in a zero-shot fashion, with no previous fine-tuning on the
specific classes. Besides, the results suggest that a significant amount of sequences have the potential
to catalyze their intended reactions while conferring distant, novel solutions in the sequence space.

Table 2: Accuracy of ProteInfer predictions for the natural and generated datasets at each EC level.

1st EC level 2nd EC level 3rd EC level 4th EC level EC labels assigned

Natural 81.2% 79.6% 76.1% 62.0% 45.9%
Generated 80.9% 76.5% 73.5% 54.0% 30.2%

2.5 The generated sequences feature complex, non-idealized structures

The protein design field has provided a wealth of de novo structures, especially in the last few
years [20]. While these proteins pose a significant advance in the field, they are often idealized struc-
tures with minimal loops and often lack the necessary structural embodiments and dynamic properties
to interact with other molecules such as substrates. The emergence of alternative end-to-end protein
design methods in the last two years has shown new designs with natural-like structures. Recently,
we trained a protein language model termed ProtGPT2, and observed that the generated sequences
feature large loops and embodiments capable of accommodating binding partners, paving the way for
functionalization (manuscript in preparation). To characterize ZymCTRL’s capabilities at generating
structures with large loops and embodiments -a critical property in enzyme design, which require
flexible regions that specifically accommodate substrates and products- we attempted to visualize its
coverage of the enzyme space while parsing its structural predictions. Studies to reduce the large
dimensionality of protein sequences in a few human-understandable dimensions have focused on
hierarchical characterizations [17], cartesian representations, or similarity networks [28]. Recently,
manifold learning techniques, such as tSNE and UMAP, have emerged as powerful dimensionality
reduction and visualization tools.
Motivated by these advances, we generated ZymCTRL representations for both natural and gener-
ated datasets and reduced their dimensionality using UMAP. Figure 3 shows the first two UMAP
projections, revealing that the model has learned to capture differences among the main catalytic
classes. We besides observed large structural diversity across the generated examples and show one
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example per major catalytic class. In particular, we report an angelicin synthase (1.14.14.148), a
demethylmacrocin O-methyltransferase (2.1.1.102), a 4-chlorobenzoyl-CoA dehalogenase (3.8.1.7),
a pyridinium-3,5-bisthiocarboxylic acid mononucleotide nickel chelatase (4.99.1.12), an isopenicillin-
N epimerase (5.1.1.17), a cholate-CoA ligase (6.2.1.7), and an ABC-type methionine transporter
(7.4.2.11). For each case, we searched the most similar structure using Foldseek, and in all cases,
the best hits returned structures of the same fold. However, the selected examples reveal distant
sequences to the best hits, sometimes reaching values as low as 26.5% identity. As evidenced in the
examples, the sequences show predicted complex structures with natural-like surfaces and multiple
cavities that, in principle have the potential to adjust to incoming substrates and release reaction
products.

Figure 3: UMAP projection into two dimension of the generated and natural datasets and examples of
ZymCTRL proteins. The model discerns among categories. We show an example per class with the
structures predicted with OmegaFold. We indicate the pLDDT value, and the identity and ™-score to
the best hit obtained with Foldseek.

2.6 The model transfers learning to underrepresented groups

Since ZymCTRL has been trained conditionally on very differently populated EC classes - ranging
from one sequence per group to more than a million-, we attempted to understand the general transfer
capabilities of the model and the effect of our label tokenization. To this end, we first computed the
perplexity of the generated dataset and visualized these results by EC class, plotting against the total
number of sequences present in the training set per EC class (Fig. 4a). When analyzing the entire
dataset, the average perplexity of the generated sequences is 6.17 ± 2.94. We observed an increase
in perplexity for generated sequences belonging to less-populated classes, with a Spearman rank
correlation coefficient of -0.64. To exemplify this trend, 50.4% of the dataset contain classes with less
than 100 sequences, and these sequences show an average perplexity of 7.94 ± 1.89. Consequently,
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these classes would benefit from fine-tuning with different sequences to produce higher-confidence
values. However, despite this perplexity-frequency correlation, the model can still produce sequences
with low perplexity values. Even in highly underrepresented classes (<30 sequences), the model
generates sequences with perplexity scores comparable to classes trained with more than 1000
sequences (Fig. 4). These results indicate that in scenarios where no fine-tuning is possible, users
could still potentially generate and filter for high-confidence sequences in a zero-shot fashion.
As a second analysis towards characterizing transfer learning, we computed perplexity for sequences
in training and generated datasets. To this end, we generated 50 sequences for 20 classes with more
than 1,000 members in the training sets. Besides, we also computed perplexity for labels in the
validation dataset, corresponding to labels that the model had not seen during training but still had
plausible nomenclatures. Lastly, we manually created labels with the right amount of tokens but
with not-seen numbers during training, such as ‘9.9.9.9’ (Table S1). We computed perplexity for 50
sequences per label, totaling 20 labels and giving 1000 sequences per dataset (Fig. 4b). The average
perplexity of the training set is 2.34 ± 1.37, followed by the generated dataset with 2.17 ± 1.00.
These values reflect the capacity of the model in capturing the training distribution and generating
sequences that are distinct from natural sequences yet comparable to naturally functional sequences.
The perplexity for out-of-dataset labels (validation set) showed an increased mean perplexity of 4.02
± 1.3. In contrast, the mean perplexity of the invented labels is 7.94 ± 2.42.

Figure 4: Perplexity of sequences depending on group representativeness and dataset type. (a)
Relationship between perplexity of the generated sequences per class and the number of members
in their training set groups. (b) Perplexities for sequences in several training groups. Validation set
comprises labels not seen during training. Invented labels are shown in Table S1.

3 Discussion

The use of deep learning for the design of novel proteins has exploded in the last two years.13
Motivated by the recent advances in NLP, and in particular, in text generation, we recently trained
ProtGPT2, a language model that generates ordered, globular sequences in an unconditioned fashion.
This work has aimed to advance significantly forward, i.e., by pairing sequences to their functions
to provide a conditional language model. In particular, we have trained ZymCTRL, a conditional
language model trained on the currently known enzyme space. ZymCTRL produces globular, ordered
proteins whose predicted reactions with orthogonal methods match those intended by a user-defined
prompt. We tokenized labels during training to alleviate the lack of representativeness for some
specific enzyme classes, permitting the model to transfer knowledge for mechanistically similar
enzymes. Our results show that the model can generate high-confidence sequences even for highly
underrepresented classes provided sufficient inferred data. Fine-tuning on specific classes with added
labels will further increase confidence for those cases, while zero-shot generation of populated classes
may provide fit results. Near-future efforts include fine-tuning on specific classes and experimental
testing of several variants.
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4 Code Availability

The model is available at https://huggingface.co/nferruz/ZymCTRL
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6 Methods

6.1 Dataset preparation and vocabulary encoding

We downloaded the BRENDA database [8] through the UniProt web interface [39] (on July 2022)
giving a total of 37,624,812 sequences. To avoid multi-chain sequences with multiple EC assign-
ments, we removed sequences with several EC labels, giving a total of 36,276,604 sequences. We
split the database into training (90%) and evaluation (10%) datasets. We used a block size of 1024,
separated control tags and sequences with a separator token, and further specified the boundaries of
sequences below 1024 amino acids with start and end tokens. We fit as many complete sequences as
possible in the 1024 window, provided that sequences are not split across blocks. The sequences will
follow this schema if their length fits in the 1024 window: <control tag><sep><start><ENZYME SE-
QUENCE><end><|endoftext|>, and the following scheme otherwise: <control tag><sep><ENZYME
SEQUENCE><|endoftext|>. Sequences over 1024 amino acids ( 3%) were truncated to the N-terminal
part.

6.2 Model finetuning

Additional metagenomic sequences for finetuning were derived from Basecamp Research’s knowledge
graph. Environmental samples subjected to metagenomic sequencing were collected after receiving
landowner’s permission and entering access-benefit-sharing agreements with the relevant local or
national authority, following Nagoya protocol guidelines. All samples were sequenced with both
long-read (Oxford Nanopore GridION) and short-read (Illumina NovaSeq 6000) sequencing methods
applied to each sample after extraction. Following standard sequencing QC, an assembly-based
approach was followed, generating de novo assemblies that were subjected to polishing and open-
reading frame annotation. Each gene was functionally annotated (including KEGG, COG, and EC
number). Translated protein sequences alongside functional, genomic and sample information were
inserted into Basecamp’s graph database.

6.3 Vocabulary encoding

We train our model with an associated label (control tag) per sequence. Following recent studies [18,
30], we tokenized our enzyme sequences using amino acid encoding. We further tokenized the labels
in the dataset, to account for similarities among sub-classes in the same classes and help the model
generalize in lower-populated catalytic reactions. This way, the control tag ‘1.1.1.1’ is split into its
categories (‘1’ + ‘.’ + ‘1’ + ‘.’ + ‘1’ + ‘.’ + ‘1’) and shares 6 tokens with ‘1.1.1.2’.

6.4 Model pre-training

We use a Transformer decoder model as architecture for our training. The model uses the original
dot-scale self-attention [41]. The architecture uses that of the CTRL/GPT2 Transformer, which was
downloaded from HuggingFace [45]. ZymCTRL consists of 36 layers, a model dimensionality of
1260, and 16 attention heads. The model was optimized using Adam β1 = 0.9, β2 = 0.999 with
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a learning rate of 0.8e-04, following previous works [29]. A batch size of 4 per device was used
accumulating 4 gradient steps, totaling a total batch size of 768. We trained for 179,000 steps on
48 NVIDIA A100s 80GB for about 15,000 GPU hours. Parallelism of the model was handled with
DeepSpeed [1].

6.5 Dataset creation

We randomly sampled two sequences per EC number for multi-sequence classes, one otherwise. For
the generated dataset, we generated 20 sequences per EC number and selected the best or two best
perplexity-scoring sequences depending on the number of sequences in the natural dataset’s equivalent
classes. Each dataset contained 11,439 sequences. We ensured that the generated sequences followed
the natural dataset length distribution (Fig. S2), by applying a length limit of 600 to all labels, except
when no sequence could be generated at that length, hence the limit was extended to 1024. In all
cases, the sequences were only selected if they had been finished and not truncated by the model. For
the analysis of function prediction with ProteInfer, we selected and generated one sequence per EC
number, totaling 6,000 sequences per dataset.

6.6 ProteInfer analysis

We sent natural and generated datasets to the ProteInfer web interface (https://google-research.
github.io/proteinfer/) [36] and extracted the predicted EC numbers. Subsequently, we com-
puted the accuracy by comparing the ground truth EC numbers with the predicted labels, also in the
case of multi-labeled predictions.

6.7 IUPRED3 analysis

IUPRED3 [13] was run on both datasets using the ‘glob’ option.

6.8 Structure prediction

We computed the OmegaFold structure prediction for each sequence in the two datasets using the
max –subbatch_size that fit into memory for each sequence length range [46]. We computed the
ESMfold [23] predictions for sequences with less than 400 amino acids. In total the datasets contained
6753 and 6435 for natural and generated datasets, respectively.

6.9 Amino acid propensities

We computed the ‘natural’ amino acid propensities by taking all sequences in the BRENDA database.
The ‘generated’ dataset was created using as input to the model the ten largest EC classes in
BRENDA (Fig. 1b) and generating 20 sequences per parameter set. We tested a sampling generative
procedure [19], with a temperature of 1, max_length of 1024, top_p of 1, repetition penalty 1.2 and
1.3, and top_k for the values from 5 to 20, and 30, 50, 100, 200, and 458. Accuracy to match the
natural distribution was computed as the sum of the absolute differences between all amino acid pairs.
Repetition penalty of 1.2 provided better results in all cases. Top_k=9 gave the closest distribution to
the target propensities (Fig. S1).
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7 Appendix

Figure 5: Comparison of different parameter sets at recapitulating the natural sequences’ amino acid
propensity. The amino acids in the dataset are normalised (0,1) and shown in wider lines are the
natural propensities. Different parameters approximate to different extents this distribution, with
top_k = 9 being the closest.

Figure 6: Length distribution for the natural (a) and generated (b) datasets.
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Figure 7: Number of members for each of the classes with hits over 90% in Figure 3 in the main text.
The classes are shown in random order on the x-axis.

Figure 8: Identities and lengths for the best alignment found according to the E-value with BLASTp
against the non-redundant protein sequence (nr) database
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Figure 9: Mean identities for generated sequences to their training set groups as a function of (a)
number of sequences and (b) number of clusters at 50%
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