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Abstract

The lack of interfaces between crystallographic data and machine learning methods
prevents the application of modern deep learning frameworks to crystal structure
determination. Here we present SFcalculator, a differentiable pipeline to gen-
erate crystallographic observables (structure factors) from atomistic molecular
structures and a bulk solvent model. This calculator fills the gap between the
long-established crystallography field and state-of-the-art deep learning algorithms.
We discuss the correctness and performance of SFcalculator by comparing with
the current most-used tool Phenix. Finally, we demonstrate with an initial try
that it enables automated structure refinement in a well-regularized latent space
defined by a deep generative model, providing a principled way to impose prior
knowledge. We believe this tool paves the way towards fully automated structure
refinement and a possible end-to-end model, which is crucial for the next generation
of high-throughput diffraction experiments.

1 Introduction

X-ray crystallographic structure refinement is the process of achieving agreement between an atomic
model of a structure and the experimental data (structure factor amplitudes)[1]. This often is a
complex procedure involving multiple strategies of model parameterization and optimization, which
can possibly take days or weeks. Over the past few decades, significant progress on refinement
methods has been made, featuring the availability and constant improvement of highly automated
model building tools and streamlined software suites like CCP4[2], Phenix[3] and Coot[4]. Although
efforts have been made to achieve the automated refinement[5], for most cases it is still inevitable to
introduce human insight by manual model building. The development of bright new X-ray sources at
synchrotrons and X-ray Free Electron Lasers (XFELs) and ongoing robotization are driving rapid
increases in experimental throughput and now enable, for example, the collection of thousands of
data sets in crystallographic drug fragment screens. Automated structure determination pipelines will
be essential for efficient use of these new capabilities.

On the other hand, structure refinement can also be understood as a sampling problem of macro-
molecular structures constrained by both crystallographic data and physical priors. In addition
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to traditional simulation-based conformational sampling methods, 3D structure sampling is under
intense study using carefully-designed generative models[6, 7, 8] in the deep learning field, and with
notable successes [9, 10, 11, 12]. When it comes to the data-constrained sampling, some researchers
have successfully constructed neural network models, like CryoDRGN[13] and Cryo-VAE[14], to
reconstruct protein structures from Cryo-EM images. However, to our knowledge, such work is still
missing for crystallographic data. One reason is the lack of interfaces connecting crystallography
data and modern machine learning methods. We will present our SFcalculator in Section 2 to fill
the gap. The other reason lies in an intrinsic property of crystallography: the x-ray beam scattering
reveals the Fourier transform of the model’s electron density, but only the magnitude (or amplitude) of
the complex number is recorded. This is the "phase problem"[15]: the phase of the complex number
is lost. So more structural information is missing in crystallography compared than Cryo-EM, which
will consequently require more prior knowledge. How to impose the prior makes the data-constrained
sampling in crystallography hard. Currently most tools adopt geometric constraints[16], coming
from geometry statistics of high quality data. An alternative approach is to use the potential energy
calculated from a molecular mechanics force field as a more principled restraint[17, 18], but still
have some performance issue at the moment. In Section 3, we will propose a framework based on a
Boltzmann Generator model[6] as an alternative way to incorporate physical prior knowledge. To-
gether, these two parts constitute an initial try towards machine-learning-assisted automated structure
refinement in crystallography.

2 A Differentiable SFcalculator

Scattering relates to the Fourier transform of sample’s electron density map. Generally, both macro-
molecular atoms and solvent background will contribute to the process, and the solvent correction
plays an significant role in the model building[19]. The total structure factor can be defined as:

Fmodel = Fprotein + Fsolvent (1)

which consists of two parts, Fprotein quantifies the contribution from protein atoms, and Fsolvent serves
for the solvent correction. The solvent contribution is often approximated using a so-called bulk-
solvent mask correction[20], in which the space outside of the protein atoms is treated as uniformly
distributed electron density, represented by a "solvent mask". The relative contributions of protein
and solvent are then balanced by a linear scale and an anisotropic factor Bsol:

Fmodel = ktotal(Fprotein + ksolvent exp(−
Bsols
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4
)Fmask) (2)

Model quality in crystallography is usually measured by R factors:

R =

∑
||Fobs | − |Fmodel||∑

|Fmodel|
(3)

where Fobs denotes the amplitudes observed from experiments and Fmodel denotes the structure factor
calculated from the model. R factors usually come with subscripts "work" and "free", indicating
training and validation set separately.

2.1 The Protein Contribution Fprotein

For the part of the structure with an explicit atomic representation, there are two ways to calculate
Fprotein:

• Direct method: As the Fourier transform is a linear transformation, one can directly sum
contribution from all atoms[21]:

Fprotein(⃗h) =
∑
G

∑
j

Oj · fh⃗,j ·DWF(⃗h) · exp
[
2πi⃗h ·

(
RGx⃗j + T⃗G

)]
(4)

where G is the index of symmetry operations (appearing as rotation matrix R⃗G and transla-
tion vector T⃗G given the space group; j is the atom index, Oj is occupancy and x⃗j is the
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Figure 1: Comparison between SFcalculator and Phenix. a) Statistics of pearson correlation between
magnitude of Fprotein calculated by our SFcalculator and Phenix.fmodel. 907 PDB data used here.
b) Statistics of pearson correlation between magnitude of Fmask calculated by our SFcalculator and
Phenix.fmodel. 907 PDB data used here. c) Visualization of real space solvent masks from two
methods. PDBid: 3tsv. The whole unit cell is discretized into grid with size [54, 72, 90], here is
the slice of z = 20. The two maps look generally similar but differ in high resolution details. The
Pearson correlation between the two real space map is 0.83.

fractional coordinates of atom j; h⃗ is the miller index, fh⃗,j is the gaussian approximation

for atomic scattering factor for the atom type of atom j, and DWF(⃗h) is the debye-waller
factor.

• FFT-based method: In this approach, one first calculates the overall electron density from
the atom coordinates, followed by a discrete Fourier transform into reciprocal space. In this
approach, the continuous integral will be replaced with discrete summation and the atomic
density is usually truncated within a sphere.

Most current tools (like Phenix) by default use the FFT-based method, because the direct method
scales with N(atoms) × N(HKL) and can be slow for large N(atoms) and N(atoms). However, here
we adopt the direct-method in our differentiable SFcalculator for two reasons:

1. Equation 4 is intrinsically differentiable, while in the FFT-based method, truncation around
atom density requires extra care to realize differentiability.

2. With carefully vectorized codes and GPU acceleration, the direct-method can be very fast–
faster than both FFT-based and direct methods running on CPU by Phenix. See computation
time comparison in Figure 2(a).
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Figure 2: Performance and Correctness Statistics. a) With carefully vectorized codes and GPU
acceleration, SFcalculator is much faster than phenix on CPU. b) Due to the approximation of solvent
mask, SFcaculator slightly worse R factors. Reproducibility information: Phenix runs on Intel(R)
Xeon(R) Gold 6142 CPU @ 2.60GHz, no GPU acceleration available; SFcalculator runs on a
NVIDIA V100 GPU.

To validate our implementation of eq. 4, we computed the correlation between Fprotein from our
SFcalculator and the Phenix FFT-based method. As shown in Figure 1(a), the correlation coef-
ficient remains high across the resolution range. This is a convincing evidence that our Fprotein is
correct.

2.2 Bulk Solvent Correction Fmask

A differentiable calculation of the solvent mask part is not trivial. Currently, the most popular
approach is the probe-shrink method introduced in CNS[22, 23]. It uses van der Waals (or similar)
atomic radii r and two parameters rprobe and rshrink:

1. Discretize the real space unit cell into grid. Mark the region within radius r + rprobe of each
atom as non-solvent.

2. Shrink the non-solvent are by rshrink. This step will eliminate small solvent islands.

The above approach involves non-differentiable operations like rounding to discretize. Here, we
describe a differentiable way to approximate a solvent mask:

1. Do a discrete FFT on the Fprotein we obtained above, resulting in a protein electron density
map in real space:

protein map = FFT3d(Fprotein) (5)

2. Define an electron density cutoff by the solvent volume percentage.

cutoff = percentile(protein map, solvent percentage) (6)

3. Apply a sigmoid function to set the mask in high-density regions to approximately 0 and
low-density regions to 1:

mask map = sigmoid((cutoff − protein map) ∗ scale) (7)

usually choose scale as 50 to make the mask more binary.

4. Do an inverse discrete FFT on the mask map to output Fmask.

Fmask = iFFT3d(mask map) (8)
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Figure 3: Framework of automated refinement in latent space. We pre-train a deep generative
model with physics prior knowledge, encoding a good initial model into the latent space, then do
optimization with the experimental likelihood loss.

The pipeline to calculate Fmask above is fully differentiable and fast. However, our results differs
from the Phenix calculation at high resolution, as shown in Figure 1(b). The correlation of Fmask is
high at low resolution but quickly decays when it goes to the resolution < 6 Angstrom. This is also
clear from visualization of the solvent mask in Figure 1(c). The two maps look generally the same
but their high-resolution details are different. However, the contribution of bulk solvent is significant
at low resolution (> 8 Angstrom) and becomes weaker at middle and high resolution[20]. As shown
in Figure 2(b), this results in slightly worse R factors. However, as shown in the next section, the
optimization trajectories demonstrate that this does not preclude optimization.

3 Boltzmann-Generator-Based Refinement

In this section, we present an initial try to connect our SFcalculator with deep generative models
and do automated structure refinement. As shown in Figure 3, the general framework consists
of a pre-trained generative model, combined with SFcalculator to connect the atomic model to
experimental data. We chose the Boltzmann generator[6] as our first such generative model as its
exact likelihood computation enables two resources of physical knowledge during training, one is the
likelihood of training data, the other is the potential energy in the real space.

To generate a set of conformations for training of the Boltzmann generator, we ran a single 100ns
molecular dynamics (MD) simulation (step size equals 2fs, typically takes around 2-5 hours with
OpenMM[24]) started from an AlphaFold[10] prediction generated via ColabFold[25]. We then used
these MD conformations along with self-generated samples evaluated by the force field to train the
Boltzmann Generator as described by [6]. As shown in Figure4(a), after training, samples drawn
from the latent prior of the Boltzmann generator correspond to structures with energy close to the
MD samples. The merit of this approach is that sufficiently close to the origin of this latent space
points are likely to correspond to physically reasonable structure. In addition, the lossless encoding
of the Boltzmann Generator ensures that we can start from a good initial guess.

By connecting the pre-trained generative model to the SFcalculator, we can navigate in the latent
space by minimizing the crystallographic loss:

Tdata =
∑
h

(
Fh

ob − |Fh
model|

σh
F

)2

(9)

where h is the miller index in the working set, σ is the observed standard deviation. To illustrate
the progress of structure refinement, we show an example of optimization trajectory in Figure4 (b)
with model system PDB 3tsv. Initial model is the still AlphaFold2 prediction. As a benchmark, we
used the PDB deposited model (PDB ID 3tsv, previously refined in Phenix) stripped small molecules
and explicit waters to make sure the force field could work. As the objective loss went down, the R
factors in the test set as a measurement of model quality was also going better, resulting in a model
comparable to the benchmark.
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Figure 4: Results. a) Distribution of samples’ potential energy after training. BG samples are
generated from the latent space gaussian prior. b) Optimization trajectory of the automated refinement
in latent space. Model system: PDB 3tsv. Benchmark is PDB deposited model striped out of small
molecules and explicit waters. We can see the automated refinement is getting a model close to the
benchmark quality.

4 Conclusion

In this work, we presented a differentiable SFcalculator to allow direct optimization of atomic
models against crystallographic data using machine learning methods. And we show its usefulness by
connecting it to a pre-trained Boltzmann Generator and perform an automated refinement. We believe
this tool could fill the gap between crystallography field and the fast evolving deep learning field,
especially generative molecular models, and pave the path towards better data-constrained sampling
models.

5 Code Availability

SFcalculator is available in Tensorflow2, Pytorch and Jax on Github: https://github.com/
Hekstra-Lab/SFcalculator
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