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Abstract

Protein language models (pLMs) transform their input into a sequence of hidden
representations whose geometric behavior changes across layers. Looking at fun-
damental geometric properties such as the intrinsic dimension and the neighbor
composition of these representations, we observe that these changes highlight a
pattern characterized by three distinct phases. This phenomenon emerges across
many models trained on diverse datasets, thus revealing a general computational
strategy learned by pLMs to reconstruct missing parts of the data. These analyses
show the existence of low-dimensional maps that encode evolutionary and biologi-
cal properties such as remote homology and structural information. Our geometric
approach sets the foundations for future systematic attempts to understand the
space of protein sequences with representation learning techniques.

1 Introduction

In the last years, deep learning models drastically changed the landscape of protein research, particu-
larly for the prediction of structural and functional properties, giving a new impulse to technical and
scientific advancements in this field. A particular class of deep learning models, which are referred
to as protein language models (pLMs) [I8 22, 21} 18} [16], combine high predictive performance
and architectural simplicity, making them an ideal candidate for evaluating hypotheses about com-
putational strategies underlying their operations. pLM architectures have been heavily inspired by
transformer-like models that emerged in the context of natural language processing: they consist of a
stack of identical self-attention blocks trained in a self-supervised fashion by minimizing a masked
language model (MLM) objective [26 5]]. It has been shown that the features learned by pLMs, after
suitable fine-tuning, can be used to solve a wide range of supervised biological tasks [20l 28]]; in this
sense, these features possess some degree of universality. In these models, each module maps the
data into a representation; it has already been observed that the organization of representations in
the last hidden layer reflects biological and evolutionary information [8}22], and the insurgence of
similar properties in the attention matrices of the various blocks has been methodically investigated
[27,[17]. In addition, analysis of other types of architectures highlighted that data representations in
deep learning models undergo profound changes across the layers [2,16]. Studying these behaviors
is crucial for fully exploiting and understanding low-dimensional encoding of the data produced
by the models. In this paper, we systematically investigate fundamental geometric properties of
pLMs representations, such as their intrinsic dimension (ID) and neighbor composition, and find
shared behaviors across many single-sequence language models trained by self-supervision on various
protein datasets. Our main results are:
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» Representations in single-sequence pLMs show a three-phased behavior revealed by global
(ID) and local (neighborhood composition) measures

* The three phases, referring to the ID, consist of 1) a peak, in which the ID grows, reaches
a maximum, and then contracts 2) a plateau, in which the ID is stationary across layers at
low values and 3) a final ascent, in which the ID grows to return to values close to the one
measured after the positional embedding

* Language models trained on multiple-sequence alignments (MSA) show a qualitatively
different behavior. The ID stays approximately constant after a very feeble expansion at the
first self-attention block

* In single-sequence pLMs, the neighbor composition of adjacent layers changes with a
three-phased behavior tightly related to the ID one. After profound rearrangements in the
peak phase, we find a plateau phase in which the neighbors’ relationships are approximately
preserved followed by substantial changes again in the last phase

* The neighbor composition shows that evolutionary and structural information, such as
remote homology and fold type, emerge gradually and then stabilizes across the layers in a
way that is strictly consistent with the three-phased behavior.

Our findings shed light on the strategies employed by pLMs to solve the MLM task and can be a
guide for effectively decoding the biological information distilled by their hidden representations,
possibly also suggesting strategies to design more efficient, lightweight models.

2 Methods

The single-sequence pLMs we analyze are essentially characterized by the same architecture: after a
learned positional encoding of the data, a stack of identical self-attention blocks transforms the input
creating successive representations. These models are trained in a self-supervised way to perform
a partial input reconstruction task by minimizing a masked language model loss. As a byproduct,
the learned representations are rich in biological information. More in detail, the input data points,
corresponding to proteins, are variable-length sequences of | letters S = a;; a; : : : @y, chosen from an
alphabet of Nna(” 20) tokens corresponding to amino acids. Each token is encoded by an embedding
layer into a vector of size d, so that the generic protein S is represented as a matrix X := fp(X) of size
| d. A model with B blocks transforms a data point X 2 R'*% into a sequence of representations:

module at the i th block, and the final LM-head fq¢ is a learned projection onto dimension | ng.
The size of each hidden layer does not change across the model and is equal to |  d; therefore, the
action of the model is a sequence of mappings R'*9 ¥ R!'*d_ The representation of a protein across
the network consists of a collection of | vectors that change across the layers, and several strategies
for comparing variable length sequences have been investigated [4]. Fopgach layer i we choose
to perform global average pooling across the row dimension j(x) ¥ % }:1(fi (X));, since this
reduction retrieves sufficient biological information to solve, directly or possibly after fine-tuning,
homology, structural and evolutionary tasks [8, 22]]. For a given pLM, the action of the network on a
dataset of N proteins can thus be described by B + 1 collections of N vectors in RY: these will be
the data representations that we will investigate. In our applications we will focus on representations
obtained starting from ProteinNet [1]] and SCOPe [11} 3], two biologically relevant benchmark protein
datasets described in[A.4l We will consider a selection of models from the ProtTrans and ESM
families pre-trained on large protein databases, whose main properties are detailed in[A.3] We also
describe representations extracted from MSA-based pLMs in[A.5.1]

2.1 Intrinsic dimension

The manifold hypothesis is based on the observation that many datasets embedded in high dimensions,
resulting from the observations of natural phenomena (images, sounds, etc.), lie close to low-
dimensional manifolds. The intrinsic dimension (ID) of a dataset is the dimensionality of the
embedded manifold approximating the data; in other words, the ID is the minimum number of
coordinates that allow specifying a data point approximately without information loss. We adopt the
global estimator “TwoNN” of the ID developed in [9]], which requires only local information on the
distance to the first (r'1) and second (I'2) nearest neighbors of each data point, and that works under the



mild assumption of approximately locally constant density. In such a case, the theoretical cumulative
distributionF of the ratio = r,=r; can be explicitly derived from the ground truth ID without
information on the density; after approximatiRgwith the empirical cumulate calculated on the
dataset, one can estimate the intrinsic dimension. We refé} tor[further details on the algorithm, to

[10] for an application of ID to protein sequences, and to A.5 for a description of the implementation
adopted in our analysis of the ID in the hidden layers of pLMs. The “TwoNN” algorithm is robust to
change of curvature and density, and it is asymptotically correct in the range in which the ground
truth ID is  20. This estimator has already been employed to analyze representations in deep
convolutional networks in [2].

2.2 Neighborhood overlap

The changes in data representation across the model can be traced in the rearrangement of the
neighbor structure of the data space under the transformation induced by a block: points that are
close in one layer may not be so in the following layer, &imgversa The neighborhood overlap]
measures the degree of similarity of two data representations by computing the common fraction of
points that ar&-nearest neighbors in both representations. Explicitly, considée fuénts nearest to

an elemenk’ of the dataset at a given laylerand letA' be the adjacency matrix with entriéé1 =1

if Xl isa nelghboripk' andO otherwise. The neighbor overlap between layeasdm is de ned

as Lm = N i k A'., A", and itis easily seen to lie {i®; 1]. The neighborhood overlap can

be generalized in the following way. Let us consider a functidhat associates a characteristic of
interest to each data point. We can @is® de ne a neighborh(apd tt}gough the adjacency matrix
Aj =1iff(x') = f(x) andOotherwise. Inthis case]] = + £ Alj Al isthe average
fraction of neighbors of a given point Irthat have the same propeftyas the central point. Ir]

the authors consider the particular case in whiidh a ground truth classi cation label. We focus

on ground truth classes of biological interest such as protein fold, super-family, and family of the
SCOPe dataset in 3.2.2 and A.6.4. In the case Wherl, our measure collapses to the accuracy of

rst hit retrieval recently considered in [23].

3 Results

3.1 The intrinsic dimension has a characteristic shape for single-sequence language models

After each self-attention block, we extracted representations for proteins in ProteinNet, and plotted
the ID against the block number, normalizing with respect to the total number of blocks (relative
depth).

3.1.1 The characteristic shape

The typical shape of the ID curve, that we found across diverse models trained on different datasets,
has three distinct phases: a peRIE) phase, a platealP) phase and a nal ascenfEd) phase

(see Fig. 1A). The peak develops early and occupies approximately the rst third of the curve. In
this phase, the ID rapidly expands, and after reaching a maximum in an ID range of a few tenths, it
rapidly contracts. After achieving its maximum, the ID is compressed to remarkably low values that
characterize the plateau, where the ID remains approximately stationary, reaching valugs of

at the elbow before thEA. In theFA, the ID grows again, going back progressively to values close

to the ID computed on the representation after the positional embedding. The ID undergoes major
changes across hidden layers: aratio of 5 of the ID values can be observed between the minima

at thePL phase and maxima at tfRE phase. These changes are even more remarkable since the
embedding dimensiod remains unchanged across all the layers, depending only on the speci cs of
the single architectures reported in column “Emb. Dim.” of Table 1 in A.3.

3.1.2 Characteristic shape and model scale

We analyzed the effect of models size on the three-phased behavior described in 3.1.1 by computing
the ID curve for the single-sequence model ESMEg] in a range of size spanning more than
three orders of magnitude, from 8M to 15B parameters. The three-phased behavior is preserved
when changing the scale of the model (see FigB)l,assuming that one considers suf ciently
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