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Abstract

Structure-based drug design (SBDD) aims to design small-molecule ligands that
bind with high affinity and specificity to pre-determined protein targets. Traditional
SBDD pipelines start with large-scale docking of compound libraries from public
databases, thus limiting the exploration of chemical space to existent previously
studied regions. Recent machine learning methods approached this problem us-
ing an atom-by-atom generation approach, which is computationally expensive.
In this paper, we formulate SBDD as a 3D-conditional generation problem and
present DiffSBDD, an E(3)-equivariant 3D-conditional diffusion model that gener-
ates novel ligands conditioned on protein pockets. Furthermore, we curate a new
dataset of experimentally determined binding complex data from Binding MOAD
to provide a realistic binding scenario that complements the synthetic CrossDocked
dataset. Comprehensive in silico experiments demonstrate the efficiency of DiffS-
BDD in generating novel and diverse drug-like ligands that engage protein pockets
with high binding energies as predicted by in silico docking.

1 Introduction

Structure-based drug design (SBDD), which aims to design small-molecule ligands that bind to
target protein pockets, is a vital problem in drug discovery. Traditionally, SBDD is handled either
by high-throughput experimental or virtual screening [1, 2] of large chemical databases. Not only
is this expensive and time consuming but it also limits the exploration of chemical space to the
historical knowledge of previously studied molecules, with a further emphasis usually placed on
commercial availability [3]. Moreover, the optimization of initial lead molecules is often a biased
process, with heavy reliance on human intuition [4]. Recent advances in geometric deep learning,
especially in modeling geometric structures of biomolecules [5, 6], provide a promising direction for
structure-based drug design [7]. Even though utilizing deep learning as surrogate docking models
has achieved remarkable progress [8, 9], deep learning-based design of ligands that bind to target
proteins is still an open problem. Early attempts [10–12] either rely on nontrivial post-processing
steps or formulate this as an atom-by-atom generation problem which makes a sequence-conditioning
assumption over the generation process of molecules and model inference inefficient.

In this work, we develop an equivariant diffusion model for structure-based drug design (DiffSBDD)
which, to the best of our knowledge, is the first of its kind. Specifically, we formulate SBDD as a 3D-
conditioned generation problem where we aim to generate diverse ligands with high binding affinity
for specific protein targets. We propose an E(3)-equivariant 3D-conditional diffusion model that
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Figure 1: DiffSBDD in the protein-conditioned scenario. The conditional model learns to denoise
molecules z(L) in the fixed context of protein pockets z(P )

data .

respects translation, rotation, reflection, and permutation equivariance. We introduce two strategies,
protein-conditioned generation and ligand-inpainting generation producing new ligands conditioned
on protein pockets. Specifically, protein-conditioned generation considers the protein as a fixed
context, while ligand-inpainting models the joint distribution of the protein-ligand complex and
new ligands are inpainted during inference time. We also demonstrate that our model can be used
for out-of-the-box for molecular optimization. We further curate an experimentally determined
binding dataset derived from Binding MOAD [13], which supplements the commonly used synthetic
CrossDocked [14] dataset to validate our model performance under realistic binding scenarios. The
experimental results demonstrate that DiffSBDD is capable of generating novel, diverse and drug-like
ligands with predicted high binding affinities to given protein pockets.

2 Equivariant Diffusion Models for SBDD

We utilize an equivariant Denoising Diffusion Probabilistic Model (DDPM) to generate molecules
and binding conformations jointly with respect to a specific protein target. We represent protein and
ligand point clouds as fully-connected graphs that are further processed by EGNNs [15]. We consider
two distinct approaches to 3D pocket conditioning: (1) a conditional DDPM that receives a fixed
pocket representation as context in each denoising step, and (2) a model that approximates the joint
distribution of ligand-pocket pairs combined with inpainting at inference time.

2.1 Pocket-conditioned small molecule generation

In the conditional molecule generation setup, we provide a fixed three-dimensional context in each
step of the denoising process. To this end, we supplement the ligand node point cloud z

(L)
t , denoted

by superscript L, with protein pocket nodes z(P )
data , denoted by superscript P , that remain unchanged

throughout the reverse diffusion process (Figure 1). All nodes z = [x,h] comprise coordinates
x ∈ R3 and categorical features h ∈ Rd. We embed atom types and residue types in a joint node
embedding space by separate learnable MLPs to perform denoising steps with a single EGNN [15, 16].
The EGNN’s message-passing scheme for node i at layer l is slightly modified so that the coordinate
update step is not applied to pocket nodes:

xl+1
i = xl

i +

{∑
j ̸=i

xl
i−xl

j

||xl
i−xl

j ||+1
ϕx(h

l
i,h

l
j , ||xl

i − xl
j ||2), if i belongs to ligand

0, if i belongs to pocket
(1)

In this way, the three-dimensional protein context remains fixed throughout the EGNN layers.

Equivariance In the probabilistic setting with 3D-conditioning, we would like to ensure E(3)-
equivariance in the following sense2: Evaluating the likelihood of a molecule x(L) ∈ R3×NL given
the three-dimensional representation of a protein pocket x(P ) ∈ R3×NP should not depend on global

2Here we ignore node type features, which transform invariantly, for simpler notation.
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Figure 2: Schematic of the inpainting approach. The model first learns to approximate the joint
distribution of ligand and pocket nodes z

(L,P )
data . For sampling, context is provided by combining

the latent representation of the ligand with a forward diffused representation of the pocket in each
denoising step.

E(3)-transformations of the system, i.e. p(Rx(L) + t|Rx(P ) + t) = p(x(L)|x(P )) for orthogonal
R ∈ R3×3 with RTR = I and t ∈ R3 added column-wise. At the same time, it should be possible
to generate samples x(L) ∼ p(x(L)|x(P )) from this conditional probability distribution so that
equivalently transformed ligands Rx(L)+ t are sampled with the same probability if the input pocket
is rotated and translated and we sample from p(Rx(L) + t|Rx(P ) + t).

Equivariance to the orthogonal group O(3) (comprising rotations and reflections) is achieved be-
cause we model both prior and transition probabilities with isotropic Gaussians where the mean
vector transforms equivariantly w.r.t. rotations of the context (see Hoogeboom et al. [16] and
Appendix C). Ensuring translation equivariance, however, is not as easy because the transition proba-
bilities p(zt−1|zt) are not inherently translation-equivariant. In order to circumvent this issue, we
follow previous works [17, 18, 16] by limiting the whole sampling process to a linear subspace where
the center of mass (CoM) of the system is zero. In practice, this is achieved by subtracting the center
of mass of the system before performing likelihood computations or denoising steps.

2.2 Joint distribution with inpainting

As an extension to the conditional approach described above, we also present a ligand-inpainting
approach. Originally introduced as a technique for completing masked parts of images [19, 20],
inpainting has been adopted in other domains, including biomolecular structures [21]. Here, we
extend this idea to three-dimensional point cloud data.

We first train an unconditional DDPM to approximate the joint distribution of ligand and pocket
nodes p(z(L)

data , z
(P )
data )

3. This allows us to sample new pairs without additional context. To condition
on a target protein pocket, we then need to inject context into the sampling process by modifying the
probabilistic transition steps. The combined latent representation z

(L,P )
t−1 of protein pocket and ligand

at diffusion step t − 1 is assembled from a forward noised version of the pocket that is combined
with ligand nodes predicted by the DDPM based on the previous latent representation at step t

z
(P )
t−1,known ∼ p(z

(P )
t−1|z

(P )
data ) (2)

z
(L,P )
t−1,unknown ∼ pθ(z

(L,P )
t−1 |z(L,P )

t ) (3)

z
(L,P )
t−1 =

[
z
(L)
t−1,unknown, z

(P )
t−1,known

]
. (4)

3We use notations z(L,P ) and [z(L),z(P )] interchangeably to describe the combined system of ligand and
pocket nodes.
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Table 1: Evaluation of generated molecules for targets from the CrossDocked and Binding MOAD
test sets. ∗ denotes that we re-evaluate the generated ligands provided by the authors. The inference
times are taken from their papers.

Vina Score (kcal/mol, ↓) QED (↑) SA (↑) Lipinski (↑) Diversity (↑) Time (s, ↓)

CrossDocked test set −6.871± 2.32 0.476± 0.20 0.728± 0.14 4.340± 1.14 — —
3D-SBDD (AR) [22]∗ −5.888± 1.91 0.502± 0.17 0.675± 0.14 4.787± 0.51 0.742± 0.09 19659± 14704
Pocket2Mol [12]∗ −7.058± 2.80 0.572± 0.16 0.752± 0.12 4.936± 0.27 0.735± 0.15 2504± 2207
DiffSBDD-cond (Cα) −5.540± 1.57 0.460± 0.14 0.357± 0.09 4.821± 0.45 0.815± 0.06 324± 189
DiffSBDD-inpaint (Cα) −5.735± 1.80 0.427± 0.15 0.343± 0.09 4.789± 0.49 0.807± 0.07 329± 177
DiffSBDD-cond −6.584± 2.06 0.495± 0.15 0.336± 0.09 4.795± 0.49 0.730± 0.11 1634± 769

Binding MOAD test set −8.103± 2.26 0.602± 0.15 0.336± 0.08 4.838± 0.37 — —
DiffSBDD-cond (Cα) −6.220± 1.83 0.516± 0.16 0.325± 0.09 4.855± 0.40 0.719± 0.07 414± 151
DiffSBDD-inpaint (Cα) −5.981± 5.38 0.486± 0.17 0.324± 0.09 4.697± 0.63 0.716± 0.08 417± 151

In this manner, we traverse the Markov chain in reverse order from t = T to t = 0, replacing the
predicted pocket nodes with their forward noised counterparts in each step (Figure 2). Equation (3)
conditions the generative process on the given protein pocket. Thanks to the noise schedule, which
decreases the variance of the noising process to almost zero at t = 0, the final sample is guaranteed
to contain an unperturbed representation of the protein pocket.

Since the model is trained to approximate the unconditional joint distribution of ligand-pocket pairs,
the training procedure is identical to the unconditional molecule generation procedure developed by
Hoogeboom et al. [16] aside from the fully-connected neural networks that embed protein and ligand
node features in a common space as described in Section 2.1. The conditioning on known protein
pockets is entirely delegated to the sampling algorithm, which means this approach is not limited to
ligand-inpainting but, in principle, allows us to mask and replace arbitrary parts of the ligand-pocket
system without retraining.

Equivariance Similar desiderata as in the conditional case apply to the joint probability model,
where we desire E(3)-invariance that can be obtained from invariant priors via equivariant flows [17].
The main complications compared to the previous approach are the missing reference frame and
impossibility of defining a valid translation-invariant prior noise distribution p(zT ) as such a distri-
bution cannot integrate to one. Consequently, it is necessary to restrict the probabilistic model to a
CoM-free subspace as described in previous works [17, 18, 16]. While the reverse diffusion process
is defined for a CoM-free system, substituting the predicted pocket node coordinates with a new
diffused version of the known pocket as described in Equations (2) - (4) can lead to non-zero CoM. To
prevent this, we translate the known pocket representation so that its center of mass coincides with the
predicted representation: x̃(P )

t−1,known = x
(P )
t−1,unknown − x

(P )
t−1,known before creating the new combined

representation z
(L,P )
t−1 = [z

(L)
t−1,unknown, z̃

(P )
t−1,known] with z̃

(P )
t−1,known = [x̃

(P )
t−1,known,h

(P )
t−1,known].

3 Experiments

3.1 Datasets

CrossDocked We use the CrossDocked dataset [14] and follow the same filtering and splitting
strategies as in previous work [22, 12]. This results in 100,000 high-quality protein-ligand pairs for
the training set and 100 proteins for the test set. The split is done by 30% sequence identity using
MMseqs2 [23].

Binding MOAD We also evaluate our method on experimentally determined protein-ligand com-
plexes found in Binding MOAD [13] which are filtered and split based on the proteins’ enzyme
commission number as described in Appendix B. This results in 40,354 protein-ligand pairs for
training and 130 pairs for testing.

3.2 Evaluation

For every experiment, we evaluated all combinations of all-atom and Cα level graphs with conditional
and inpainting-based approaches respectively (with the exception of the all-atom inpainting approach
due to computational limitations). Full details of model architecture and hyperparameters are given
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Vina: -12.8  Sim: 0.05 

QED: 0.74   SA: 0.45 

Conditional-Ca (6c0b) Reference (6c0b)

Vina: -11.9  Sim: 0.12 

QED: 0.66   SA: 0.25 
Vina: -11.5  Sim: 0.06 

QED: 0.68   SA: 0.25 
Vina: -12.4  Sim: 0.07 

QED: 0.76   SA: 0.24 
Vina: -12.3  Sim: 0.07 

QED: 0.85   SA: 0.25 
Vina: -12.2  Sim: 0.12 

QED: 0.63   SA: 0.34 
Vina: -8.40  Sim: 1 

QED: 0.36   SA: 0.89 

Inpainting-Ca (6c0b)

Figure 3: DiffSBDD models trained on Binding MOAD evaluated against a human receptor protein
(PDB: 6c0b). Conditional and inpainting approaches are compared (Cα for both) and the three
highest affinity molecules from each model are presented. Further details of the molecules shown
here are explained in Appendix D.1.

in Appendix A. We sampled 100 valid molecules4 for each target pocket with ground truth ligand
sizes and remove all atoms that are not bonded to the largest connected fragment. Evaluation metrics
are described in Appendix A.

Baselines We compare with two recent deep learning methods for structure-based drug design.
3D-SBDD [22] and Pocket2Mol [12] are autoregressive schemes relying on graph representations of
the protein pocket and previously placed atoms to predict probabilities based on which new atoms are
added. 3D-SBDD uses heuristics to infer bonds from generated atomic point clouds while Pocket2Mol
directly predicts them during the sequential generation process.

3.3 Results

Overall, the experimental results in Table 1 suggest that DiffSBDD can generate diverse small-
molecule compounds with predicted high binding affinity, matching state-of-the-art performance.
We do not see significant differences between the conditional model and the inpainting approach.
The diversity score is arguably the most interesting, as this suggests our model is able to sample
greater amounts of chemical space when compared to previous methods, while maintaining high
binding performance, one of the most important requirements in early-stage, structure-based lead
discovery. Specifically, DiffSBDD aims to generate ligands that bind to protein pockets and learn
the probability density of ligands interacting with protein pockets. While it does not optimize for
other molecular properties, such as QED and Lipinski, it generates molecules similar to the test
set distributions. Only SA scores are significantly lower on average. While it is unclear why the
model fails to approximate the distribution of synthetic accessibility scores successfully, simple
techniques can be used for downstream optimization of this property once promising candidates are
found (Section D.4). Generally, presenting the full atomic context to the model constrains the space
of outputs considerably, leading to higher Vina scores but lower diversity compared to the Cα-only
models. The all-atom model consistently beats Cα-based models on a per target basis (Appendix
Figure 11).

Generated molecules for a representative target from the Binding MOAD dataset are shown in
Figure 3. The target (PDB: 6c0b) is a human receptor which is involved in microbial infection [24]
and possibly tumor suppression [25]. The reference molecule, a long fatty acid (see Figure 3) that
aids receptor binding [24], has too high a number of rotatable bonds and low a number of hydrogen
bond donors/acceptors to be considered a suitable drug (QED of 0.36). Our model however, generates
drug-like (QED between 0.63-0.85) and suitably sized molecules by adding aromatic rings connected
by a small number of rotatable bonds, which allows the molecules to adopt a complementary binding
geometry and is entropically favourable (by reducing the degrees of freedom), a classic technique in
medicinal chemistry [26]. More examples and additional analyses can be found in Appendix D.

4Due to occasional processing issues the actual number of available molecules is slightly lower on average
(see Appendix D.1).
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4 Conclusion
In this work, we propose DiffSBDD, an E(3)-equivariant 3D-conditional diffusion model for
structure-based drug design. We demonstrate the effectiveness and efficiency of DiffSBDD in
generating novel and diverse ligands with predicted high-affinity for given protein pockets on both a
synthetic benchmark and a new dataset of experimentally determined protein-ligand complexes. We
demonstrate that an inpainting-based approach can achieve competitive results to direct conditioning
on a wide range of molecular metrics. Extending this more versatile strategy to an all atom pocket
representation therefore holds promise to solve a variety of other structure-based drug design tasks,
such as lead optimization or linker design, without retraining.
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Appendix for
“Structure-based Drug Design with

Equivariant Diffusion Models”

A Implementation Details

Molecule size As part of a sample’s overall likelihood, we compute the empirical joint distribution
of ligand and pocket nodes p(NL, NP ) observed in the training set and smooth it with a Gaussian
filter (σ = 1). In the conditional generation scenario, we derive the distribution p(NL|NP ) and use it
for likelihood computations.

For sampling, we can either fix molecule sizes manually or sample the number of ligand nodes from
the same distribution given the number of nodes in the target pocket:

NL ∼ p(NL|NP ). (5)

Preprocessing All molecules are expressed as graphs. For the Cα only model the node features
for the protein are set as the one hot encoding of the amino acid type. The full atom model uses
the same one hot encoding of atom types for ligand and protein nodes. We refrain from adding a
categorical feature for distinguishing between protein and ligand atoms in this case and continue
using two separate MLPs for embedding the node features instead.

Noise schedule We use the pre-defined polynomial noise schedule introduced in [16]:

α̃t = 1−
( t

T

)2

, t = 0, ..., T (6)

Following [27, 16], values of α̃2
t|s =

(
α̃t

α̃s

)2
are clipped between 0.001 and 1 for numerical stability

near t = T , and α̃t is recomputed as

α̃t =

t∏
τ=0

α̃τ |τ−1. (7)

A tiny offset ϵ = 10−5 is used to avoid numerical problems at t = 0 defining the final noise schedule:

α2
t = (1− 2ϵ) · α̃2

t + ϵ. (8)

Feature scaling We scale the node type features h by a factor of 0.25 relative to the coordinates x
which was empirically found to improve model perfomance in previous work [16].

Hyperparameters Hyperparameters for all presented models are summarized in Table 2. Training
takes about 11 h (BindingMOAD) and 24 h (CrossDocked) per 100 epochs on a single NVIDIA V100
GPU in the Cα scenario and 96 h (CrossDocked) per 100 epochs on a single NVIDIA A100 GPU
with all atom pocket representation.

Evaluation Metrics We employ widely-used metrics to assess the quality of our generated
molecules [12, 10]: (1) Vina Score is a physics-based estimation of binding affinity between
small molecules and their target pocket; (2) QED is a simple quantitative estimation of drug-likeness
combining several desirable molecular properties; (3) SA (synthetic accessibility) is a measure
estimating the difficulty of synthesis; (4) Lipinski measures how many rules in the Lipinski rule
of five [28], which is a loose rule of thumb to assess the drug-likeness of molecules, are satisfied;
(5) Diversity is computed as the average pairwise dissimilarity (1 - Tanimoto similarity) between
all generated molecules for each pocket; (6) Inference Time is the average time to sample 100
molecules for one pocket across all targets. All docking scores and chemical properties are calculated
with QuickVina2 [29] and RDKit [30].

Postprocessing For postprocessing of generated molecules, we use a similar procedure as in [22].
Given a list of atom types and coordinates, bonds are first added using OpenBabel [31]. We then
use RDKit to sanitise molecules, filter for the largest molecular fragment and finally remove steric
clashes with 200 steps of force-field relaxation.
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Table 2: DiffSBDD hyperparameters.

CrossDocked Binding MOAD

Cond Cond (Cα) Inpaint (Cα) Cond (Cα) Inpaint (Cα)

No. layers 6 6 6 6 6
Joint embedding dim. 32 32 32 32 32
Hidden dim. 256 256 256 256 256
Learning rate 10−4 10−4 10−4 10−4 10−4

Weight decay 10−12 10−12 10−12 10−12 10−12

Diffusion steps 1000 1000 1000 1000 1000
Edges < 7Å fully connected fully connected fully connected fully connected
Epochs 1000 1000 1000 800 800

B Binding MOAD Dataset

We curate a dataset of experimentally determined complexed protein-ligand structures from Binding
MOAD [13]. We keep pockets with valid5 and moderately ‘drug-like’ ligands with QED score > 0.3.
We further discard small molecules that contain atom types /∈ {C,N,O, S,B,Br,Cl, P, I, F} as
well as binding pockets with non-standard amino acids. We define binding pockets as the set of
residues that have any atom within 8Å of any ligand atom. Ligand redundancy is reduced by randomly
sampling at most 50 molecules with the same chemical component identifier (3-letter-code). After
removing corrupted entries that could not be processed, 40 354 training pairs and 130 testing pairs
remain. A validation set of size 246 is used to monitor estimated log-likelihoods during training. The
split is made to ensure different sets do not contain proteins from the same Enzyme Commission
Number (EC Number) main class.

C Proofs

In the following proofs we do not consider categorical node features h as only the positions x are
subject to equivariance constraints. Furthermore, we do not distinguish between the zeroth latent
representation x0 and data domain representations xdata for ease of notation, and simply drop the
subscripts.

C.1 O(3)-equivariance of the prior probability

The isotropic Gaussian prior p(x
(L)
T |x(P )) = N (µ(x(P )), σ2I) is equivariant to rotations and

reflections represented by an orthogonal matrix R ∈ R3×3 as long as µ(Rx(P )) = Rµ(x(P ))
because:

p(Rx
(L)
T |Rx(P )) =

1√
(2π)NLσ2

exp
(
− 1

2σ2
||Rx

(L)
T − µ(Rx(P ))||2

)
=

1√
(2π)NLσ2

exp
(
− 1

2σ2
||Rx

(L)
T −Rµ(x(P ))||2

)
=

1√
(2π)NLσ2

exp
(
− 1

2σ2
||R

(
x
(L)
T − µ(x(P ))

)
||2

)
=

1√
(2π)NLσ2

exp
(
− 1

2σ2
||x(L)

T − µ(x(P ))||2
)

= p(x
(L)
T |x(P )).

Here we used ||Rx||2 = ||x||2 for orthogonal R.

5as defined in http://www.bindingmoad.org/
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C.2 O(3)-equivariance of the transition probabilities

The denoising transition probabilities from time step t to s < t are defined as isotropic normal
distributions:

pθ(x
(L)
t−1|x

(L)
t , x̂(L),x(P )) = N (x

(L)
t−1|µt→s(x

(L)
t , x̂(L),x(P )), σ2

t→sI). (9)

Therefore, pθ(x
(L)
t−1|x

(L)
t , x̂(L),x(P )) is O(3)-equivariant by a similar argument to Section C.1 if

µt→s is computed equivariantly from the three-dimensional context.

Recalling the definition of µt→s =
αt|sσ

2
s

σ2
t

x
(L)
t +

αsσ
2
t|s

σ2
t

x̂(L), we can prove its equivariance as
follows:

µt→s(Rx
(L)
t ,Rx(P )) =

αt|sσ
2
s

σ2
t

Rx
(L)
t +

αsσ
2
t|s

σ2
t

x̂(L)(Rx
(L)
t ,Rx(P ))

=
αt|sσ

2
s

σ2
t

Rx
(L)
t +

αsσ
2
t|s

σ2
t

Rx̂(L)(x
(L)
t ,x(P )) (equivariance of x̂(L))

= R
(αt|sσ

2
s

σ2
t

x
(L)
t +

αsσ
2
t|s

σ2
t

x̂(L)(x
(L)
t ,x(P ))

)
= Rµt→s(x

(L)
t ,x(P )),

where x̂(L) defined as x̂(L) = 1
αt
x
(L)
t − σt

αt
ϵ̂ is equivariant because:

x̂(L)(Rx
(L)
t ,Rx(P )) =

1

αt
Rx

(L)
t − σt

αt
ϵ̂(Rx

(L)
t ,Rx(P ), t)

=
1

αt
Rx

(L)
t − σt

αt
Rϵ̂(x

(L)
t ,x(P ), t) (ϵ̂ predicted by equivariant neural network)

= R
( 1

αt
x
(L)
t − σt

αt
ϵ̂(x

(L)
t ,x(P ), t)

)
= Rx̂(L)(x

(L)
t ,x(P )).

C.3 O(3)-equivariance of the learned likelihood

Let R ∈ R3×3 be an orthogonal matrix representing an element g from the general orthogonal group
O(3). We obtain the marginal probability density of the Markovian denoising process as follows

pθ(x
(L)
0 |x(P )) =

∫
p(x

(L)
T |x(P ))pθ(x

(L)
0:T−1|x

(L)
T ,x(P ))dx1:T

=

∫
p(x

(L)
T |x(P ))

T∏
t=1

pθ(x
(L)
t−1|x

(L)
t ,x(P ))dx1:T

and the sample’s likelihood is O(3)-equivariant:

pθ(Rx
(L)
0 |Rx(P )) =

∫
p(Rx

(L)
T |Rx(P ))

T∏
t=1

pθ(Rx
(L)
t−1|Rx

(L)
t ,Rx(P ))dx1:T

=

∫
p(x

(L)
T |x(P ))

T∏
t=1

pθ(Rx
(L)
t−1|Rx

(L)
t ,Rx(P ))dx1:T (equivariant prior)

=

∫
p(x

(L)
T |x(P ))

T∏
t=1

pθ(x
(L)
t−1|x

(L)
t ,x(P ))dx1:T (equivariant transition probabilities)

= pθ(x
(L)
0 |x(P ))
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Figure 4: DiffSBDD models trained on CrossDocked and evaluated against a aminotransferase (top,
PDB: 2jjg) and hydrolase (bottom, PDB: 3kc1). Conditional and inpainting approaches are compared
(using all-atom and Cα level protein presentations respectively) and three high affinity molecules
from each model are presented. ‘Sim’ is the Tanimoto similarity between the generated and reference
ligand.

D Extended results

D.1 Additional Experimental Details

The numbers of available molecules differ slightly between different methods due to computational
issues or missing molecules in the available baseline sets. More precisely, on average 93.5, 92.8,
and 98.3 molecules have been evaluated per pocket for DiffSBDD-cond, DiffSBDD-inpaint (Cα),
and DiffSBDD-cond (Cα), respectively. For Pocket2Mol, 98.4 molecules are available per pocket.
The set of 3D-SBDD molecules does not contain generated ligands for two test pockets. For the
remaining 98 pockets, 89.9 molecules are available on average.

All Figures show molecules generated where the starting number of nodes equals the number of
nodes in the reference ligands, with the exception of Figure 3, which employs the sampling strategy
outlined in Appendix A.

D.2 Additional Molecular Metrics

In addition to the molecular properties discussed in Section 3 we assess the models’ ability to
produce novel and valid molecules using four simple metrics: validity, connectivity, uniqueness,
and novelty. Validity measures the proportion of generated molecules that pass basic tests by
RDKit–mostly ensuring correct valencies. Connectivity is the proportion of valid molecules that do
not contain any disconnected fragments. We convert every valid and connected molecule from a
graph into a canonical SMILES string representation, count the number unique occurrences in the set
of generated molecules and compare those to the training set SMILES to compute uniqueness and
novelty respectively.

Table 3 shows that only a small fraction of all generated molecules is invalid and must be discarded
for downstream processing. The DiffSBDD models trained on CrossDocked with Cα pocket represen-
tation generate fragmented molecules about 50% of the time. Since we can simply select and process
the largest fragments in these cases, low connectivity does not necessarily affect the efficiency of the
generative process. Moreover, all models produce diverse sets of molecules unseen in the training set.
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Table 3: Basic molecular metrics for generated small molecules given a Cα and full atom representa-
tion of the protein pocket.

Model Validity Connectivity Uniqueness Novelty
CrossDocked Training data 100% 100% – –
DiffSBDD-cond (Cα) 97.75% 48.02% 96.95% 100%
DiffSBDD-inpaint (Cα) 91.62% 51.38% 98.64% 100%
DiffSBDD-cond 93.23% 83.46% 97.46% 100%

Binding MOAD Training data 96.38% 100% – –
DiffSBDD-cond (Cα) 94.02% 66.46% 99.55% 99.81%
DiffSBDD-inpaint (Cα) 94.98% 70.21% 99.75% 99.80%

D.3 Octanol-water partition coefficient

The octanol-water partition coefficient (logP ) is a measure of lipophilicity and is commonly reported
for potential drug candidates [32]. We summarize this property for our generated molecules in
Table 4.

Table 4: LogP values of generated molecules.

CrossDocket Binding MOAD

Test set 0.894± 2.73 0.456± 1.15

3D-SBDD (AR) [22] 0.273± 2.01 —
Pocket2Mol [12] 1.720± 1.97 —

DiffSBDD-cond (Cα) −0.184± 1.01 0.090± 1.02
DiffSBDD-inpaint (Cα) −0.519± 1.09 −0.366± 1.04

DiffSBDD-cond −0.328± 1.18 —

D.4 Optimization

Figure 5: Effect of number of noising/denoising steps on molecule properties.

We use our model to optimize exciting candidate molecules, a common task in drug discovery called
lead optimization. This is when we take a compound found to have high binding affinity and optimize
it for better ‘drug-like’ properties. We first noise the atom features and coordinates for t steps (where
t is small) using the forward diffusion process. From this partially noised sample, we can then
denoise the appropriate number of steps with the reverse process until t = 0. This allows us to sample
new candidates of various properties whilst staying in the same region of active chemical space,
assuming t is small (Figure 5). This approach is inspired by [33] but note this does not allow for
direct optimization of specific properties, rather directed exploration around the local chemical space
according to what was learnt from the training distribution. We demonstrate the effect the number of
noising/denoising steps (t) has on various molecular properties in Figure 5. We test all values of t at
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intervals of 10 steps and 200 molecules are sampled at every timestep. Note this does not allow for
explicit optimization of any particular property unless combined with the evolutionary algorithm.

We extend this idea by combining the partial noising/denoising procedure with a simple evolutionary
algorithm that optimizes for specific molecular properties. During the evolutionary algorithm, at
the end of every generation the top 10 docking molecules are used to seed the next population.
Every seed molecule is elaborated into 20 new candidates with a randomly chosen t between 10 and
150. To make the first population, we start with the single reference molecule and sample 200 new
molecules with t chosen as above. We find that our model performs well at this task out-of-the-box
without any additional fine-tuning. As a showcase, we optimize a molecule in the test set targeting
PDB:5ndu, a cancer therapeutic [34], which has low SA and QED scores, 0.31 and 0.35 respectively,
but high binding affinity. Over a number of rounds of optimization, we can observe significant
increases in QED (from 0.35 to mean of 0.43) whilst still maintaining high similarity to the original
molecule (Figure 6a). We can also rescue the low synthetic accessibility score of the seed molecule
by producing a battery of highly accessible molecules when selecting for SA. Finally, we observe that
we can perform significant optimization of binding affinity after only a few rounds of optimization.
Figure 6b shows 3 representative molecules with substantially optimized scores (QED, SA or Vina)
whilst maintaining comparable binding affinity and globally similar structures.

a b 

QED: 0.22
SA: 1.00 
Vina: -9.1
Sim: 0.82 

QED: 0.35  
SA: 0.31

Vina: -10.5

QED: 0.35
SA: 0.17 

Vina: -12.2
Sim: 0.56 

QED: 0.54
SA: 0.39
Vina: -9.7
Sim: 0.59 

Reference 

SA optimized Vina optimized 

QED optimized 

Figure 6: (a) Optimizing for various properties. (b) Examples of optimized molecules.

D.5 Agreement of generated and docked conformations

All docking scores reported in Table 1 are within one standard deviation of each other, which poses
challenges for the discrimination of the best models. To verify successful pocket-conditioning, we
therefore discuss an alternative way of using QuickVina for assessing the quality of the conditional
generation procedure besides its in silico docking score. We compare the generated raw confor-
mations (before force-field relaxation) to the best scoring QuickVina docking pose and plot the
distribution of resulting RMSD values in Figures 7 and 8. As a baseline, the procedure is repeated
for RDKit conformers of the same molecules with identical center of mass. For a large percentage
of molecules generated by the all-atom CrossDocked model, QuickVina agrees with the predicted
bound conformations, leaving them almost unchanged (RMSD below 2Å). This demonstrates suc-
cessful conditioning on the given protein pockets and showcases the success of our method to model
protein-drug interactions at the atomic level.
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Figure 7: RMSD between original and docked conformations for CrossDocked dataset. (A)
DiffSBDD-cond, sample size 8804. (B) DiffSBDD-cond (Cα), sample size 9611. (C) DiffSBDD-
inpaint (Cα), sample size 8641.
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Figure 8: RMSD between original and docked conformations for BindingMOAD dataset. (A)
DiffSBDD-cond (Cα), sample size 12 315. (B) DiffSBDD-inpaint (Cα), sample size 12 550.

For the Cα-only models results are less convincing. They produce poses that only slightly improve
upon conformers lacking pocket-context. Likely, this is caused by atomic clashes with the proteins’
side chains that QuickVina needs to resolve. Notably, however, there is a clear enrichment of
molecules with less than 3Å RMSD for both conditional models (Binding MOAD and CrossDocked)
showing the advantage over unconditional conformer generation.

D.6 Random generated molecules

Randomly selected molecules generated with our method and 3 baseline methods (LiGAN, SBDD-3D
and Pocket2Mol) when trained with CrossDocked are presented in Figure 9. Randomly selected
molecules generated wby our method when trained with Binding MOAD are show in Figure 10.

D.7 Distribution of docking scores by target

We present extensive evaluation of the docking scores for our generated molecules in Figure 11.
We evaluate all models trained with a given dataset first against all targets (Figure 11A+C) and 10
randomly chosen targets (Figure 11B+D). We note that the all-atom model trained using CrossDocked
data outperforms all other methods. Unsurprisingly, model performance is highly target dependent,
likely varying with properties like pocket geometry, size, charge and hydrophbicity, which would
affect the propensity of generating high affinity molecules.

E Related Work

Diffusion Models for Molecules Inspired by non-equilibrium thermodynamics, diffusion models
have been proposed to learn data distributions by modeling a denoising (reverse diffusion) process
and have achieved remarkable success in a variety of tasks such as image, audio synthesis and
point cloud generation [35–37]. Recently, efforts have been made to utilize diffusion models for
molecule design [38]. Specifically, Hoogeboom et al. [16] propose a diffusion model with an
equivariant network that operates both on continuous atomic coordinates and categorical atom types
to generate new molecules in 3D space. Torsional Diffusion [39] focuses on a conditional setting
where molecular conformations (atomic coordinates) are generated from molecular graphs (atom
types and bonds). Similarly, 3D diffusion models have been applied to generative design of larger
biomolecular structures, such as antibodies [33] and other proteins [40, 41].

Structure-based Drug Design Structure-based Drug Design (SBDD) [4, 42] relies on the knowl-
edge of the 3D structure of the biological target obtained either through experimental methods or
high-confidence predictions using homology modelling [43]. Candidate molecules are then designed
to bind with high affinity and specificity to the target using interactive software [44] and often
human-based intuition [4]. Recent advances in deep generative models have brought a new wave of
research that model the conditional distribution of ligands given biological targets and thus enable de
novo structure-based drug design. Most of recent work consider this task as a sequential generation
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LiGAN SBDD-3D (AR) pocket2mol DiffSBDD-cond
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Figure 9: Generated molecules for 10 randomly chosen targets in the CrossDocked test set. For each
target, 3 randomly selected generated molecules from 4 models are shown.

problem and design a variety of generative methods including auto-regressive models, reinforcement
learning, etc., to generate ligands inside protein pockets atom by atom [45, 22, 10, 12].

Geometric Deep Learning for Drug Discovery Geometric deep learning refers to incorporating
geometric priors in neural architecture design that respects symmetry and invariance, thus reduces
sample complexity and eliminates the need for data augmentation [5]. It has been prevailing in a
variety of drug discovery tasks from virtual screening to de novo drug design as symmetry widely
exists in the representation of drugs. One line of work introduces graph and geometry priors and
designs message passing neural networks and equivariant neural networks that are permutation- and
translation-, rotation-, reflection-equivariant, respectively [46, 47, 15, 48, 49], and has been widely
used in representing biomolecules from small molecules to proteins [6] and solving downstream tasks
such as molecular property prediction [50, 51], binding pose prediction [9], molecular dynamics [52],
etc. Another line of work focuses on generative design of new molecules [38]. Specifically, they
formulate molecule design as a graph or geometry generation problem and there are two strategies:
one-shot generation that generates graphs (atom and bond features) in one step and sequential
generation that generates them in a sequence of steps.
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Figure 10: Generated molecules for 10 randomly chosen targets in the Binding MOAD test set. For
each target-model pair, 5 randomly selected generated molecules are shown. Cα level proteins were
used for both models.
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Figure 11: Docking scores of generated molecules for various methods trained on the CrossDocked
(A-B) and Binding MOAD (C-D) datasets. (A) Violin plot of docking scores for all 3 methods trained
using CrossDocked. (B) Same as before but for 10 randomly chosen targets sorted by mean score.
(C) Violin plot of docking scores for all 2 methods trained using Binding MOAD. (D) Same as before
but for 10 randomly chosen targets sorted by mean score.
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