SWAMPNN: End-to-end protein structures alignment
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Abstract

With the recent breakthrough of highly accurate structure prediction methods, there
has been a rapid growth of available protein structures. Efficient methods are
needed to infer structural similarity within these datasets. We present an end-to-end
alignment method, called SWAMPNN, that takes as input the 3D coordinates of a
protein pair and outputs a structural alignment. We show that the model is able to
recapitulate TM-align alignments while running faster and is more accurate than
Foldseek on alignment and classification tasks.

1 Introduction

With the recent success of methods such as AlphaFold2 [1] and RoseTTAFold [2], hundreds of
millions of protein structures with near-experimental quality are available. This offers a new horizon
in understanding how to relate sequence, structure, and function. One application of structure
comparison is the improvement of homology search, the task of identifying similar regions in protein
sequences likely due to shared ancestry. Biologists use homology search to build databases of
annotated proteins [3] and formulate hypothesis by comparison. Given a query protein with an
unknown biological function, a common strategy is to use sequence similarity search in order to find
homologous sequences with a known function [4} 5]. Homology search methods based on sequence
similiarity have been very powerful and reliable when the query and the homologs exhibit a high
sequence similarity. However, it is still a challenge to annotate proteins using just the sequence
information when there is a low sequence similarity [6]. Incorporating structure comparison into
homology search offers the potential to improve the detection of remote homologs when structure
has been conserved. Indeed, alignment methods using structural information have been shown to
offer a higher sensitivity at longer evolutionary distance [[7]]. Standard state-of-the art structural
alignment tools such as TM-align [8]] and Dali [9] are too computationally expensive to apply to
a large scale comparison of structures in these huge new databases of protein structures. The first
reason is that sequence based search tools use fast pre-filter algorithms that speed up the search
by orders of magnitude. Second, the structural similarity scores computed by these methods are
non-local, meaning that efficient dynamic programming algorithms such as Smith-Waterman cannot
be used. Here, we introduce a method to structurally align protein pairs with dynamic programming.

We are developing a model that aligns a pair of proteins using their 3D structures. Our model,
SWAMPNN, takes as inputs the 3D coordinates of each protein structure, then transforms the
coordinates of each position into a vector of features using the encoder of the ProteinMPNN neural
network [[10]]. After some optional transformations of these features (via a LSTM layer), the scalar
product is taken between all pairs of positions between the two proteins to obtain a similarity matrix.
Under the assumption that the feature vectors encode relevant information about the structure, we
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Figure 1: Architecture of the network. The inputs are the 3D coordinates of the protein pair. The
coordinates are transformed using ProteinMPNN (a), then after some transformations, a similarity
matrix is obtained by taking the dot-product (b). Smooth-Smith-Waterman is applied to the similarity
matrix to get an alignment (c).

expect pairs of positions that should be aligned to have similar feature vectors, and thus to have a
high dot product. A differentiable and smooth version of Smith-Waterman is then applied to this
similarity matrix to obtain an alignment. Using a differentiable version of Smith-Waterman allows us
to include the alignment step when training the neural network, making our approach end-to-end.
We tested two different loss functions. First, we considered the cross entropy loss between the
alignment found by our method and the alignment given by TM-align[8]]. The second one relies on
the maximization of LDDT scores. We obtained similar results with both. We are also developing a
categorical version of the network, where the structure is embedded into categorical variables, that
will allow us to use pre-filtering sequence based tools in the future. We show promising preliminary
results for this categorical version.

We evaluated our method on two different tasks: pairwise alignment, and structure classification
based on structure similarity. We show that our method produces alignments with TM-scores 1.2%
lower on average than TM-align and that we outperform TM-align in terms of LDDT scores by 0.2%
on average. For structure classification, we show that our method is able to outperform Foldseek
for family, super family, fold detection, and for the alignment task.

1.1 Related works

Standard structural aligners. Structural alignment tools such as TM-align [8] or DALI [9]] can
align protein structures using superposition, even when sequence based methods fail because of
low-sequence similarity. However, these algorithms do not use dynamic programming and are very
computationally expensive. Therefore, they are not well adapted for databases with hundred of
millions of structures.

Foldseek. Our work builds on the Foldseek structure comparison method, which discretizes the query
and target structures into sequences over an alphabet of 20 letters learned using a vector-quantized
variational autoencoder . The 20 states, called 3Di states describe for each residue the geometrical
conformation with its closest neighbors. This transformation from the structure to a sequence enables
use of existing sequence search tools with highly optmized implementations, speeding up by



orders of magnitude the search while giving similar results to structural alignment methods such as
TM-align[8]]. Unlike our model, the Foldseek network is not trained end-to-end; the 3Di states are
learned by training an autoencoder, and then a BLOSUM-like substitution matrix is computed from
the empirical substitution frequencies of the 3Di states.

2 Methods

2.1 ProteinMPNN

ProteinMPNN is a message passing neural network that aims to find an amino acid sequence that
will fold into a given structure [[10]]. The network takes as inputs the 3D coordinates and computes
the following information for each residue: (i) the distance between the N, C,,, C, O and a virtual
Cg atom, (ii) the C, — C,, — C,, frame orientation and rotation, (iii) the backbone dihedral angles,
and (iv) the distances to the 48 closest residues. The full network is composed of an encoder and a
decoder with 3 layers each. For our task, we use the encoder to obtain an embedding of each position
that contains relevant information about the structure and do not use the decoder. We tested two
different strategies. First, we used the pretrained encodings of MPNN directly as input to our network.
Second, we trained the weights of the encoder of ProteinMPNN as part of our neural network.

2.2 Smooth and Differentiable Smith-Waterman

We apply the smooth and differentiable Smith-Waterman algorithm as implemented in [11]. The
Smith-Waterman algorithm is a dynamic programming algorithm that inputs two sequences and
a matrix of alignment scores for all pairs of positions and returns the optimal (highest scoring)
alignment between the pair of sequences. The smooth version instead returns a distribution over
alignments where higher scoring alignments are more likely. (This is achieved by replacing the max
function with logsumexp. See [11] for details.) The extent to which this distribution is concentrated
on the optimal alignment is controlled by the temperature parameter. The smoothing operation makes
the algorithm differentiable, and therefore applicable in neural network pipelines.

2.3 Architecture of the SWAMPNN alignment network

The network, called Smith-Waterman Alignment Message Passing Neural Network (SWAMPNN),
takes as input the 3D coordinates of the two proteins. These coordinates are transformed into a
vector of features for each position using ProteinMPNN. The training can include learning this
transformation or the pretrained weights of ProteinMPNN can be taken without changing them.
These vectors of features are then optionally transformed by a LSTM or by a 1D convolutional
layer. When the weights of ProteinMPNN are not trained, we need to do a transformation, otherwise
there are no parameters to learn. The dot product is then taken between the features of the two
proteins to obtain a similarity matrix A with matrix elements a; ; corresponding to the score of
aligning 7 with j. Lastly, the Smooth-Smith-Waterman algorithm is applied to the similarity matrix to
obtain an alignment. The Smooth-Smith-Waterman algorithm outputs the probability that a position
pair is aligned, therefore we obtain a soft alignment. In order to get an hard alignment, in other
words to have P(i,j aligned) = 0 or P(i,j aligned) = 1, we take a very low temperature 7" in the
Smooth-Smith-Waterman scoring function. The temperature is therefore decreased during training
fromT =5toT =0.1.

2.4 Categorical SWAMPNN

In order to use sequence based preprocessing tools, the discretization of the query and targets
structures is needed. Therefore, we developed a modified version of our SWAMPNN network,
Categorical SWAMPNN, that includes a discretization step. For this, we used the architecture that
does not include the LSTM.

Instead of representing each position of the sequence by a vector (the output of Protein MPNN), each
position will be associated with a discrete identifier representing a cluster center. More precisely,
after training the network as described above, we embed all protein structures from the training set,
perform k-means clustering with £ = 32 to find initial cluster centers, then continue training the
network allowing the centers update.



64 x 32

L x64 Lx 32
x Cluster centers

v

Membership vectors = StopGradient (argmaz{W} — softmaz{W}) + softmaz{W}

A

X Cluster centers.T
L x64 32 x 64 Lx 32

Figure 2: Summary of the discretization step of Categorical SWAMPNN. First, we take the dot
product between the embedding and the cluster centers, then a membership vector is obtained using
the stop gradient trick. Lastly, we take the multiplication of the membership vector with the cluster
centers to obtain a new embedding.

To obtain a categorical variable at each position, it would be natural to select the identifier of the
closest center, however this operation is not differentiable. Instead, for each embedded position we
take the dot product with all ¥ = 32 centers and compute a 32-dimensional “membership vector" for
each position by taking the argmax using the stop gradient trick:

W = Initial embeddings x Cluster centers Q)
Membership vectors = StopGradient(argmax{W} — softmax{W}) + softmax{W} (2)

Lastly, we multiply these membership vectors with the transposed matrix of the cluster centers to
obtain new embeddings, which are then used to produce the similarity matrix (as in box b of Figure
1). When the membership vector is a binary unit vector, the new embedding is precisely the center
of the cluster to which it belongs. This procedure is summarized in Figure 2] The initialization of
cluster centers using k-means is crucial. Indeed, we observed that a naive initialization led to the
network to be stuck in a local minimum.

2.5 Loss Functions

We experimented two types of loss function to train the network. First we consider the cross-entropy
between the TM-align structural alignment and the predicted alignment:

Cross-entropy Loss = Z eijlogpi; + (1 —e;5) log (1 — pyj), 3)
i.j
where e;; = 1 if TM-align predicts the position 4 in the first protein and j in the second to be aligned,

and 0 otherwise. The value p;; is the predicted probability that the two positions are aligned according
to our method.

The second loss function we consider is a smoothed version of the LDDT (local distance difference
test) score, which measures how well the local environment in a reference structure is reproduced
in the aligned structure. An advantage of using this loss function is that it does not depend on any
external computation such as TM-Align, making the model more end-to-end. The LDDT score, in
contrast to other scores such as TM-scores or GDT scores, is not dependent on the relative orientation
of domains. We compute the LDDT loss as follows. First, we compute the distance between all C,,



pairs in the reference structure that are closer than 15 A. This gives two pairwise distance matrices
D1 and D5, one for the query, and the other for the aligned target. A distance is considered to be
conserved in the aligned structure if it is within a certain tolerance threshold. In practice, an average
is made between 4 thresholds: 0.5, 2, 4 and 8 A. In order to make the LDDT score smooth, we apply
the sigmoid function rather than count the number of pairs of conserved distances at a threshold ¢:

N 1
LDDT Loss = — Z Sigmoid|(D; ; — ) * ] 4)
0,
where D is the square difference between the two pairwise distance matrices Dy and Dy; D =
(D1 — D5)?, and the sum is taken over all the position pairs (i, j) in the reference structure that
are closer than 15 A. The temperature parameter 7' controls how smooth the sigmoid function is. In
the limit 7" — 0, we retrieve the usual LDDT score. The temperature was decreased from 7" = 5 to

T = 0.1 during training. An average is made over 4 thresholds t: 0.5, 2, 4 and 8 A.

2.6 Training data

To train the network, we collected the non-redundant set of 9, 846 proteins from [/14f]. Redundancies
were removed at 25% sequence identity cutoff. This dataset contains structures with at least 40
residues per chain, with X-ray resolution < 2 A. Proteins with a length < 300 were selected in order
to optimize the training time. We made an all-versus-all TM-align search, and selected pairs with
a TM-score > 0.6 in either direction. Of these pairs, we selected 100 pairs for our test set. Of the
remaining pairs, we removed any which contained a sequence that appeared in one of the test set
pairs. From the remaining pairs, we selected a training set with 28, 000 pairs. This process guarantees
that the sequences seen during training have no more than 25% identity with any sequence in a test
set pair.

3 Results

3.1 Alignment performance on the test set
3.1.1 Comparison between SWAMPNN and other alignment methods

We compared the perfomance of our model on the 100 pairs of the test set by using LDDT and TM-
scores as metrics for alignment quality. The SWAMPNN models are trained with the cross-entropy
loss with respect to TM-align. The architecture includes a 3 layer ProteinMPNN encoder whose
weights are trained. The categorical SWAMPNN model transforms the embeddings into categorical
variables with an alphabet size of 32. Table[I|shows that the non-categorical SWAMPNN model is
the second best aligner for TM-scores, and the best one for LDDT scores. The performance is thus
comparable to TM-align, and better than all the other aligners. In particular, SWAMPNN outperforms
by a large margin Foldseek 3Di, the version of Foldseek that does not use the sequence information,
such as our model. Figure |3| shows the scatter plot of TM-scores and LDDT scores between our
non-categorical SWAMPNN model and TM-align/Foldseek.

Table 1: Comparison of TM-scores and LDDT scores for different aligners

Method TM-score LDDT score
SWAMPNN 0.770 0.662
Categorical SWAMPNN  0.751 0.645
Foldseek 3Di 0.679 0.567
Foldseek + sequence 0.699 0.591
TM-align 0.782 0.660
DALI 0.756 0.573

3.1.2 Choice of the loss function and architecture

We did a comparison between training the weights of the ProteinMPNN encoder or taking the
pretrained weigths of [10]. When the embeddings are computed with the pretrained weights, we
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Figure 3: The left figure shows a scatter plot of the LDDT scores for our SWAMPNN model and
TM-align on 100 pairs of proteins. The second figure is the scatter plot of TM-scores between our
SWAMPNN model and TM-align. The third and fourth figures show the same comparisons with
Foldseek.

added a LSTM layer in order to have trainable parameters. Table [2]shows that training the weights
of ProteinMPNN increases the performance. Table [2] also includes a comparison between the
cross-entropy loss and the LDDT loss, and shows that they exhibit similar performances.

3.2 Classification on the SCOPE dataset

We measured the sensitivity of our model on the SCOPe40 dataset [15]]. This dataset contains 11,211
proteins clustered at 40% identity. We used the same procedure as [12]. We performed an all-versus-
all search and computed the performance in finding the members of the same family, super-family
and fold. The performance is measured by the fraction of true positives out of all possible correct
matches until the first false positive, a false positive being a match to a different fold. An average
is made over all proteins of the dataset. We compare the performance of our non-categorical and
categorical SWAMPNN models to the Foldseek, TM-align, and DALI sensitivity. The SWAMPNN
models are trained with a 3 layers ProteinMPNN encoder. Table |§| shows that the SWAMPNN models,
both categorical and non-categorical, outperform Foldseek 3Di. Like our model, Foldseek 3Di does
not use amino acid information. The default setting of Foldseek uses amino acid information. While
not using this information, our non-categorical SWAMPNN model still outperforms Foldseek.



Table 2: Comparison of different architectures and loss functions on the test set

Model Loss LDDT score dif- | TM-score differ- | Speed-up with re-
ference to TM- | ence to TM-Align | spect to TM-align
Align

Pretrained ProteinMPNN | Cross- -0.7% -2.6% 2.6 * 102

+LSTM Entropy

Pretrained ProteinMPNN | LDDT -0.6% -3.2% 2.6 % 102

+LSTM

Trained ProteinMPNN | Cross- +0.2% -1.2% 310!

with 3 layers encoder Entropy

Trained ProteinMPNN | LDDT +0.4% -2.5% 310

with 3 layers encoder

Table 3: Sensitivity on the SCOPe40 dataset

Method Family Superfamily Fold

SWAMPNN 0.833  0.482 0.123
Categorical SWAMPNN  0.792 0.418 0.093
Foldseek 3Di 0.768  0.370 0.069
Foldseek + sequence 0.828 0.417 0.076
TM-align 0.804  0.455 0.108
DALI 0.888  0.575 0.166

4 Conclusion

We have shown that SWAMPNN exhibits promising results for the alignment and family/super-
family/fold classification tasks. We also developed a categorical version that will allow to use the
same sequence based pre-processing tools as Foldseek, and thus will allow to decrease the search
time by orders of magnitude. Future developments include understanding the minimal alphabet size
needed in the discretization step, and adding the amino-acid information to increase the performance.
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