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Abstract

Accurate prediction of functional impact for missense variants is fundamental for
genetic analysis and clinical applications. Current methods focused on generating
an overall pathogenicity prediction score while overlooking the fact that variant
effect should be multi-dimensional via different modes of action, such as gain
or loss of function, and loss of folding stability or enzymatic activity. Recent
breakthrough of high-capacity language models enabled ab initio prediction of
protein structures as well as self-supervised representation learning of protein
sequence and functions. Here we present RESCVE, a method to learn universal
representation of sequence variation from protein context. We demonstrated the
utility of the method predicting a range of modes of action for missense variants
through transfer learning.

1 Introduction

Missense variants are the most common and major type of coding variants that contribute to many
human diseases[1, 2, 3, 4, 5]. In the past decade, many methods have been developed to predict
functional effects of missense variants. Traditional methods, such as GERP, Polyphen2, SIFT, CADD,
REVEL, M-CAP, Eigen and MPC[6, 7, 8, 9, 10, 11, 12, 13], utilized manually encoded features
including sequence conservation, local protein structure properties, population allele frequency with
conventional machine learning models like SVM and random forests to output a single score that re-
flect pathogenicity. Methods like PrimateAI and gMVP showed deep learning frameworks like convo-
lutional neural networks (CNN) and graph attention could capture protein context and co-evolutional
strength from sequence and multiple sequence alignment, which improved performance[14, 15].
Moreover, recent protein language models based on Transformers and self-supervised training on
billions of protein sequences in UniProt[16] showed great success in protein structure prediction[17],
context representations[18] and zero-shot predictors of variant pathogenicity[19]. However, those
methods were not optimized for distinguishing modes of action of pathogenicity. Pathogenic missense
variants could act through different modes to cause disease and may result in markedly different
clinical phenotypes[20]. Generally, pathogenic missense variants could disturb protein function in
two ways, Gain of Function (GoF) and Loss of Function (LoF). For example, GoF variants could
result in hyper-activity, altered selectivity in ion channel genes[21, 22] as well as constitutive acti-
vation, increased sensitivity and lower specificity in signaling proteins[23]. Likewise, LoF variants
could disable protein function in different modes, such as decreased net ion flow in ion channel
genes[21], decreased protein stability[24], decreased enzymatic activity[25] or loss of interaction
domain[26, 27, 28]. More specifically, the mode of action is about how the normal function of a
protein is perturbed by the mutation. Since different proteins have different functions, it would be
conceptually ambiguous to build a generic model that directly predict missense variants modes of
action for all proteins, with the exception of fold stability. In this study, we aim to build a model that
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learns universal representation of coding sequence variants and use transfer learning to predict modes
of action in each protein or protein family (equation 1).

h = f0(AAref , AAalt, X)

Si = fi(h), i ∈ Protein Families
(1)

Here we present RESCVE (REpresentation of protein Sequence Context for Variant functional
Effect prediction), which utilized the protein language models and pre-trained on ClinVar/HGMD
datasets[29, 30] to obtain a latent representation for variants. We showed such representation could
characterize modes of action in multiple tasks, including gain and loss of function in ion channel
proteins, protein stability and enzyme activities of PTEN with state-of-the-art performances.

2 Build latent representations of variant effect based on protein language
models

2.1 Overview of the model

Most of the recent protein language models were trained with the mask-and-predict task, which is
self-supervised to maximize the predicted probability of reference amino acid at a given position
given the protein sequence context. Such pre-training settings allowed zero-shot prediction of variant
effect by comparing the probability of mutated amino acid with reference amino acid, which showed
good performances in spearman correlation with deep mutational scan scores and AUC in clinical
data[31, 19]. However, such metric is impossible, by definition, to distinguish different modes of
action for pathogenic variants.
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Figure 1: Model Architectures

Here we would like to take the advantage of protein language models’ powerful latent representations
of protein properties while build a generalized representation model for variant effects, which can be
further used for transfer-learning in protein family specific tasks. The embeddings of protein language
models consist of information of amino acid properties, protein structure and indirect conservation
information. Secondary structures and relative solvent accessibility (RSA) are causative factors
of missense variants functional impact[27, 32]. To take advantage of such prior knowledge while
minimizing losing generality from the language models, we added a transformer block after the
last layer of language model. The transformer block has same architecture as RoBERTa and ESM
layers[33, 34, 19] and serves both a predictor for secondary structures, relevant solvent accessibility
(RSA) and the input for the MSA-attention layer. The MSA-attention layer is designed to capture
the impact of single amino acid change given the protein context information and multiple sequence
alignment (MSA) information inspired from gMVP[15]. The protein context information is weighted
summed by the attention score to the variant position embeddings, which contains both embeddings
for reference and substituted amino acids. The attention score contains both query-key dot product as
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well as the co-evolution covariance score calculated from the MSA of 200 species (equation 2).

X = ESM(wild type sequence)

C = Transformer(X)

Q = Wq ·GELU(Linear(AAref , AAalt))

K = Wk ·GELU(Linear(C))

V = Wv ·GELU(Linear(C))

A = Q ·KT +WA · tanh(Linear(cov(MSA)))

Attn = Linear(softmax(A) · V )

h = GRU(Attn,C)

(2)

cov(MSA) is a covariance matrix of shape 21× 21× seq_len and was adapted from gMVP[15] and
defined as below (equation 3), where A and B denotes amino acid identities (20+gap), M denotes
species, i denotes variant position, j denotes indexes of other positions.

cov(MSA)AB
ij =

1

M
(

M∑
m=1

δA,Xi,m
δB,Xj,m

−
M∑

m=1

δA,Xi,m
−

M∑
m=1

δB,Xj,m
) (3)

The attention result and the embeddings of variant position were passed to a GRU cell, end up with
an output of variant representation with 1280 dimensions (equation 2). A simple 3-layer multi-layer
perceptron (MLP) was added to the representation with activation layer depending on the modes of
action tasks (Appendix A.1 Table 3).

2.2 Data sets and tasks

2.2.1 Pre-training: Pathogenicity, Secondary Structure and Relevant Solvent Accessibility

To make the model able to recognize protein properties as well as identifying variant effects, we
pre-trained the model with two sub-tasks. The first one is to predict protein secondary structures
and relevant solvent accessibility (RSA), using predicted structure of 21,052 human proteins from
AlphaFold2[17] and use DSSP[35, 36] annotated secondary structures as training set and 2,341
proteins as testing set. The second task is to classify pathogenic variants, using labeled data including
58,888 pathogenic or likely pathogenic variants from ClinVar[29], HGMD[30] and 56,850 benign
variants from PrimateAI[14]. To reduce overfitting and avoid memorization of protein identity instead
of amino acid change, we randomly added 3% (2038) of benign variants that locate in the same
position as pathogenic variants (Appendix A.2 Table 4). For testing dataset, we used pathogenic
variants in cancer hotspots from a recent study[37] and benign variants from PrimateAI. We crop each
sequence to a length of 1001 to fit the maximum input length of ESM models. The multi-sequence
alignment (MSA) files were downloaded from ensembl website[38]. The performance is quantified
by the AUC of secondary structure prediction, Pearson corelation coefficient (R) of relavant solvent
accessibility (RSA) and the AUC of pathogenicity classification.

2.2.2 Gain / Loss of function for 4 protein families

We curated datasets that consist modes of action of 4 protein families from Heyne, et al[21] and
Bayrak, et al[20]. The gain and loss of function variants were labeled based on the clinical phenotypes
and literature text mining. We randomly split it into 4:1 of training and testing datasets (Appendix
A.2 Table 4). The goal of the task is to distinguish gain of function and loss of function variants. The
performance is quantified by AUC of classification in the testing dataset.

2.2.3 Deep mutational scan datasets for 5 proteins

We obtained 5 deep mutational assay datasets of gene PTEN, NUDT15, CCR5, CXCR4, VKORC1
from MAVEDB[39], each contains multiple measurements on different functional effects of single
missense variants, including protein stability[24], enzyme activity[25], antibody binding, etc. We
randomly split it into 8:1:1 of training, validation and testing sets (Appendix A.2 Table 4). The goal
is to build a regression model from the variant representations. The performance is quantified by the
Pearson correlation coefficient (R) in the testing dataset.
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3 Results

3.1 Secondary Structure prediction and variant pathogenicity prediction

We trained RESCVE (Appendix A.3, A.4) and tested the performance of secondary structure and
pathogenicity prediction of our model against ESM1b[18] and ESM2 (650M) model[40]. For
secondary structure and RSA tasks, we trained ESM models with a simple MLP layer on same
training dataset. For pathogenicity task, we use the likelihood ratio of amino acid change as zero-shot
prediction for ESM[19]. For our model RESCVE, we compared four settings: ESM2 (650M)-based,
ESM2 (15B)-based, ESM1b-based and ESM1b-based structure without transformer layer (Appendix
A.5). ESM1b-based RESCVE outperforms the others in the pathogenicity task while reached decent
performances in secondary structure and RSA tasks (Table 1). Thus we decided to use ESM1b-based
RESCVE for transfer learning.

Table 1: pre-train task performances

Name Secondary Structure
(AUC)

RSA
(R)

Pathogenicity
(AUC)

ESM1b 0.751 0.784 0.922 (zero-shot)
ESM2 650M 0.657 0.556 0.815 (zero-shot)
ESM1b based RESCVE 0.952 0.919 0.951
ESM1b based RESCVE
(no Transformer) 0.798 0.844 0.951
ESM2 650M based RESCVE 0.951 0.910 0.940
ESM2 15B based RESCVE 0.970 0.923 0.908

3.2 Modes of action tasks

We tested the performance of several protein family specific transfer learning tasks with our model
against three base-line models: zero-shot prediction of ESM1b, a simple elastic net model that
trained on same training dataset using ESM1b’s embeddings, ESM1b-based RESCVE without the
transformer layer. The RESCVE models performed better in most tasks, indicating that our model
structure can efficiently extract useful information in language model’s embeddings for modes of
action prediction (Table 2). For protein families like Ion channel and SH2, our model has AUC above
0.9, while for other protein families, our model has AUC around 0.70 (Table 2), which could be related
to the limited sample sizes (Appendix A.2 Table 4). We did notice that removing the transformer layer
could result in slightly better performances in some of the tasks. Generally, removing the transformer
layer will decrease model’s ability of transfer learning and the model will do better at tasks that
preferred by original language model (i.e. in PTEN, NUDT15, VKORC1). We further explored the
transfer learning ability of RESCVE with limited data points. The result showed that RESCVE could
adapt to most tasks with only 60% of dataset (Appendix A.6). Finally, we showed that our model can
potentially benefit clinical diagnosis and treatments by distinguishing different functional effects of
single variants (Appendix A.7).

4 Related Work

Multiple models have been trained to predict variant pathogenicity from different aspects. Including
supervised annoted-feature based models GERP, Polyphen2, SIFT, CADD, REVEL, M-CAP, Eigen,
MPC[6, 7, 8, 9, 10, 11, 12, 13]; supervised deep learning models PrimateAI, gMVP[14, 15]; unsuper-
vised deep learning models ESM1v[19], EVE[41], Tranceptron[42]. There are very few methods that
focused on modes of action prediction. gMVP has revealed that supervised pre-training on variant
pathogenicity could help distinguish GoF/LoF variants in ion channel genes. Bayrak et al built a
database of GoF/LoF variants based on literature search on ClinVar / HGMD[20]and developed a
method to predict GoF/LoF variants across all genes using manually annotated features and gradient
boosting tree algorithm[43].
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Table 2: Modes of action tasks performances

Task Name ESM1b
(zero-shot)

ESM1b
(elastic-net)

RESCVE
(no Transformer) RESCVE

GoF/LoF
(AUC)

Ion Channel 0.541 0.822 0.873± 0.008 0.920 ± 0.006
Kinase 0.565 0.696 0.730± 0.022 0.788 ± 0.030
SH2 0.600 0.827 0.813± 0.013 0.929 ± 0.020
cNMP binding 0.653 0.840 0.520± 0.023 0.627± 0.053

PTEN
(R)

stability 0.458 0.622 0.636± 0.005 0.666 ± 0.000
enzyme activity 0.548 0.551 0.724 ± 0.002 0.715± 0.000

NUDT15
(R)

stability 0.545 0.613 0.784± 0.000 0.807 ± 0.003
enzyme activity 0.596 0.608 0.767 ± 0.008 0.757± 0.002

CCR5
(R)

stability 0.446 0.392 0.606 ± 0.000 0.593± 0.002
bind AB-2D7 0.397 0.434 0.573 ± 0.000 0.568± 0.002
bind HIV-1 0.420 0.416 0.591± 0.000 0.612 ± 0.001

CXCR4
(R)

stability 0.347 0.393 0.595 ± 0.000 0.595 ± 0.001
bind CXCL12 0.183 0.225 0.451± 0.000 0.453 ± 0.001
bind AB-12G5 0.220 0.264 0.367± 0.000 0.393 ± 0.001

VKORC1
(R)

stability 0.622 0.242 0.797 ± 0.000 0.724± 0.012
enzyme activity 0.311 0.132 0.221± 0.015 0.313 ± 0.005

5 Discussion

Application of new methods from the natural language processing field to protein biology has
enabled modeling protein context using the entire collection of protein sequences. In this project,
we aimed at predicting modes of action of missense variants using protein language models. We
first defined several modes of action prediction tasks based on public available datasets. We note
that modes of action are often specific to protein families. Gain of function mutations in kinases
usually have different molecular mechanisms compared the ones in ion channels. While decrease
of folding stability is a loss of function mechanism universal to all proteins, most proteins have
additional specific ways for loss of function, such as reduction of the enzyme activity or perturbation
of interaction interface with other proteins. Therefore, we argue that prediction of modes of action
should largely be protein family specific tasks. With RESCVE, we trained a unified variant effect
representation model that utilized the embeddings from latest protein language models. We pre-
trained this representation model on a large set of pathogenic and benign variants and compared three
language models (ESM1b, ESM2 650M, ESM2 15B) in the pre-training test, in which ESM1b-based
RESCVE performs better in pathogenicity prediction while ESM2 15B-based RESCVE better in
structure-related predictions. Our observation reveals the potential trade-offs between static structure
prediction and variant effect prediction for protein language models, similar as others’ findings[44].
Finally, we showed that this pre-trained model can be applied to multiple protein family specific
modes of action prediction tasks through transfer learning. A limitation of the study is that we only
tested 9 modes of action tasks. The generalizability of the methods to other protein families and modes
of action has to be tested in future studies with larger and more comprehensive functional readout
data. This work could be applied to more comprehensive genetic analysis as well as personalized
clinical applications.

6 Future Work

We expect further development of models that represent protein sequence and structure will enable
improvement in predicting modes of action for pathogenic variants. The growing data from deep
mutational scan assays, in both breadth (more genes) and depth (more aspects of protein functions),
will facilitate performance assessment and transfer learning training process. Finally, we will apply
the method in clinical settings, including diagnostic analysis and potentially newborn screening.
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A Appendix

A.1 MLP layer for each task

Table 3: MLP layer for each task

Name MLP layer

Secondary Structure (1280, 8) Linear + Softmax
Relevant Solvent Accessibility (1280, 1) Linear
Pathogenicity (1280, 1) Linear + Sigmoid

Deep mutational scan

PTEN (1280, 2) Linear
NUDT15 (1280, 2) Linear
CCR5 (1280, 3) Linear
CXCR4 (1280, 3) Linear
VKORC1 (1280, 2) Linear

GoF/LoF

Ion channel family (1280, 2) Linear + Softmax
SH2 family (1280, 2) Linear + Softmax
Kinase family (1280, 2) Linear + Softmax
cNMP binding family (1280, 2) Linear + Softmax

A.2 Data set sizes for each task

Table 4: Data set sizes for each task

Name Training set Testing set

Secondary Structure 21,052 2,341
Relevant Solvent Accessibility 21,052 2,341

Pathogenicity Pathogenic 58,888 877
Benign 58,888 1,754

Deep mutational scan

PTEN stability 3,142 392enzyme activity

NUDT15 stability 2,276 284enzyme activity

CCR5
stability 5,236 654bind AB-2D7

bind AB-12G5

CXCR4
stability 5,316 664bind CXCL12

bind AB-12G5

VKORC1 stability 582 72enzyme activity

Ion channel family GoF 249 54
LoF 405 110

SH2 family GoF 60 15
LoF 20 5

Kinase family GoF 42 11
LoF 92 23

cNMP binding family GoF 18 5
LoF 58 15
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A.3 Training settings

As shown by previous work that naively fine-tuning language models without regularization with the
original mask-and-predict task will rapidly result in overfitting[19], we decided to train the model
with freezing parameters of protein language models while update the other parameters using Adam
algorithm. For pre-training, we set learning rate to 1e-5, as suggested in ESM1v paper[19], with 5
epochs of warm-up followed by 15 epochs linear learning rate decay to 5e-6. For transfer learning to
protein family specific tasks, we train the model with freezing parameters of both protein language
models and the transformer layer. We set the learning rate to 5e-6 with 5 epochs of warm-up followed
by 15 epochs of linear learning rate decay to 2.5e-6. We set a dropout layer with rate of 0.1 after
MSA-attention layer and GRU cell during training to avoid overfitting. For transfer learning tasks,
we also regularize the model by keeping the pre-training loss. Furthermore, we trained the model 3
times in transfer learning and calculated the average AUC for comparison with base line methods.

A.4 Loss and training time

For secondary structure predictions, we use cross-entropy loss during training:

Loss = −
∑
i,c

yi,c log(pi,c), c ∈ {−, E,H, T, S,G,B, I} (4)

There are 8 classes of secondary structures, including ’E’ (beta strand), ’H’ (alpha helix), ’T’ (turn),
’S’ (bend), ’G’ (3-10 helix), ’B’ (short beta bridge), ’I’ (pi helix), ’-’ (random coil). For pathogenicity
predictions, we use binary-cross-entropy loss during training:

Loss =
∑
i

−yi log(pi) + (1− yi) log(1− pi), y ∈ {0, 1} (5)

For protein family specific gain/loss of function predictions, we use cross-entropy loss:

Loss = −
∑
i,c

yi,c log(pi,c), c ∈ {gain, loss} (6)

Although in this case cross-entropy loss of two classes is mathematically identical to binary-cross-
entropy loss, we kept using this form for easier expansion to future tasks which can have more than
two modes. For relevant solvent accessibility (RSA), PTEN protein stability and enzyme activity
tasks, we use mean squared error loss:

Loss =
∑
i

(xi − yi)
2 (7)

We used 3 NVIDIA A40 GPU for pre-train and 1 NVIDIA A40 GPU for transfer learning. The
training time is estimated in Table 5.

Table 5: Training time

Task Name Time

Pre-train ∼32h
PTEN ∼4h
NUDT15 ∼2.5h
CCR5 ∼6h
CXCR4 ∼6h
VKORC1 ∼1h
Ion Channel ∼1h
SH2, Kinase, cNMP binding families ∼0.5h
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A.5 AUC and model comparison for pre-train

The AUC on testing dataset during pre-train is plotted in Figure 2. The goal of pre-train is to let the
model learn representation of variant effects as well as the causal factors to benefit transfer learning
while not over-fitting on the pre-train tasks. We noticed that all four models converged after epoch 8.
ESM1b-based RESCVE reached the highest AUC on pathogenicity task, while ESM2 (15B)-based
RESCVE reached the highest AUC on secondary structure and relevant solvant accessibility tasks.
We thus selected ESM1b-based RESCVE at epoch 8 for further transfer learning tasks.
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Figure 2: AUC on testing during Pre-train

12



A.6 Number of points for transfer-learning

We studied how RESCVE’s performance would be impacted by the number of points in transfer
learning. We random sub-sample 10%, 20%, 40%, 60% and 80% of each mode of action dataset as
training in the transfer learning while kept same 10% of dataset as testing. We did this experiment
with 3 replicates for PTEN, NUDT15, CCR5, CXCR4, VKORC1 and Ion channel family as they have
sufficient data points. We noticed that for our pre-trained RESCVE can adapt to tasks of CXCR4
and Ion channel family with only 60% of dataset, while for NUDT15, 40% of data would be enough
(Figure 3). For other tasks like CCR5 and VKORC1, more experimental data is required for a full
landscape of mutational effects on all residues.
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Figure 3: Number of points for transfer learning

A.7 Identify multiple functional effects of single variants

One potential application of our method is to distinguish multiple functional effects of a single
missense variant. In Figure 4, we showed that RESCVE is able to distinguish disruption of protein
stability and enzyme activity in the testing dataset. To be more specific, RESCVE can find mutations
that decrease enzyme activity while maintain protein structure (Figure 4, bottom right corner in each
plot). This will be extremely helpful for clinical diagnosis and precise treatments.
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Figure 4: Multiple effects of single variants. x and y axis, model prediction; color, experimental
measurements

A.8 License

The datasets used in this project are publicly available to download through the original publica-
tion except HGMD dataset. The code for this project is under GPL license and available here:
https://github.com/ShenLab/rescve. We provided our pre-processed datasets (except HGMD dataset)
and pre-trained models in the github repo as well.
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