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Abstract

Learning and reasoning about 3D molecular structures with varying size is an
emerging and important challenge in machine learning and especially in the de-
velopment of biotherapeutics. Equivariant Graph Neural Networks (GNNs) can
simultaneously leverage the geometric and relational detail of the problem domain
and are known to learn expressive representations through the propagation of infor-
mation between nodes leveraging geometrical details, such as directionality in their
intermediate layers. In this work, we propose an equivariant GNN that operates
with Cartesian coordinates to incorporate directionality and implements a novel
attention mechanism, acting as a content and spatial dependent filter. Our proposed
message function processes vector features in a geometrically meaningful way by
mixing existing vectors and creating new ones based on cross products.

1 Introduction

Predicting molecular properties is of central importance to applications in pharmaceutical research
and protein design and accurate computational methods can significantly accelerate the process of
finding better molecular candidates in a faster and cost-efficient way. While Deep Learning (DL) has
replaced hand-crafted features to a large extent, many advances are crucially determined through
inductive biases in deep neural networks, e.g. by exploiting the symmetry of the data by constraining
equivariance with respect to transformations from a certain symmetry group [1, 2].

3D Graph Neural Networks have been applied on a widespread of molecular structures, such as in the
prediction of quantum chemistry properties of small molecules [3, 4] but also on macromolecular
structures like proteins [5–8] due to the natural representation of structures as graphs, with atoms
as nodes and edges drawn based on bonding or spatial proximity. These networks generally encode
the 3D geometry in terms of rotationally invariant representations, such as pairwise distances when
modelling local interactions which leads to a loss of directional information, while the addition of
angular information into network architecture has shown to be beneficial [9–11] in performance.

In this work, we introduce Equivariant Graph Attention Networks (EQGAT) that operates on large
point clouds such as proteins or protein-ligand complexes and show its superior performance com-
pared to invariant models as well as our proposed model‘s faster training time compared to recent
architectures that achieve equivariance through the usage of irreducible representations. Our model
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(a) Propagation flow for central node i.
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(b) Proposed equivariant message Ml(·) and update function Ul(·).

Figure 1: (a) Visualization of the local neighbourhood of central carbon atom i. Directed edges
illustrate the message flow, where scalar and vector features are propagated along the edges. Grey
boxes R represent the side-chain atoms of each residue and serve here as visual compression. (b)
Proposed equivariant message function that computes a geometric and content related feature attention
filter for scalar features, while vector messages are created based on a weighted combination of newly
constructed vectors. The update function fuses scalar and vector features into a new representation.

implements a novel feature attention mechanism which is invariant to global rotations and translations
of inputs and includes spatial- but also content related information which serves as powerful edge
embedding when propagating information in the Message Passing Neural Networks (MPNNs) [4]
framework. Since we define equivariant functions on the original Cartesian space while restricting
ourselves to tensor representations of rank 1, i.e., vectors, we aim to capture as most geometrical
information as possible through a geometrically motivated message function.

2 Background

2.1 Message Passing Neural Networks (MPNNs)

MPNNs [4] generalize Graph Neural Networks (GNNs) [1, 2, 12] and aim to parameterize a mapping
from a graph to a feature space, where the feature space is either defined on the node- or graph
level. Formally, a graph G = (V, E) contains nodes i ∈ V and edges (j, i) ∈ E which represent the
relationship between nodes j and i. Since MPNNs utilize shared layers among nodes, permutation
equivariance is preserved. In this work, we consider graphs representing molecular systems embedded
in 3D Euclidean space, where atoms represent nodes and the edges are described through covalent
bonds and/or by atom pairs within a certain cutoff distance c as illustrated in Figure 1(a).
We refer x(l)

i = (ai, pi, s
(l)
i , v

(l)
i ) to the state of the i−th atom, where ai ∈ Z+ and pi ∈ R3 denote

atom i‘s chemical element and its spatial position, while h
(l)
i = (s

(l)
i , v

(l)
i ) ∈ R1×Fs × R3×Fv are

the hidden scalar and vector features that are iteratively refined through L message passing steps. A
general MPNN implements a learnable message and update function denoted as Ml(·) and Ul(·) to
process atom i−th‘s hidden feature by considering its local environment N (i) through

m
(l+1)
i =

∑
j∈N (i)

Ml(x
(l)
i , x

(l)
j ), and x

(l+1)
i = (ai, pi, Ul(x

(l)
i ,m

(l+1)
i )),

where N (i) = {j : ||pij ||2 = ||pj −pi||2 = dij < c} denotes atom‘s i−th neighbour set. For our 3D
GNN, we aim to implement simple, yet powerful rotation equivariant transformations in the message
and update functions, to accurately describe the local environment of atoms in the radius graph.

3 Architecture

We implement a non-linear edge filter that depends on content related information stored in the scalar
features (sj , si) and a radial basis expansion of the Euclidean distance dji ≤ c. We choose the Bessel

2



basis Gd : R −→ RK as introduced in [9] and their polynomial envelope function κ. The computation
of the attention edge-filter is obtained through

e
(l+1)
ji = [s

(l)
i ||s(l)j ||κ(dji)Gd(dji)] ∈ R2Fs+K

f
(l+1)
ji = MLP(e(l+1)

ji ) ∈ RFs+3Fv , (1)

The input to the Multilayer-Perceptron (MLP) is a concatenation of scalar features as well as a by κ
scaled radial basis expansion of the distance between nodes j and i. The SO(3)-invariant embedding
f
(l+1)
ji represents the Fs + 3Fv attention logits which are further split into f

(l+1)
ji = [aji, bji]

(l+1).
The feature attention for the scalar embeddings is computed using the standard softmax function

αji =
exp(aji)∑

k∈N (i) exp(aki)
∈ (0, 1)Fs ,

where the normalization in the denominator runs over all neighbours j′ and the exponential function
is applied componentwise. The embedding bji ∈ R3Fv is processed to create coefficients that serve
as weights for a linear combination of vector quantities to compute the vector message from j to i,
which we will describe in the following.

We follow the idea of standard convolution, which is a linear transformation of the input, and compute
the scalar features message for central node i as

m
(l+1)
i,s =

∑
j∈N (i)

α
(l+1)
ji ⊙W (l+1)

s s
(l)
j , (2)

where W
(l+1)
s ∈ RFs×Fs is a trainable weight matrix shared among all nodes and α

(l+1)
ji the

non-linear attention filter. Our proposed message function for scalar features in Eq. (2) can be
formulated as a linear transformation where the weight matrix depends on distances but also hidden
scalar information. To see this, we rewrite α

(l+1)
ji ∈ (0, 1)Fs as matrix using the diagonal operator

A
(l+1)
ji = diag(α(l+1)

ji ) ∈ (0, 1)Fs×Fs and observe that the filter scales the (independent) weight

matrix W
(l+1)
n leading to the message propagation

m
(l+1)
i,s =

∑
j∈N (i)

A
(l+1)
ji W (l+1)

s s
(l)
j =

∑
j∈N (i)

W
(l+1)
ji s

(l)
j ,

where W
(l+1)
ji defines the linear transformation matrix whose content depends on SO(3)-invariant

information which can however still be interpreted as non-linear convolution because the A
(l+1)
ji

weight matrix is obtained through an MLP and softmax activation function.

Building Equivariant Features In our work, we initialize the initial vector features as zero tensor
while equivariant features are obtained by utilizing normalized relative positions pji,n in the first
layer, to compute the interaction between central node i and its neighbour j. In the subsequent
layers, we extend the set of vectors by (I) constructing vectors based on normalized relative positions
again, (II) mixing existing vector channels from the previous iteration and (III) creating new vector
quantities by making use of the cross product.
(I) Utilizing normalized relative positions: we create equivariant vector features based on normal-
ized relative position pji,n = 1

dji
(pi − pj) as those provide directional information. Equivariant

interactions between node j and i are computed through

v
(l+1)
ji,0 = pji,n ⊗ b

(l+1)
ji,0 = pji,nb

(l+1)⊤
ji,0 ∈ R3×Fv , (3)

which preserves SO(3) equivariance, due to the linearity of the tensor product. We note that the
creation of ‘initial’ equivariant features in such manner is also performed in architectures, like [13–16]
just to name a few, that make use of irreducible representations of the SO(3) group by means of the
spherical harmonics and implement the Clebsch-Gordan tensor product (⊗cg) that allows the mixing
of possibly higher-order embedding representations of type l > 1. The l = 1 representation in Eq.
(3) can be interpreted as Fv scaled versions of the relative position pji,n.
(II) In similar fashion to the (independent) linear transformation of scalar channels, we mix the
vector channels via v

(l+1)
n = v(l)W

(l+1)
v using a weight matrix W

(l)
v ∈ RFv×Fv which preserves
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SO(3) equivariance due to the linearity property and is shared among all nodes. For a particular
neighbouring node j, we scale the linearly transformed vectors

v
(l+1)
ji,1 = b

(l+1)
ji,1 ⊙ v

(l+1)
n,j . (4)

(III) To capture more geometric information, while restricting the representation to be of type l = 1,
we utilize the vector cross product between hidden vector features. The output of the cross product
c = a × b returns a vector c that is perpendicular to plane spanned by a and b and in our network
architecture, we utilize this by computing the cross product on same channels from the previous
layers’ vector features of node i and j as

ṽ
(l+1)
ji,2 = (v

(l)
i × v

(l)
j ) ∈ R3×Fv .

We highlight that recent equivariant GNNs operating on the original Cartesian space, such as GVP
[17], PaiNN [18] or ET-Transformer [19] do not include the cross product in their architecture and
are restricted in the creation of vector features that may span the entire R3. These architectures make
use of step (I) and (II) only. For example, when all atoms are placed on the xy-plane, using these
steps would always create vectors on the xy plane, while the coordinate on z axis is always 0. By
leveraging the cross product, vectors in the z direction can be computed, without additional overhead.
In similar fashion to Eq. (3) and (4), each channel of the representation ṽ

(l)
ji,2 is weighted by the SO(3)

non-linear filter b(l)ji,2 ∈ RFv to obtain

v
(l+1)
ji,2 = b

(l+1)
ji,2 ⊙ ṽ

(l+1)
ji,2 . (5)

Finally, we define the vector message from node j to central node i as the sum of the three components
in (3) to (5) and aggregate it across all neighbouring nodes j ∈ N (i) to obtain the vector message

m
(l+1)
i,v =

1

|N (i)|
∑

j∈N (i)

(v
(l+1)
ji,0 + v

(l+1)
ji,1 + v

(l+1)
ji,2 ), (6)

which results into new weighted geometric vectors. After obtaining the aggregated message for
central node i in the representation m

(l+1)
i ∈ RFs × R3×Fv , we deploy a residual connection as

intermediate update step

s̃i
(l+1) = s

(l)
i +m

(l+1)
i,s , and ṽi

(l+1) = v
(l)
i +m

(l+1)
i,v ,

while in the update layer, we implement an equivariant non-linear transformation inspired by gated
non-linearities proposed by [20] and used in [18] with minor modification as shown in Figure 1(b).

4 Experiments

The ATOM3D benchmark [21] provides datasets for representation learning on atomic-level 3D
molecular structures of different kinds, i.e., proteins, RNAs, small molecules and complexes. Since
proteins perform specific biological functions essential for all living organisms and hence, play a key
role when investigating the most fundamental questions in the life sciences, we focus our experiments
on the learning problems often encountered in structural biology with different difficulties due to
data scarcity and varying structural sizes. We use provided training, validation and test splits from
ATOM3D and refer the interested reader to the original work of Townshend et al. [21] for more details.
For all benchmarks, we compare against the Baseline CNN and GNN models provided by Townshend
et al. [21] from ATOM3D, GVP-GNN reported in [22] and we run experiments for SchNet [3], an
SO(3) invariant GNN architecture, PaiNN [18] as SchNet‘s improved SO(3) equivariant successor and
the recently proposed SEGNN [16] that leverages higher-order representations using their official code
base. For SchNet, PaiNN and our proposed EQGAT architecture, we implement a 5-layer GNN with
Fs = 100 scalar channels and Fv = 16 vector channels for the PSR, RSR, RES and PPI benchmark,
as these consists of more training samples and comprise larger biomolecules. For the Ligand Binding
Affinity (LBA) task, we utilize a 3-layer GNN with the same number of scalar- and vector channels.
For the SEGNN architecture, we implement a 3-layer GNN with (100, 16, 8) channels for the
embeddings of type l = (0, 1, 2) that transform according to the irreducible representation of that
order. The edges in the point clouds are constructed based on a radius cutoff of 4.5Å. All graphs are
considered as full-atom graphs, i.e., the initial node feature is determined by the chemical element.
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Table 1: Benchmark results on ATOM3D tasks. We run our own experiments with the SchNet, PaiNN,
SEGNN and our EQGAT model and report averaged metrics over 3 runs except for SEGNN using a
single run only and the RES dataset.

Tasks PSR (↑) RSR (↑) LBA (↓) RES (↑) PPI (↑)
Metric Mean RS Global RS Mean RS Global RS RMSE Accuracy ROCAUC
CNN 0.431± 0.013 0.789± 0.017 0.264± 0.046 0.372± 0.027 1.416± 0.021 0.451± 0.002 0.844± 0.002
GNN 0.515± 0.010 0.755± 0.004 0.234± 0.006 0.512± 0.049 1.570± 0.025 0.082± 0.002 0.669± 0.001
GVP-GNN 0.511± 0.010 0.845± 0.008 0.211± 0.142 0.330± 0.054 1.594± 0.073 0.527± 0.003 0.866± 0.004
SchNet 0.448± 0.016 0.784± 0.013 0.247± 0.029 0.273± 0.017 1.522± 0.015 0.326± 0.003 0.839± 0.005
PaiNN 0.462± 0.015 0.809± 0.003 0.270± 0.062 0.462± 0.064 1.507± 0.033 0.370± 0.004 0.884± 0.002
SEGNN 0.474 0.833 −0.099 0.252 1.450± 0.011 0.454 0.854
EQGAT 0.491± 0.008 0.847± 0.006 0.316± 0.029 0.404± 0.096 1.440± 0.027 0.540± 0.017 0.908± 0.001

The Protein and RNA Structure Ranking tasks (PSR / RSR) in ATOM3D are both regression tasks
with the objective to predict the quality score in terms of Global Distance Test (GDT_TS) or Root-
Mean-Square Deviation (RMSD) for generated Protein and RNA models wrt. to its experimentally
determined ground-truth structure. We evaluated our model on the biopolymer ranking and obtained
good results on the current benchmark, as reported in Table 1 in terms of Spearman rank correlation.
Our proposed model performs particularly well on the PSR task outperforming the GVP-GNN [22]
on the Global Rank Spearman correlation on the test set, while our model is more parameter efficient
(383K vs. 640K). We believe our model could be further improved by additional hyperparameter
tuning, e.g., by increasing the number of scalar or vector channels, which we did not do in our study
to compare against the baseline models. We noticed that the RSR benchmark was particularly difficult
to validate as only a few dozen experimentally determined RNA structures are existent to date, and
the structural models generated in the ATOM3D framework are labeled with the RMSD to its native
structure, which is known to be sensitive to outlier regions, for exampling by inadequate modelling
of loop regions [23], while the GDT_TS metric might be a better suited target to predict a ranking for
generated RNA structures as in the PSR benchmark.

We use the ligand binding affinity (LBA) dataset and found that among the GNN architectures, our
proposed model obtains the best results, while also being computationally cheap and fast to train. The
best performing model in the LBA-task is a 3D CNN model which works on the joint protein-ligand
representation using voxel space and enforcing equivariance through data augmentation. The inferior
performance of all equivariant GNNs might be caused by the need of larger filters to better capture the
locality and many-body effects, where 3D CNNs have an advantage when using voxel representations,
while GNNs commonly capture 2-body effects. Notably, our proposed EQGAT architecture performs
on par with the SEGNN that implements geometric tensors of higher order, i.e., of rotation order
l = 2, that transforms as a rank 2 Cartesian tensor. We believe that including the cross product in our
vector message in (6) allows the model to capture more of the geometric detail in a possible protein
ligand binding pose for accurately predicting the binding affinity.

Finally, we train our EQGAT model on the Residue (RES) and Protein-Protein-Interface (PPI)
benchmarks that both examine if a model is able to capture the physico-chemical environment of a
protein by predicting the amino acid identity of a protein site based on the surrounding of a structural
environment (RES) or whether two selected amino acids will interact with each other (PPI).

5 Conclusion

In this work, we introduced a novel attention-based equivariant graph neural network for the prediction
of properties of large biomolecules that achieves superior performance on the ATOM3D benchmark.
Our proposed architecture makes use of rotationally equivariant features in their intermediate layers to
faithfully represent the geometry of the data, while being computationally efficient, as all equivariant
functions are directly implemented in the original Cartesian space without changing the representation
through the spherical harmonics basis as commonly done in Tensorfield networks. As our proposed
model operates on Cartesian tensors and we restrict the representation to be of rank 1 only, a general
promising future direction of investigation is the implementation of Cartesian equivariant GNNs that
leverage higher-rank tensors in their layers, that are specifically implemented for learning purposes
involving large biomolecules. As it is up to date not clear, how much improvement higher-order
Cartesian tensors benefit for learning tasks that involve large biomolecular systems, we hope that
our work and open-source code will be useful for the graph learning and computational biology
community.
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Code Availability

We provide the implementation of our model and experiments on https://github.com/
Bayer-Group/eqgat. We use PyTorch [24] as Deep Learning framework and PyTorch Geometric
[25] to implement our GNNs.
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A Appendix

Full Model Details and Hyperparameters

All EQGAT models in this paper were trained on a single Nvidia Tesla V100 GPU.

Table 2: Description of architectural parameters on the ATOM3D benchmarks.
Parameter LBA PSR RSR RES

Learning rate (lr.) 10−4 10−4 10−4 10−4

Maximum epochs 20 30 30 40
Lr. patience 10 10 10 10
Lr. decay factor 0.75 0.75 0.75 0.75
Batch size 16 16 16 32
Num. layers 3 5 5 5
Num. RBFs 32 32 32 32
Cutoff [Å] 4.5 4.5 4.5 4.5
Scalar channels Fs 100 100 100 100
Vector channels Fv 16 16 16 16

Num. parameters 238k 383k 383k 386k

We used the ADAM optimizer [26] apart from the defined learning rate all other standard hyper-
parameter setting from the PyTorch library. We trained the models up to a user-defined maximum
number of epochs and for testing, we loaded the checkpoint from the model with the best validation
performance, to perform the test evaluation.

Proof Equivariance

A.1 Invariance and Equivariance

In this work, we consider the special orthogonal group SO(3), i.e. the group of proper rotations in
three dimensions. A group element of SO(3) is commonly represented as matrix R ∈ R3×3 satisfying
R⊤R = RR⊤ = I and detR = 1.
For a node feature h = (s, v) ∈ RFs × R3×Fv , an SO(3)-equivariant function f(h) = h′ = (s′, v′)
must obey the following equation

f(g.h) = g.(s′, v′) = (Is′, Rv′) = (s′, Rv′) = g.f(h), (7)

where g.o in this work means, a group element g of SO(3) acting on the object o. As shown in
(7), invariance can be regarded as special case of equivariance, where equivariance for a scalar
representation means that the trivial representation, i.e. the identity, acts on the scalar embedding,
while vectors are transformed with R, i.e., a change of basis is performed, where the new basis is
determined by the columns in R.

We prove the rotation equivariance in Eq. (6) which consists of the sum of three vector components,
and displayed here again

m
(l+1)
i,v =

1

|N (i)|
∑

j∈N (i)

(v
(l+1)
ji,0 + v

(l+1)
ji,1 + v

(l+1)
ji,2 ).

As the sum is a linear function, we require to show that each summand (vji,0, vji,1, vji,2) is equivari-
ant. For brevity, we omit all top indices. The first term is computed as tensor product of an l = 1
representation and l = 0 representation through

vji,0 = pji,n ⊗ bji,0 = pji,nb
⊤
ji,0 ∈ R3×Fv ,

where bji,0 ∈ RFv is an SO(3)-invariant representation, i.e. a scalar representation with Fv channels,
and pji,n ∈ S2 ⊂ R3 a normalized relative vector, which lies on the 2-dimensional sphere.
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If the point cloud is rotated, as defined in Eq. (7), (relative) position as well as vector features change
to

p
R−→ Rp ,

v
R−→ Rv ,

while the cross product between two vector features v0, v1 is invariant to rotation, resulting to the
property

(Rv0 ×Rv1) = R(v0 × v1) .

In case a rotation is acting on the system, from Eq. (7) we know how vector and scalar quantities
transform, resulting into:

R.vji,0 −→ Rpji,n ⊗ bji,0 = R(pji,n ⊗ bji,0) = Rvji,0.

due to the linearity of the tensor product which proves SO(3) equivariance for the first term.
For the second term, we calculate

vji,1 = bji,1 ⊙ (vi × vj),

where bji,1 ∈ RFv is an SO(3)-invariant representation and the output of the cross product is a vector
representation ∈ R3×Fv . To be precise, the elementwise multiplication from the left with the bji,1
has to be rewritten, to match the shape, i.e. unsqueeze a new dimension to scale each of the Fv vector
by the scalar value, resulting into:

vji,1 = (1⊗ bji,1)⊙ (vi × vj),

where 1 is the one-vector in 3 dimensions. For a rotation acting on the system, we conclude that

R.vji,1 −→ (1⊗ bji,1)⊙ (Rvi ×Rvj)

= (1⊗ bji,1)⊙R(vi × vj) = R(1⊗ bji,1)⊙ (vi × vj)

= Rvji,1,

which proves SO(3) equivariance for the second term.
The third term is obtained through

vji,2 = (1⊗ bji,2)⊙ (vjWn),

where bji,2 ∈ RFv is a scalar representation with Fv channels and Wn a linear transformation of
shape (Fv × Fv). Due to linearity, we can see that

RvjWn = (Rvj)Wn = R(vjWn)

is SO(3) equivariant. As we elementwise multiply with a unsqueezed/expanded scalar representation,
we conclude for the last term SO(3) equivariance

R.vji,2 −→ (1⊗ bji,1)⊙ (Rvj)Wn

= (1⊗ bji,1)⊙R(vjWn) = R(1⊗ bji,1)⊙ (vjWn)

= Rvji,2.

Since all three components in the sum are SO(3) equivariant, we conclude that the final sum is also
SO(3) equivariant.

As the reader might have noticed, we build equivariant features based on linear functions and
weighting l = 1 representations through l = 0 representations. This typical scaling is achieved
through the tensor product ⊗. Our architecure however, also performs a multiplication between two
l = 1 representations, through the cross product, which has the pleasant SO(3) invariance property
that we can exploit to prove SO(3) equivariance, when scaling the output with an l = 0 representation.
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Figure 2: An example structure of the synthetic dataset. Three random points in the structure
determine the vertices of a triangle, which is colored in red.

A Note on Translation Equivariance Our proposed model is translation invariant, as all vector
features are initially created by means of a tensor product of (normalized) relative position pji,n.
To see that, for any translation vector t ∈ R3 for relative positions, we can see that the calculation of
such vectors2 pji = pj − pi, are inherently translation invariant due to

t.pji −→ (pj + t)− (pi + t) = pj − pi + t− t = pj − pi = pji.

Since we do not model absolute Cartesian coordinates, e.g., by updating the spatial coordinates
through our layers, our model is not SE(3)-equivariant, i.e. next to rotation equivariance, also
translation equivariant. We note that translation equivariance, however can be achieved through a
simple operation such as the addition of an SE(3) representation with an SO(3) representation, e.g.

pi = pi + pji,n ⊗ s,

where s ∈ R and reminiscent in the E(n)-GNN architecture [27], albeit the authors are not using the
notation of the tensor product.

B Synthetic Dataset

We adopt the synthetic dataset from GVP [17] with slight modifications to make it a more challenging
task. We create 50,000 ‘structures’ where each ‘structure’ consists of n = 100 random points in
R3, distributed uniformly in the ball of radius r = 10 with the constraint that no two points are less
than distance d = 2 apart. Three points are randomly chosen and are labelled as ‘special’ which will
define the vertices of a triangle. The learning task is a multitask regression of 3 targets, where the
first target is to predict the distance between the center of mass (COM) of the entire structure and the
COM of the triangles spanned by the three special points. The second and third task is the prediction
of the perimeter and surface area of the triangle. The choice of the 3 targets refers to a structural

2We omit the normalization to unit vectors for brevity.

11



learning task, where the model requires to learn about the global shape of the structure, while the
second and third targets are relational. An example structure is depicted in Figure 2. The evaluation
metric is the MSE of the three tasks. We split the dataset into 80% training, 10% validation and 10%
test sets.

Table 3: Evaluation of our proposed EQGAT architecture on Triangle benchmark.
Model Triangle [MSE ↓] No. Params [103]

SchNet 37.545 (1.838) 16.8
PaiNN 10.259 (0.949) 27.1

SEGNN 3.875 (0.879) 60.9
GVP 10.115 (1.210) 61.6

EQGAT-Full 6.003 (0.432) 27.4

EQGAT-No-Cross-Product 6.835 (1.066) 27.4

EQGAT-No-Feature-Attention 6.808 (0.326) 27.4

For the synthetic task of multitask regression we notice that the SEGNN architecture equipped with
higher-order equivariant features up to rotation order 2, obtains the best performance, followed by
our proposed EQGAT model that only incorporates rank 1 (vector) features. For the synthetic dataset,
we did not perform any hyperparameter tuning and set the number of layers to 3 with Fs = 32 scalar
and Fv = 8 vector channels and train for 50 epochs. The number of trainable parameters for SchNet,
PaiNN, SEGNN and EQGAT on the synthetic Triangle dataset are listed in the last column of Table 3.

C Ablation Studies

To evaluate the benefits of our designed EQGAT architecture, we perform ablation studies and remove
architectural components to isolate the effect of each design choice on performance.

Table 4: Results of the ablation studies.
LBA [RMSE ↓] PSR [Mean | Global RS ↑]

No-Cross-Product 1.458 (0.011) 0.477 (0.012) | 0.827 (0.010)
No-Feature-Attention 1.466 (0.040) 0.492 (0.007) | 0.820 (0.002)

Full Model 1.440 (0.027) 0.491 (0.008) | 0.847 (0.006)

Ablation study 1 (termed No-Cross-Product) removes the contribution of vector cross product
(denoted as vji,2 in Eq. (6)). This leads to the effect that the vector message is solely constructed
based on scaled versions of normalized relative positions (vji,0) and linear combinations of existing
vector features (vji,1).

Ablation study 2 (termed No-Feature-Attention) replaces the feature attention coefficient αji ∈
(0, 1)Fs through a single coefficient αji ∈ (0, 1).

We observe that the full EQGAT architecture obtains the best performance among the two datasets
compared to the ablated models although we note that the improved performance of the full model in
RMSE on the LBA benchmark and Global RS in the PSR benchmark is difficult to attribute to the
inclusion of architectural components due to the (larger) variance obtained through the 3 runs for
each experiment.
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