
RL Boltzmann Generators for Conformer Generation
in Data-Sparse Environments

Yash Patel
Department of Statistics
University of Michigan
Ann Arbor, MI 48104
yppatel@umich.edu

Ambuj Tewari
Department of Statistics
University of Michigan
Ann Arbor, MI 48104
tewaria@umich.edu

Abstract

The generation of conformers has been a long-standing interest to structural
chemists and biologists alike. A subset of proteins known as intrinsically dis-
ordered proteins (IDPs) fail to exhibit a fixed structure and, therefore, must also
be studied in this light of conformer generation. Unlike in the small molecule
setting, ground truth data are sparse in the IDP setting, undermining many existing
conformer generation methods that rely on such data for training. Boltzmann
generators, trained solely on the energy function, serve as an alternative but dis-
play a mode collapse that similarly preclude their direct application to IDPs. We
investigate the potential of training an RL Boltzmann generator against a closely
related “Gibbs score,” and demonstrate that conformer coverage does not track
well with such training. This suggests that the inadequacy of solely training against
the energy is independent of the modeling modality.

1 Introduction

Protein structure prediction has been a long-standing interest for physical chemists and structural
biologists alike, with implications for drug discovery and environmental biopolymers. With recent
advancements from AlphaFold2, previously insurmountable challenges have emerged into the realm of
possibility [1, 2, 3], highlighted by the introduction of new categories in the latest CASP competition,
regarded as the world-stage competition in structural biology [4]. One such category is the modeling
of “protein conformational ensembles.” AlphaFold2 has achieved unparalleled accuracy for proteins
that take on fixed structures; however, many proteins of the human proteome take on multiple shapes,
or “conformations.” Such “intrinsically disordered proteins” (IDPs) are not captured by current
state-of-the-art protein folding solutions [5, 6, 7].

Recent work has investigated the use of machine learning for such conformer generation, albeit for
relatively small molecules, largely inspired by techniques from generative modeling. Towards that end,
works in molecular conformation generation have explored the use of variational autoencoders [8, 9],
normalizing flows [10], and diffusion models [11, 12, 13]. Other works have explored more intricate,
physically-inspired modeling [14]. Despite performing well on small molecules, specifically on the
GEOM dataset [15], these models all suffer from the drawback that they require substantial training
data, which ultimately come from MD simulations or experiments. That is, to train their respective
models, these approaches all required feeding in draws from the “true” conformer ensembles for a
subset of the dataset. This, however, makes such approaches fundamentally unfit for the IDP setting,
where MD simulations are completely intractable and traditional experimental methods, such as X-ray
crystallography, NMR, and SAXS, fail [16]. Cryo-EM has recently emerged as a potentially viable
option, with recent work investigating techniques inspired by neural radiance fields to reconstruct
proteins from single-particle cryo-EM images [17, 18, 19, 20]. Such reconstruction, however,
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currently fails to handle the large-scale structural dynamism characteristic of IDP conformers.
Therefore, neither computational nor experimental methods exist for generating substantial datasets
of IDP conformers.

A potential work-around that has been explored in parallel is to train directly against the unnormalized
Boltzmann distribution, explored by a subset of generative models known as “Boltzmann generators”
[21, 22, 13]. However, training solely against the energy function has been observed to result in
concentrated sampling on stable conformers, making the isolated use of the energy function sample
inefficient and therefore unable to scale to IDPs [21]. Such an empirical finding, however, has only
been replicated in the context of Boltzmann generators, all of which employ normalizing flows. It is,
therefore, difficult to disentangle whether such mode collapse is a function of the modeling technique
or is more fundamentally linked to the isolated training against the energy.

Another approach to avoid the direct use of the ground truth ensemble is to use reinforcement learning,
as was done for simple molecules in [23]. This approach revolves around training an agent (herein
referred to as an “RL Boltzmann generator”) with a bespoke “Gibbs score” reward function, which
closely parallels training directly against the energy function. This initial work, however, failed to
investigate the interplay between training the RL Boltzmann generator against the Gibbs score and its
final conformer coverage. Our main contribution, therefore, is to demonstrate that RL Boltzmann
generators solely training on the Gibbs score also exhibit symptoms of mode collapse, suggesting
that this issue is more fundamentally linked to the isolated use of the energy function than to the
modeling modality. Code and accompanying documentation for the project is openly available at
https://github.com/yashpatel5400/clean_idp_rl.

2 Statistical Framework

We first summarize how this problem is posited as a reinforcement learning problem, as was originally
formulated in [23]. The ability to learn the true conformer ensemble without training data is feasible
because we know the probability distribution of said ensemble follows the Boltzmann distribution,

p(x) =
1

Z
e−U(x)/kT (1)

where Z is a normalizing constant, k the Boltzmann constant, T the temperature, and U : Rn → R
the energy of the “state” of the system. For the following discussion, we fix a molecule of interest.
States S and actions A are characterized by the dihedral angles of the molecule backbone. That
is, s, a ∈ [0, 2π]N where N is the number of dihedral angles in the molecule. Actions are further
discretized to be multiples of 2π/M with M = 6 to improve training performance.

Dynamics through the environment evolve through sampling of the action space from a policy
at ∼ π(st−1). A temporary state ŝt is produced by directly acting upon state st−1 with the torsion
angles at. This ŝt is then relaxed using a force field F , specifically MMFF [24], to produce the next
state st. This procedure is then repeated T times, ultimately producing a sequence of conformers
s := {s0, s1, s2, ..., sT }. After training the RL Boltzmann generator, we expect this set of conformers
s to adequately cover the conformer landscape. Note that the T horizon will vary from molecule to
molecule depending on the expected number of conformers.

To reward the agent, a “Gibbs Score” is initially formulated as follows, with U(x) computed using
the same classical force field used for relaxation, namely MMFF:

Gibbs(st) =
1

Z0
exp{−(U(st)− U0)/kτ}, (2)

where Z0 and U0 are normalization factors that are empirically estimated at the beginning of simula-
tions. To encourage conformer diversity, however, the reward given is not simply the Gibbs score for
the current state, but rather it after undergoing a pruning operation. If the current conformer is similar
to one that has been previously observed, we do not wish to “double reward” the agent, else this
would directly result in mode collapse. To combat this, we prune similar states before computing the
reward. Denoting the current “history” of configurations the molecule has been in as s := {si}t−1

i=1 ,
the current conformer is pruned if
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∃ k s.t. DTFD(st, sk) ≤ ϵ, (3)

for some pruning threshold ϵ. Here, we use the Torsion Fingerprint Distance (TFD) [25] to compute
the similarity of two conformers, although another distance metric such as RMSD may equivalently
be employed. The final reward, therefore, is

r(st) = Gibbs(st)1[∄ k s.t. DTFD(st, sk) ≤ ϵ]. (4)

3 Training Procedure

To solve this learning RL problem, we employ the techniques described in [23], which we highlight
here. The overall policy π consists of a Graph Neural Network, which learns a set of embeddings
for the molecule, followed by pooling and fully connected layers to map such an embedding to a
probability vector over the action space A. π is then trained iteratively using PPO [26, 27].

In greater detail, the employed GNN is an edge-network MPNN [28], which learns a set of embeddings
through iterative updating using

xt+1
i = Θxt

i +
∑

j∈N (i)

h(xt
j , ei,j), (5)

where {xi}Ni=1 are the embeddings for the N atoms in the molecule, ei,j is the edge information
between atoms (i, j), Θ is a GRU, and h is an MLP. We initialize the atom embeddings as encodings
of their locations and types.

After each iteration t, the output embeddings are aggregated using a set-to-set pooling operation [29],
which gives us an aggregated embedding of the overall molecule yt. The above series of iterative
transformations therefore means we end up with a history of such molecular embeddings {yi}ti=1
at time step t. Since the goal is for this conformer generator to explore the landscape, taking into
account previously visited conformations is critical in assessing future actions. Therefore, these {yi}
are further passed through an LSTM to give a current “aggregated” state gt.

To finally produce the action at, we hold fixed the list of torsion tuples that are defined for the
molecule of interest, namely tuples Ti = (bi1, b

i
2, b

i
3, b

i
4), representing the four atoms involved in the

torsion. For each torsion, we pass the gt and the corresponding embeddings for the atoms through
a final network, namely pti := f(xbi1

, xbi2
, xbi3

, xbi4
, gt). This produces a probability vector over the

action space of a single torsion. Sampling ati ∼ pti gives the action for the single torsion Ti. Repeating
this for each of the torsions gives the complete action at.

To learn the dynamics, [23] found that curricula had to be employed for complicated molecules
[30, 31], since the reward landscape encountered was too sparse. We restrict ourselves to simple
molecules here and, therefore, avoid the need for such curriculum learning, but further work may wish
to investigate the robustness of the mode collapse found here in light of such curriculum learning.

4 Results

We present results of the performance of RL agent on the traditional small-molecule GEOM-Drugs
dataset, following the conventions set forth in [14, 32]. Experiments with GEOM-Drugs were
conducted on a randomly sampled subset of 100 molecules, using the following evaluation metric:

COV-R(Sg, Sr) =
1

|Sg|

∣∣∣{C ∈ Sr | RMSD(C, Ĉ) ≤ δ, Ĉ ∈ Sg}
∣∣∣ (6)

where R represents the “recall” metric and Sr, Sg represent the reference and generated conformer
ensembles. δ is an arbitrary threshold used for designated two conformers as being “equivalent” for
the purposes of assessing discovery. We follow the precedent of [13] and report a graph of metrics
over δ. A similar metric can be defined for P , the precision, simply by exchanging Sg and Sr.
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We compare our results against the current state of the art methods, namely Torsional Diffusion,
GeoMol, and FF-optimized runs of RDKit’s ETKDG [33], but largely wish to focus our discussion
on the mode collapse phenomenon observed in training the RL model. The Torsional Diffusion
and GeoMol models were assessed using the pre-trained models provided in the corresponding
repositories, confirmed to not to have been trained on any of the molecules chosen in the test set used
here. Implementation of the above described GNN models used for RL is in PyTorch-Geometric
[28, 34], with the RL environment interface provided by OpenAI’s gym [35] and implementation of
PPO by stable-baselines [36]. The model was trained using Adam [37] on an NVIDIA Tesla V100
GPU per molecule and completes in roughly two hours for 100,000 time steps.

4.1 GEOM-Drugs

We present the mean observed recalls and precisions of the RL agent on GEOM-Drugs in Figures
1 and 2 respectively. The RL agent performance, for both metrics, is plotted at three stages of the
training: at step 0, step 50,000, and step 100,000, respectively referred to as “untrained,” “midtrained,”,
and “trained.” We, thus, wish to concentrate this discussion on trends visible comparing these stages.

Figure 1: Assessment of the mean coverage recalls over coverage thresholds δ for the untrained,
midtrained, and trained RL agent against other state-of-the-art methods.

Figure 2: Assessment of the mean coverage precisions over coverage thresholds δ for the untrained,
midtrained, and trained RL agent against other state-of-the-art methods.

4



Of particular note is that the recall of the RL agent decreases over the training run in exchange for
its precision increasing, respectively seen in the rightward shift of the recall curves and upward
shifts of the precision curves for progressively more trained RL agents. This implies the RL agent
conformer generation becomes more highly concentrated on a smaller subset of the conformer space,
symptomatic of a mode collapse. Such a finding is particularly noteworthy given that the Gibbs score
was explicitly constructed to encourage conformer diversity through pruning. An immediate question
of interest, therefore, is to investigate the source of misalignment between the posited Gibbs score
and coverage and whether such misalignment can be rectified.

5 Discussion

We have, therefore, seen that conformer generation purely using the known energy function of the
Boltzmann distribution even in the form of the Gibbs score seems insufficient to obtain a diverse set
of conformers. This suggests a number of directions for further investigation beyond those discussed
above. A unifying theme for such direct extensions is circumventing the seeming necessity to have
training data to achieve comprehensive conformer coverage while being unable to directly produce it.
A current line of investigation we are pursuing is motivated by the curriculum learning employed
in the previous RL Boltzmann generator work: given that MD simulations can be tractably run
on small proteins or subsets of large proteins, such data can be used either to train a traditional
Boltzmann generator or as a curriculum in an RL Boltzmann generator. That is, for a protein of
interest, progressively longer subsequences of its amino acid chain could be taken, some of which
could be feasibly analyzed with MD. For such subsequences, the Boltzmann generator could be
trained with both the energy and the generated MD ground truths, with the intention being that
subsequences where no such truth is available would begin from an informed “prior” for energy-based
sampling, resulting in enhanced conformer coverage. Pursuing this with traditional Boltzmann
generators would involve a non-trivial extension to allow for such generators to be shared across
different molecules, since current generators must be trained for each molecule of interest separately.

In this vein, future work should pursue characterizing the sample efficiency of the RL generator
compared to traditional Boltzmann generators, since it will point to which approach is more likely
to scale to the full IDP conformer problem. That is, comparing the improvement in coverage of
RL vs. traditional Boltzmann generators with each additionally provided ground truth conformer
would be of great interest. Further, as briefly mentioned, the IDP problem is actively being pursued
in the Cryo-EM community. With concurrent efforts in the experimental and simulation spaces, a
synergy between the two is highly desirable. Integrating the method found to have the optimal sample
efficiency in an iterative active learning loop with a Cryo-EM data collection pipeline would further
improve the reconstruction quality and efficiency.
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6 Impact Statement

As stated, this work continues in the vein of using machine learning for structural biology and,
more generally, biological understanding, where given the increasing complex nature of modern
scientific inquiry, it seems likely that such coordinated efforts between human ingenuity and machine
learning will play an ever-increasing role in scientific exploration going forward. We expect the
methods proposed here to be directly relevant for a number of biological problems, specifically in
the vein of ultimately being able to study cell dynamics in silico. In the nearer term, this work will
assist in understanding IDP dynamics and ultimately how these relate to their signaling functions in
ligand interactions. Such work on using RL for dynamics will likely also aid in protein interaction
simulations, where interpretable dynamics are of great interest. An orthogonal yet related field in
which such structural dynamics are of interest is material science, in which the same methodology
can be directly applied. No clear ethical concerns are posed by this work.
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
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applicable? [N/A]
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