
Protein Sequence Design in a Latent Space via
Model-based Reinforcement Learning

Minji Lee1, Luiz Felipe Vecchietti2, Hyunkyu Jung1,2,3, Hyunjoo Ro3, Meeyoung Cha2,1,
Ho Min Kim3

School of Computing1
KAIST

Daejeon, South Korea
{haewon_lee,dino8egg}@kaist.ac.kr

Data Science Group2

Institute for Basic Science
Daejeon, South Korea

{lfelipesv,meeyoung.cha}@ibs.re.kr

Protein Communication Group3

Institute for Basic Science
Daejeon, South Korea

{nhj0229,hm_kim}@ibs.re.kr

Abstract

Proteins are complex molecules responsible for different functions in the human
body. Enhancing the functionality of a protein and/or cellular fitness can signifi-
cantly impact various industries. However, their optimization remains challenging,
and sequences generated by data-driven methods often fail in wet lab experiments.
This study investigates the limitations of existing model-based sequence design
methods and presents a novel optimization framework that can efficiently traverse
the latent representation space instead of the protein sequence space. Our frame-
work generates proteins with higher functionality and cellular fitness by modeling
the sequence design task as a Markov decision process and applying model-based
reinforcement learning. We discuss the results in a comprehensive evaluation of
two distinct proteins, GFP and His3.

1 Introduction

Proteins mediate the fundamental processes of cellular fitness and life. Iterated mutations on various
proteins and natural selection during the biological evolution diversify traits, eventually accumulating
beneficial phenotypes. Similarly, in protein engineering and design, the directed evolution of proteins
has proved to be an effective strategy for improving or altering the proteins’ functions or cellular
fitness for industrial, research, and therapeutic applications (Yang et al., 2019; Huang et al., 2016).
However, the protein sequence space of possible combinations of 20 amino acids is too large to search
exhaustively in the laboratory, even with high-throughput screening (Huang et al., 2016). Directed
evolution becomes trapped at local fitness maxima where library diversification is insufficient to cross
fitness valleys and access neighboring fitness peaks. Moreover, functional sequences in this vast space
of sequences are rare and overwhelmed by nonfunctional sequences.

To tackle the limitations, data-driven methods have been applied to protein sequence design. They
used reinforcement learning (RL) (Angermueller et al., 2019), Bayesian optimization (Wu et al.,
2017; Belanger et al., 2019; Terayama et al., 2021; Stanton et al., 2022), and generative models (Jain
et al., 2022; Kumar & Levine, 2020; Hoffman et al., 2022) in a model-based fashion, i.e., using a
protein functionality predictor trained on experimental data to model the local landscape. Despite the

Machine Learning for Structural Biology Workshop, NeurIPS 2022.

advances obtained by these methods, it is still challenging to generate optimized sequences that are
experimentally validated. We suggest that the cause for this is two-fold. The first cause is that the
optimization is usually performed by generating candidate sequences directly through amino acid
substitutions (Belanger et al., 2019) or additions (Angermueller et al., 2019). Given the vast search
space, these methodologies are computationally inefficient and commonly lead to the exploration of
parts of the space with a low chance of having functional proteins. In designing biological sequences,
previous literature explored optimizing a learned latent representation space (Gómez-Bombarelli
et al., 2018; Stanton et al., 2022). Similarly, in this paper we investigate the optimization of sequences
via RL directly in a latent representation space rather than in the protein sequence space.

The second cause is related to the models used as an oracle for optimization. These models are
trained on experimental data obtained for a specific function, covering only a small portion of the
protein space, and their accuracy is consequently restricted to this small region. Later, we will
demonstrate that even the most advanced model-based optimizations can assign high functionality
values for randomly generated protein sequences. These random sequences, however, are unlikely to
be functional. To reduce false positives, we suggest augmenting the experimental data with random
sequences (i.e., negative examples) assigned to a low functionality value. Such augmentation also
helps set boundaries around the experimental data distribution in which the oracle can be trusted.

We model protein sequence design as a Markov Decision Process (MDP) to optimize a latent
representation. Our method trains the optimization policy using a model-based deep reinforcement
learning (RL) framework (Fig. A). At each timestep, the policy updates the latent representation by
small perturbations to maximize protein functionality, i.e., walking uphill through the local landscape
until the end of an episode. Results show that the proposed framework design sequences with higher
protein functionality and cellular fitness than existing methods. Ablation studies show that, based
on the evaluation of various model options for state and action for the RL framework, the proposed
latent representation update can successfully optimize the protein and search the vast design space.
Our method is general and can also be applied to representations learned from protein structures.

2 Methodology

2.1 Protein Representation Learning

Sequence Encoder Let x ∈ X be a (protein) sequence of length L, where L denotes the number
of amino acids in the sequence and X is the sequence space. Each element xi of the sequence is a
discrete number representing one of 20 amino acids, and i is the i-th element from x. Given x, the
encoder network e produces a representation y of dimensions (R,). The sequence encoder is divided
into two parts: (i) a pre-trained protein language model encoder is used to obtain latent embeddings,
(ii) a dimensionality reduction step is used to obtain the final representation.

In the first part, a pre-trained protein language model is leveraged (see Fig. 3(a)). We employ the
ESM-2 model (Lin et al., 2022) trained on the Uniref50 dataset (Suzek et al., 2015). This model uses
a BERT (Devlin et al., 2018) encoder and is trained with 150 million parameters in an unsupervised
fashion (see Appendix A.1). ESM-2 is utilized to map mutation effects onto a latent space in our
model. Given the sequence x as an input, ESM-2 outputs a matrix q ∈ Q of dimensions (L+ 2, E),
where E is the dimension size of the embeddings, and Q is the embedding space. In ESM-2, a
CLS (classification) token is prepended to the sequence, and an EOS (end-of-sequence) token is
appended to the sequence when generating the embeddings. They serve as sequence-beginning and
sequence-ending characters, respectively.

In the second part, the output of the encoder with dimensions (L+2, E) is preprocessed before being
passed to the policy. We use only the CLS token embedding to reduce the dimension from (L+2, E)
to (E,). However, this could still be large for the action space given the embedding dimension E of
even the smallest ESM-2 model is 480. We hence use 1-dimensional adaptive average pooling to
further reduce the dimension to (R,) and obtain the final representation.

Sequence decoder Given a reduced representation y of size (R,), we recover the amino acid
sequence x using the sequence decoder d. The representation size is expanded to (E,) using a linear
layer. To recover the original (L + 2, E) dimensions of the embeddings obtained by ESM-2, the
dimensions of the reduced representation are first expanded. Then, this matrix is concatenated with
the wild-type embeddings obtained using ESM-2 of the pre-trained encoder of size (L + 2, 2E)

2

followed by a linear layer. After passing to a dropout layer, the recovered representation is passed
to the decoder’s language model head, which maps the representation back to the sequence space,
i.e., predicting each amino acid in the sequence from their associated embeddings. The output is the
recovered sequence x.

2.2 Protein Functionality Prediction

The functionality predictor network depicted in Fig. 3(b) is trained as a downstream task of the
pre-trained ESM-2 encoder network. Given an input sequence x, the encoder network produces a
representation q ∈ Q of dimensions (L + 2, E). We flatten the representation to a vector of size
((L+2)×E,) that is passed to an architecture with two linear layers followed by GeLU (Hendrycks
& Gimpel, 2016) non-linear activation. The final linear layer predicts a value k ∈ R, where k is the
functionality metric to be maximized and R is the set of real numbers representing possible values
for this metric. Functionality decoder f(x) is assumed to be trained independently for each task. To
train the functionality predictor, negative examples are included when sampling the training batch to
prevent the model from assigning high values to sequences outside the experimental data distribution.

2.3 Protein Sequence Design via Model-based Reinforcement Learning

Consider a policy π that interacts with a fully observable environment during each episode. An
episode is defined by the number of timesteps in which the policy takes actions to optimize the target
sequence in the latent space. We sample an initial state s0 ∈ Q from the representation space (state
space) at the beginning of each episode. At each timestep t, the agent observes a state st ∈ Q and
selects an action at ∈ A according to a stochastic policy π : Q → A, where A is the action space.
The action at is defined as a perturbation in which a continuous value atj ∈ [−ϵ, ϵ] is chosen for the
j-th dimension, and ϵ is a hyperparameter that can be tuned based on the representation distribution of
the experimental data. The hyperparameter ϵ controls how conservative the policy is when traversing
the functionality or fitness landscape. Both st and at have R dimensions.

We model the environment using a Markov Decision Process (MDP) and assume that the next
state st+1 is conditioned only on the current state st and action at. This function calculates the
element-wise sum of st and at so that st+1 = st + at. As a result of performing the action at, the
agent receives the reward rt. The reward is a function rt = r(st, at), where r is the reward function
r : Q → R, and R is the set of real numbers representing reward values. This data is later used to
train the policy using an off-policy reinforcement learning algorithm. The agent interacts with the
environment until reaching a terminal state, which is one of the followings: (i) when the last timestep
T is reached; (ii) when f(d(st)) for the current state is greater than a hyperparameter threshold; and
(iii) when st is in a part of the representation space Q where f(d(st)) cannot be trusted. Condition
(iii) states how far st is from the experimental data. Each timestep’s data is stored in a replay buffer
as a 5-tuple (st, at, st+1, rt,mt) where mt identifies the terminal state.

Off-Policy Reinforcement Learning We further optimize the policy using Soft Actor Critic
(SAC) (Haarnoja et al., 2018), an off-policy entropy-regularized reinforcement learning (RL) algo-
rithm for continuous action spaces.

3 Results

3.1 Experiment Setup

Datasets We chose proteins of different lengths and functions for robustness in evaluation: the
green fluorescent protein (GFP) and imidazoleglycerol-phosphate dehydratase (His3). The dataset
proposed in (Sarkisyan et al., 2016) is used to train the GFP encoder-decoder and its functionality
predictor. The dataset contains 54,025 mutant sequences, with log-fluorescence intensity associated.
The length L of protein sequences is 237. For the His3 protein, we used the dataset in (Pokusaeva
et al., 2019) that consists of mutant sequences of its evolutionarily-relevant segments and is associated
with its growth rate. We processed the data to 50,000 sequences with the length of L = 30.

Oracles We train two separate oracles for each dataset to prevent the circular use of the functionality
predictor: one is exclusively used for optimization (which we call optimization oracle), and another

3

is used to calculate the performance metric in experiments (which we call evaluation oracle). We
follow the guideline presented in Kolli et al. (2022) that proposes the use of multiple oracles with
different numbers of layers, activation functions, and hyperparameters to improve the reliability of
the optimization process. We describe the experiment details and the comparison of evaluation and
optimization oracles’ performance in Appendices A.2 and A.9.

Evaluation Metrics We use three evaluation metrics as reported in Jain et al. (2022): performance,
novelty, and diversity. We also consider two additional metrics for robustness: the originality of
optimized sequences, named as original, i.e. sequences not contained in the training dataset, and
the distance between the optimized sequence and wild-type, named as dist(WT). See Appendix A.4
for the details in evaluation metrics. When testing the protein functionality of GFP, we include the
presence of the chromophore residues in the optimized sequence, as these residues emit fluorescence.
We generate 100 sequences for each method, and the 10 highest-performing sequences are evaluated.

3.2 Experiment

Table 1: Results obtained for GFP sequence design. Random-1 and Random-5 indicates random
mutations in 1 and 5 positions, respectively. Random-P indicates a random perturbation in the latent
representation. Standard deviation for Novelty and dist(WT) are shown in Table 8.

Model Performance Novelty Original dist(WT) Diversity Chromophore

Ours 3.491 ± 0.352 8.451 100% 7.700 6.311 100%
Directed evolution 3.287 ± 0.237 7.704 - 6.849 4.858 100%
CbAS 3.155 ± 0.153 7.712 80% 6.900 1.956 100%
Random-1 2.824 ± 0.100 6.611 80% 7.186 7.716 100%
Random-5 2.280 ± 0.275 13.91 100% 9.950 12.37 90%
Random-P 1.511 ± 0.797 14.71 100% 14.15 14.62 100%
BO 0.581 ± 0.095 36.96 100% 36.70 6.867 100%
DynaPPO 0.004 ± 0.003 218.9 100% 219.3 224.1 0%
GFlowNet 0.000 ± 0.002 199.4 100% 200.1 12.53 0%

GFP Sequence Design The results obtained for GFP sequence design are described in Table 1.
We compare with four optimization methods: CbAS (adaptive sampling) (Brookes et al., 2019), BO
(bayesian optimization) (Swersky et al., 2020), GFlowNet (generative model) (Jain et al., 2022), and
DynaPPO (reinforcement learning) (Angermueller et al., 2019). The term directed evolution refers to
the average functionality values of initial states used in the optimization process. We also include
random mutations of initial states. It is seen in Table 1 that the proposed method outperforms directed
evolution. Only the proposed method and CbAS optimize GFP effectively, whereas BO, GFlowNet,
and DynaPPO achieve low performance. It was interesting to observe that two of the GFP sequences
optimized by the proposed method achieved higher predicted functionality values, 3.9705 and 3.8059,
when compared to the experimental wild-type functionality value, 3.72.

Table 2: Results obtained for His3 sequence design. Standard deviation for Novelty and dist(WT) are
shown in Table 9.

Model Performance Novelty Original dist(WT) Diversity

Ours 0.945 ± 0.091 8.361 60% 10.95 3.521
CbAS 0.749 ± 0.157 7.287 90% 4.700 2.356
Random-1 0.858 ± 0.058 7.372 80% 7.350 7.716
Random-5 0.678 ± 0.096 9.777 100% 8.950 12.37
Directed evolution 0.616 ± 0.110 6.889 - 6.710 6.942
DynaPPO -0.201 ± 0.142 27.41 100% 26.70 27.47
BO -0.313 ± 0.065 26.17 100% 27.50 4.756

His3 Sequence Design Table 2 displays the results for His3, where our framework achieves the
best performance. DynaPPO and BO were unable to optimize His3 effectively. The proposed method
achieves higher novelty and diversity when compared to CbAS.

3.3 Ablation studies

State and Action Modeling Table 3 shows how state and action modeling influence sequence
design in GFP. We examine two types: one-hot encoding of amino acid sequence and a latent vector

4

3.5

3.0

2.5

2.0

1.5

Fitness

Fitness

1.2

0.9

0.6

0.3

0.0Optimization leads to higher fitness
Optimization leads to lower fitness

Optimization path

Fluorescence

(a)

(c) (d)

Fluorescence

(b)

Optimized state
Initial state

Figure 1: (a) and (b) Optimization done by the trained policy during a single episode for the GFP.
The z-axis represents the intensity of log fluorescence. (c) Fitness landscape for the His3 dataset. (d)
Optimization performed by the trained policy for the His3 task. See Appendix A.11 for details.

which is an output of the encoder. We investigate three types of action: (i) multi discrete sequence
generation, (ii) autoregressive addition of amino acids (Angermueller et al., 2019), and (iii) the
proposed perturbation in the latent vector. Only the latent vector as the state and the perturbation as
the action can optimize GFP and His3 tasks.

Table 3: Comparison on the performance by the state and action modeling. For rows with the action
defined as a mutation in the protein sequence, we train the policy using Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to handle the multiple discrete action space. More details regarding
the state and action modeling for this ablation are presented in Appendix A.5.

State Action GFP His3

Latent vector Perturbation on latent vector 3.491 ± 0.352 0.945 ± 0.091

Directed evolution 3.287 ± 0.237 0.616 ± 0.110

Sequence Generate sequence 0.006 ± 0.004 -0.148 ± 0.043
Latent vector Generate sequence 0.005 ± 0.003 -0.139 ± 0.144
Sequence Amino acid addition 0.004 ± 0.003 -0.201 ± 0.142

Representation Analysis We analyzed the influence of the optimization method on the latent vector
as an input. Our method, which employs RL for taking actions, is compared to random perturbation
and to the Swersky et al. (2020), both of which take a latent vector as input. First, Swersky et al.
(2020) performs better when using the latent vector input than when using the sequence as input.
It implies that the latent vector provides rich information in a low-dimensional space that is easier
to optimize than the sequence space. Even with the same representation, our method outperforms
Swersky et al. (2020) while achieving competitive novelty.

Table 4: Comparison on our method and BO when using latent representation as an input.

Model Performance Novelty Diversity Chromophore

Ours 3.491 ± 0.352 8.451 ± 2.05 6.311 100%
Directed evolution 3.287 ± 0.237 7.704 ± 2.66 4.858 100%
Swersky et al. (2020) on latent space 2.601 ± 0.912 8.077 ± 2.58 6.600 100%
Random perturbation 1.511 ± 0.797 14.71 ± 5.90 14.616 100%

How the trained policy traverses the functionality landscape We analyze our trained policy
traversing the local landscape. Figs. 1 (a) and (b) visualize the optimization trajectory during one
episode of GFP, indicating continued improvement of the fluorescence level. This demonstrates that
the model can successfully climb up the local landscape throughout the episode. The policy can also
traverse local optima thanks to the MDP formulation (See Appendix A.13).

5

References
Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy

Colwell. Model-based reinforcement learning for biological sequence design. In International
conference on learning representations, 2019.

David Belanger, Suhani Vora, Zelda Mariet, Ramya Deshpande, David Dohan, Christof Angermueller,
Kevin Murphy, Olivier Chapelle, and Lucy Colwell. Biological sequences design using batched
bayesian optimization. 2019.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In International conference on machine learning, pp. 773–782. PMLR, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901. doi:
10.1080/14786440109462720.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Samuel C Hoffman, Vijil Chenthamarakshan, Kahini Wadhawan, Pin-Yu Chen, and Payel Das. Opti-
mizing molecules using efficient queries from property evaluations. Nature Machine Intelligence,
4(1):21–31, 2022.

Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537(7620):320–327, 2016.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning, pp.
9786–9801. PMLR, 2022.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Sathvik Kolli, Amy X Lu, Xinyang Geng, Aviral Kumar, and Sergey Levine. Data-driven optimization
for protein design: Workflows, algorithms and metrics. In ICLR2022 Machine Learning for Drug
Discovery, 2022.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. Advances
in Neural Information Processing Systems, 33:5126–5137, 2020.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa,
Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein sequences at
the scale of evolution enable accurate structure prediction. bioRxiv, 2022.

6

Victoria O Pokusaeva, Dinara R Usmanova, Ekaterina V Putintseva, Lorena Espinar, Karen S
Sarkisyan, Alexander S Mishin, Natalya S Bogatyreva, Dmitry N Ivankov, Arseniy V Akopyan,
Sergey Ya Avvakumov, et al. An experimental assay of the interactions of amino acids from
orthologous sequences shaping a complex fitness landscape. PLoS genetics, 15(4):e1008079, 2019.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15):e2016239118, 2021.

Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin,
George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soylemez,
et al. Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic.
Adalead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv preprint
arXiv:2010.02141, 2020.

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside,
and Andrew Gordon Wilson. Accelerating bayesian optimization for biological sequence design
with denoising autoencoders. arXiv preprint arXiv:2203.12742, 2022.

Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, and UniProt
Consortium. Uniref clusters: a comprehensive and scalable alternative for improving sequence
similarity searches. Bioinformatics, 31(6):926–932, 2015.

Kevin Swersky, Yulia Rubanova, David Dohan, and Kevin Murphy. Amortized bayesian optimization
over discrete spaces. In Conference on Uncertainty in Artificial Intelligence, pp. 769–778. PMLR,
2020.

Kei Terayama, Masato Sumita, Ryo Tamura, and Koji Tsuda. Black-box optimization for automated
discovery. Accounts of Chemical Research, 54(6):1334–1346, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian optimization with
gradients. Advances in neural information processing systems, 30, 2017.

Kevin K Yang, Zachary Wu, and Frances H Arnold. Machine-learning-guided directed evolution for
protein engineering. Nature methods, 16(8):687–694, 2019.

7

A Appendix

Encoder De
co

de
r

Se
qu

en
ce

Se
qu

en
ce

Re
pr
es
en

ta
tio
n

• Rich, compressed info
• Low dimension

Baseline (learned mutation)

Se
qu

en
ce

Le
ng

th
 (2

00
~)

State: sequence Action: mutation

Amino acids (20)

Previous approach (learned addition)

Se
qu

en
ce

Le
ng

th
 (2

00
~)

State: sequence Action: addition

Amino acids (20)

Se
qu

en
ce

Add amino acid

Policy

Sequence

Reward

State
(Latent vector)

Action
(Perturbation)

En
co

de
r Decoder

Our approach

State: latent vector Action: perturbation

Functionality
Predictor

Re
pr
es
en

ta
tio
n

Policy

Re
pr
es
en

ta
tio
n

+

(L,) (L,)(R,)

Figure 2: The framework’s overview describes (top left) the encoder-decoder architecture trained to
represent protein sequences in a latent space and (top right) the RL framework. The state is defined
as the representation in the latent space, while the action is the perturbation in this representation.
The perturbed representation is decoded back to a protein sequence using a sequence decoder. The
reward is based on the functionality predicted by the functionality predictor (oracle). Bottom row
shows three RL-based state and action modeling options.

Se
qu

en
ce

Se
qu

en
ce

W
ild

-ty
pe

ESM-2
(BERT)

ESM-2
(BERT)

(a) Sequence encoder-decoder

(L,)

(L,)

(L+2,E)

(E,) (R,)

PoolingCLS

Sequence decoder

Linear

(L+2,E)

Co
nc

at
en

at
e

(L+2,2E)Repeat

(E,)

Linear

(L+2,E)

Dropout

(L+2,E)

LM Head

(L,)

Se
qu

en
ce

ESM-2
(BERT)

(L,) (L+2,E)

Reshape

((L+2) E,)×

Linear

(E,)

GeLU

Linear

(E,)

GeLU

Linear
Functionality

Functionality decoder

(b) Functionality predictor
CLS, EOS

(L+2,E)
CLS, EOS

Latent representation
Amino acid sequence

Figure 3: Model Architecture

A.1 Sequence Encoder-Decoder

Next, we give more information regarding the architecture and the training process of the sequence
encoder-decoder. The model architecture is seen in 3(a). The ESM-2 encoder comprises a token
embedding layer and 30 transformer layers. Each transformer layer consists of multi-head attention

8

followed by a layer normalization layer and two fully connected layers with GeLU (Hendrycks &
Gimpel, 2016) non-linear activation. Language model head comprises of linear layer followed with
GeLU activation and the linear layer using the weight of the embedding layer in the encoder. The
number of attention heads is set to 20. We used the pre-trained weights provided in (Lin et al.,
2022). The ESM-2 encoder weights are not updated during the fine-tuning process. The sequence
encoder-decoder is fine-tuned using a masked language model objective. We define the loss function
as the mean of cross entropy loss on mutated positions and the mean cross-entropy loss on non-
mutated positions to ensure that the decoder also focuses on recovering mutated positions. Since we
provide the wild-type representation during sequence recovery and mutants in the GFP dataset have a
maximum of 15 mutations, such a loss function is important to prevent the decoder from predicting
every sequence as the wild-type. We train the model to the train set of each dataset for 16 epochs
using the Adam optimizer (Kingma & Ba, 2014). The initial learning rate of Adam is set to 8e-5,
with weight decay set to 1e-5. The learning rate is reduced by 0.8× every epoch. Table 5 shows the
performance of a sequence decoder by the chosen embedding size of R.

Table 5: Performance of the sequence decoder for GFP and His3.

Dataset Embedding size Top-1 Accuracy
Mutated positions Non-mutated positions

GFP 8 0.463 0.9958
32 0.4762 0.9903

His3 8 0.6439 0.8407
32 0.8194 0.9022

A.2 Functionality predictor

Functionality and fitness predictors for GFP and His3 are also based on the pre-trained ESM-2 protein
language model. The ESM-2 encoder has same architecture as described in Appendix A.1, and the
decoder is described in Sec. 2. We fine-tuned the predictor on the train set of each dataset for 16
epochs using the Adam (Kingma & Ba, 2014) optimizer with the initial learning rate set to 8e-5
and weight decay set to 1e-5. The ESM-2 encoder weights are not updated during the fine-tuning
process. The negative samples for GFP and His3 are associated with a functionality/fitness value
of 0. The GFP value of 0 denotes an extremely low fluorescence level (10(0−3.72) = 0.0002 times
the brightness of the wild type protein). The His3 value of 0 denotes the minimum fitness value in
the dataset, ranging from [0, 1.63]. We used the mean squared error between empirically obtained
log-fluorescence intensity and predicted fluorescence as the loss function for GFP and the empirically
obtained fitness and predicted fitness as the loss function for His3.

A.2.1 Optimization oracle

In Table 6 we report the test Spearman’s ρ and mean squared error (MSE) of the optimization oracle
used for model-based optimization.

Table 6: Performance of the optimization oracle for GFP and His3

Task Test set Negative test set

Spearman’s ρ MSE MSE

GFP 0.8426 0.1436 2.930e-6
His3 0.6635 0.0080 0.0164

A.2.2 Evaluation oracle

In Table 7 we report the test Spearman’s ρ and mean squared error (MSE) of the evaluation oracle
used for model-based optimization. Compared to the optimization oracle, the evaluation oracle utilize
a different pre-trained ESM-2 model which also contains a different number of parameters. The
evaluation oracle and optimization oracle are trained with similar methodology.

9

40

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Average: 0.000

Fluorescence

Da
ta

 p
oi

nt
s

(%
)

Average: 4.002

 Fluorescence of GFP proteins
Predicted fluorescence on random sequences
 Predictor trained with negative examples
 Predictor trained without negative examples

Figure 4: The predicted fluorescence of random sequences tested using a functionality predictor
trained with or without negative examples.

Table 7: Performance of the evaluation oracle for GFP and His3

Task Test set Negative test set

Spearman’s ρ MSE MSE

GFP 0.8320 0.4359 6.247e-05
His3 0.6820 0.0110 0.0288

A.3 Training Functionality Predictor with Negative Examples

We trained the GFP functionality predictor with the original training dataset and the training dataset
augmented with 40,000 negative examples (i.e., 82% of the size of the original training dataset). The
model architecture and training are detailed in Appendix A.2. We tested both predictors with 10,000
negative examples that were not seen during training. Fig. 4 shows that the functionality predictor
trained without negative examples incorrectly predicts a high value for non-functional sequences
(mean=4.002), whereas the one trained with negative examples accurately assigns zero functionality
(mean=0.0) to random non-functional sequences.

A.3.1 Training CbAS and DynaPPO with and without negative samples

We conducted an ablation study by training two baseline optimization methods, CbAS and DynaPPO,
using both functionality predictors. The optimized sequences are then visualized using predicted
structures obtained by AlphaFold2. As shown in Fig. 5, CbAS managed to propose a valid fluorescent
protein when guided by an oracle trained with negative examples but failed when guided by an oracle
trained without negative examples. Even though the structure predicted for the CbAS model for
this case seems unstable, the oracle trained without negative examples assigned a very high log-
fluorescence intensity value (4.014) for the sequence. Therefore, we argue that biological sequence
design should be guided and evaluated by an oracle trained with an experimental dataset augmented
with negative examples.

A.4 Evaluation metrics

This section provides the details in evaluation metrics. The performance evaluation metric is calculated
as the mean predicted functionality from the top K generated sequences. The predicted functionality
is obtained by using the evaluation oracle. Let the generated sequences be contained in the following

set G∗ = {g∗1 , · · · , g∗K}, performance is defined as
1

K

∑
i f(g

∗
i). The novelty evaluation metric is

defined to assess if the policy is generating sequences similar to the ones contained in the experimental
data. Defining P as the experimental data set containing the wild-type protein sequence, novelty is

10

CbAS optimized GFP

Guided by oracle trained

without negative examples

Guided by oracle trained

with negative examples

DynaPPO optimized GFP

Guided by oracle trained

without negative examples

Guided by oracle trained

with negative examples

Figure 5: The structure of optimized sequences without and with negative examples.

given as follows:
1

K · |P|
∑

g∗
i ∈G∗

∑
pj∈P

dist(g∗i , pj), (1)

where dist is defined as the number of different amino acids of two sequences. The diversity
evaluation metric is defined as the mean of the number of amino acids that are different among the
optimized sequences and is defined as:

1

K(K − 1)

∑
g∗
i ∈G∗

∑
g∗
j∈G∗−{g∗

i }

dist(g∗i , g
∗
j). (2)

The original metric is defined as
1

K

∑
i 1([g

∗
i /∈ P]) and the distance from wild-type (WT) metric is

given as
1

K

∑
g∗
i ∈G∗ dist(w, g∗i), where w is the wild-type sequence.

A.5 Soft Actor Critic (SAC)

Off-policy is a type of RL learning that learns to optimize independently of the agent’s actions. SAC
is trained to maximize future rewards and entropy to promote randomness in action space exploration.
An optimal policy π∗ following this objective is given as

π∗ = argmax
π

Eπ

[∞∑
t=0

γt(r(st, at) + αH(π(·|st)))

]
, (3)

where γ ∈ [0, 1] is a discount factor, α is a temperature hyperparameter and H is entropy.

Following a policy π the Q function or action-value function is defined as

Qπ(s, a) = Eπ

[∞∑
t=0

γtr(st, at) + α

∞∑
t=1

γtH(π(·|st))

]
, (4)

where the entropy is added from the first timestep. The Bellman equation for Qπ at a timestep t is
given by

Qπ(st, at) = Eπ [r(st, at) + γ(Qπ(st+1, ãt+1) + αH(π(·|st+1))] , (5)

in which he state st+1 is used from the replay buffer and ãt+1 is sampled from the current policy.
During training, SAC models three networks: a policy πθ and two Q-functions Qϕ1 and Qϕ2. The
two Q functions are due to the clipped double-Q trick, more details can be found in Haarnoja et al.
(2018). The loss functions to train Qϕ1 and Qϕ2 in SAC are defined as

L(ϕi,D) = E(st,at,rt,st+1,dt)∼D

[
(Qϕi

(st, at)− y(rt, st+1, dt))
2
]
, (6)

where the target y(rt, st+1, dt), substituting the entropy function, is given by

y(rt, st+1, dt) = rt + γ(1− dt)

(
min
j=1,2

Qϕtarg,j (st+1, ãt+1)− α log πθ(ãt+1|st+1)

)
, (7)

11

where ãt+1 ∼ πθ(·|st+1). The policy πθ is trained to maximize the value function of state st. The
value function V π is as follows

V π(st) = Eat∼π [Q
π(st, at)− α log π(at|st)] . (8)

The policy is reparameterized and then optimized following Haarnoja et al. (2018). Using a squashing
Gaussian function, sampling the action is finally defined as

ãtθ (st, ξ) = tanh(µθ(st) + σθ(st)⊙ ξ), ξ ∼ N (0, I). (9)

A.6 Implementation details

Policy The magnitude of the perturbation ϵ applied to each element of the action vector is set to 0.1.
The episode length T is set to 20 for GFP and 10 for His3.

Soft Actor-Critic (SAC) We used three fully connected layers with a hidden size set to 256 for both
the actor and critic networks of SAC. The Adam optimizer Kingma & Ba (2014) is used for both
actor and critic networks. The entropy temperature α is automatically tuned during training following
Haarnoja et al. (2018).

Proximal Policy Optimization (PPO) For the ablation studies in Table 3 using the mutation in the
protein sequence as output, we use Proximal Policy Optimization (PPO) Schulman et al. (2017) to
handle the discrete action space setting. The PPO architecture is similar to the one used for the actor
of SAC, using three fully connected layers with a hidden size set to 256. We define the action as a
multiple of discrete actions for the third and fifth row in Table 3.

Random Perturbation Baseline We added a random value between [−1, 1] to the initial state
representation to test the effect of random perturbations on performance. Then, we decoded the
sequence using the decoder and predicted the functionality using the functionality predictor presented
in. Note that the baseline and random performance reported in the Tables 1 and 2 are also calculated
on the top K candidates.

Previous methods For the comparison with previous baseline methods, we use the FLEXS im-
plementation (Sinai et al., 2020) of DynaPPO, CbAS, and BO. All the models are trained for ten
rounds. During training, we observed the performance saturation after the first few rounds. The
sequences proposed in the last round are used to evaluate the baseline models. For DynaPPO, its
ensemble model is trained for ten rounds, and the environment batch size is set to 10. For CbAS, a
CNN architecture with a hidden size equal to 100 and a number of channels equal to 32 is used. Also,
the generator block of CbAS is trained for ten epochs.

A.7 Initial States of the optimization Process

We selected initial states for the optimization process in our framework according to two criteria: (i)
sequences with room to improve, (ii) sequences sampled from regions that we can trust the oracle.
Since the distribution for the ground truth functionality of GFP is bimodal, we sampled two sets of
initial states from each mode, low initial states, and high initial states. For His3, only one set of initial
states is chosen. As shown in Fig. 6, we sample the sequences from pre-determined regions that do
not include the most functional mutants. Additionally, the sequences are sampled from examples in
which the difference between their ground truth and predicted functionality or fitness is less than a
threshold set to 0.1.

A.8 Evaluation on GFP and His3 design

In this section, along with the results presented in Tables 1 and 2 we report results on GFP and His3
on Novelty and dist(WT) with standard deviation.

A.9 Comparison of evaluation and optimization oracle

In Tables 10 and 11, we compare results on GFP and His3 design using evaluation oracle and
optimization oracle. It is shown that, for all methods, a decrease in performance using the evaluation
oracle is observed. This decline was particularly pronounced for BO (Swersky et al., 2020). It is also
observed that the standard deviation of the results increases when using the evaluation oracle.

12

Table 8: Results obtained for GFP sequence design. Random-1 and Random-5 indicates random
mutations in 1 and 5 positions, respectively. Random-P indicates a random perturbation in the latent
representation.

Model Novelty dist(WT)

Ours 8.451 ± 2.05 7.700 ± 0.78
Directed evolution 7.704 ± 2.66 6.849 ± 1.90
CbAS 7.712 ± 2.05 6.900 ± 0.83
Random-1 6.611 ± 1.02 7.186 ± 2.03
Random-5 13.91 ± 1.22 9.950 ± 0.87
Random-P 14.71 ± 5.90 14.15 ± 5.76
BO 36.96 ± 5.51 36.70 ± 5.31
DynaPPO 218.9 ± 2.63 219.3 ± 2.37
GFlowNet 199.4 ± 2.00 200.1 ± 1.87

Table 9: Results obtained for His3 sequence design. Random-1 and Random-5 indicates random
mutations in 1 and 5 positions, respectively.

Model Novelty dist(WT)

Ours 8.361 ± 2.01 10.95 ± 1.32
CbAS 7.287 ± 1.57 4.700 ± 0.64
Random-1 7.372 ± 1.56 7.350 ± 1.39
Random-5 9.777 ± 1.63 8.950 ± 1.36
Directed evolution 6.889 ± 1.57 6.710 ± 1.57
DynaPPO 27.41 ± 1.12 26.70 ± 1.19
BO 26.17 ± 1.03 27.50 ± 0.50

Table 10: Comparison of the results obtained for GFP sequence design using evaluation and opti-
mization oracle.

Model Evaluation oracle Optimization oracle

Ours 3.491 ± 0.352 3.531 ± 0.06
Directed evolution 3.287 ± 0.237 3.370 ± 0.013
CbAS (Brookes et al., 2019) 3.155 ± 0.153 3.328 ± 0.044
Random mutation (N=1) 2.824 ± 0.100 3.410 ± 0.094
Random mutations (N=5) 2.280 ± 0.275 2.354 ± 0.522
Random perturbation 1.511 ± 0.797 1.973 ± 0.832
BO (Swersky et al., 2020) 0.581 ± 0.095 1.231 ± 0.034
DynaPPO (Angermueller et al., 2019) 0.004 ± 0.003 0.014 ± 0.001
GFlowNet (Jain et al., 2022) 0.000 ± 0.002 0.017 ± 0.000

Table 11: Comparison of the results obtained for His3 sequence design using evaluation and opti-
mization oracle.

Model Evaluation oracle Optimization oracle

Ours 0.945 ± 0.091 0.961 ± 0.050
CbAS (Brookes et al., 2019) 0.749 ± 0.157 0.889 ± 0.092
Random mutation (N=1) 0.858 ± 0.058 0.856 ± 0.070
Directed evolution 0.616 ± 0.110 0.756 ± 0.013
Random mutations (N=5) 0.678 ± 0.096 0.518 ± 0.184
DynaPPO (Angermueller et al., 2019) -0.201 ± 0.142 -0.067 ± 0.053
BO (Swersky et al., 2020) -0.313 ± 0.065 -0.089 ± 0.029

13

Pr
ed

ict
ed

 fl
uo

re
sc

en
ce

Pr
ed

ict
ed

 fi
tn

es
s

Ground-truth fluorescence Ground-truth fitness

Low initial states

High initial states

Initial states

Figure 6: Ground truth and predicted fluorescence of GFP and fitness of His3.

A.10 Ablation Study on Initial State and Reward Modeling

Table 12 reports the effect of the initial state and reward. We set three experimental rewards:
(1) a dense reward, defined as rt = f(st), (2) an absolute reward, defined as a binary value of
rt = 1, if f(st) > rth and 0 if otherwise (values for rth are listed in Table 12), and (3) a binary
reward, defined as a binary value of rt = 1, if f(st) > f(st−1) and 0 if otherwise.

Starting from a state of low or high functionality, our framework optimizes performance relative to
the baseline. The best performance is obtained when starting from a state of high functionality and
training with an absolute reward. Our framework can generate novel sequences even when beginning
with a high functionality value. Nonetheless, beginning from a state with low functionality, the
trained policy does not produce designs with high functionality. This could mean that there may be a
gap between regions with low functionality and regions with high functionality in the representation
space that requires additional time steps to be explored in each episode.

Table 12: Ablation studies investigating the sampling of initial states and the reward modeling for the
GFP dataset. The policy trained with absolute reward and starting from high initial states is used for
comparisons in Tables 1 and 3.

Initial state Reward Performance Novelty Diversity

Low

Dense 1.856 ± 0.631 70% 8.032
Absolute (rth = 1.8) 1.855 ± 0.601 50% 5.653
Binary 1.546 ± 0.271 100% 6.347

Baseline 1.492 ± 0.008 - 5.426

High

Dense 3.448 ± 0.094 100% 5.700
Absolute (rth = 3.3) 3.531 ± 0.06 100% 6.311
Binary 3.452 ± 0.081 95% 5.279

Baseline 3.370 ± 0.013 - 4.858

A.11 Methodology to obtain the complete functionality landscape

Table 13: Details of the complete functionality landscape.

Figure Task Number of Dimension
reductionRepresentations Sequences

Fig. 1 (a) GFP 1.55M 1403 t-SNE
Fig. 1 (b) GFP 1.17M 46 t-SNE

Fig. 1 (c)(d) His3 6.43K 6434 t-SNE
Fig. 8 GFP 1.17M 46 PCA

The methodology to plot the Fig. 1 and Fig. 8 is detailed next. First, a range based on the representa-
tions obtained during the episode being plotted is defined. Then we decode the distinct sequences

14

Our optimized GFP DynaPPO optimized GFPWild-type GFP CbAs optimized GFP

Figure 7: Structures predicted by AlphaFold2 for sequences optimized by the proposed method,
DynaPPO, and CbAs for GFP.

from the large number of representations using the decoder. Table 13 shows the number of representa-
tions and sequences used to plot the complete functionality and fitness landscape. After this step, the
reward is decoded for each sequence using the functionality predictor. To reduce the dimensionality,
t-SNE (Van der Maaten & Hinton, 2008) is applied in Fig. 1 and Principal Component Analysis
(PCA) (F.R.S., 1901) is applied in Fig 8 with the two principal components kept to create the local
landscape.

A.12 AlphaFold2 predictions of optimized sequences

Fig. 7 visualizes the structure of the optimized sequence of GFP based on AlphaFold2 (Jumper et al.,
2021). The sequences produced by our method and CbAS maintain the critical chromophore region
that is known for emitting fluorescence in GFP and the beta sheets that secure the chromophore region.
In contrast, DynaPPO-optimized sequences failed to preserve these essential structures of GFP. The
different structures obtained by two reinforcement learning methods highlight the significance of
state and action modeling in the design of biological sequences. Learning from a single-hot sequence
encoding makes it difficult for an algorithm to identify crucial structural information. On the other
hand, the latent vector trained by extracting information from a language model trained with millions
of protein sequences can efficiently learn mutational effects and reflect protein structures, as shown
in (Rives et al., 2021).

A.13 Policy ability to traverse local optima

We qualitatively evaluate our trained policy for the GFP by analyzing its ability to traverse local
optima of the functionality landscape. The optimization process during one episode is shown in
Fig. 8. Until the end of the episode, at timestep t = 10, the policy can traverse the landscape and
maximize functionality efficiently. At timestep t = 3, it can escape local optima that do not trigger
the conditions for the end of an episode. During timesteps t = 7, 8, 9, it can be seen that the policy
is still maximizing the functionality metric until the end of the episode. Additional details and the
methodology used to obtain the functionality landscape in Fig. 8 are explained in A.11.

Fluorescence

3.5

3.0

2.5

Figure 8: Optimization process performed by the trained policy during one episode for the GFP task.
The x-axis and y-axis are the two principal components of the representation space calculated using
Principal Component Analysis (F.R.S., 1901). The z-axis is the log-fluorescence intensity.

15

	Introduction
	Methodology
	Protein Representation Learning
	Protein Functionality Prediction
	Protein Sequence Design via Model-based Reinforcement Learning

	Results
	Experiment Setup
	Experiment
	Ablation studies

	Appendix
	Sequence Encoder-Decoder
	Functionality predictor
	Optimization oracle
	Evaluation oracle

	Training Functionality Predictor with Negative Examples
	Training CbAS and DynaPPO with and without negative samples

	Evaluation metrics
	Soft Actor Critic (SAC)
	Implementation details
	Initial States of the optimization Process
	Evaluation on GFP and His3 design
	Comparison of evaluation and optimization oracle
	Ablation Study on Initial State and Reward Modeling
	Methodology to obtain the complete functionality landscape
	AlphaFold2 predictions of optimized sequences
	Policy ability to traverse local optima

