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Abstract

Conventional protein-protein docking algorithms usually rely on heavy candidate
sampling and re-ranking, but these steps are time-consuming and hinder applica-
tions that require high-throughput complex structure prediction, e.g., structure-
based virtual screening. Existing deep learning methods for protein-protein dock-
ing, despite being much faster, suffer from low docking success rates. In addition,
they simplify the problem to assume no conformational changes within any pro-
tein upon binding (rigid docking). This assumption precludes applications when
binding-induced conformational changes play a role, such as allosteric inhibition
or docking from uncertain unbound model structures. To address the limitations,
we designed a novel iterative transformer network that predicts the 3D transfor-
mation from a randomized initial docking pose to a refined docked pose. Our
method, GeoDock, is flexible at the protein residue level, allowing the prediction
of rigid-body movement as well as conformational changes upon binding. For
two benchmark sets of rigid docking targets, GeoDock successfully docks 32%
and 20% of the protein pairs, outperforming the baseline deep learning method
EquiDock [1] (8% and 0% success rates). Additionally, GeoDock achieves com-
parable docking success rates to the conventional docking algorithms while being
80-500 times faster. Although binding-induced conformational changes are still a
challenge owing to limited training and evaluation data, our architecture sets up
the foundation to capture flexibility going ahead.

1 Introduction

Protein-protein interactions are involved in nearly all cellular functions in living organisms, from
signaling and regulation to recognition. These cellular functions are crucially dependent on the
precise assembly of proteins to become functional multi-protein complexes. Understanding the 3D
structures of protein-protein complexes at the atomic level can give insight into the mechanisms
that underlie these functions. While experimental approaches can determine protein structures,
they are expensive, low-throughput, and not applicable to all proteins. Recent breakthroughs of
AlphaFold2 [2] and other follow-up works [3–6] have demonstrated the prediction of 3D models of
protein structures comparable to experimental accuracy. Along with genome-wide protein sequencing,
the AlphaFold database [7] provides open access to 214M protein structure predictions from the
sequences deposited in UniProt [8]. Because of the expanding number of known protein monomer
structures, fast and reliable computational approaches for modeling protein-protein interactions are
critical. Protein-protein docking methods provide computational tools for fundamental studies of
protein interactions by predicting the favorable protein binding sites and possibly binding induced
conformational changes.

Protein-protein docking methods predict a protein complex structure given the structures of its un-
bound monomeric partners. Classical protein docking approaches generally comprise a sampling
algorithm that generates ensembles of candidate docked structures, and a scoring function that evalu-
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ates the candidates generated from the sampling stage. The sampling strategies can be classified into
exhaustive global search, local shape feature matching, and randomized search [9]. The exhaustive
global search methods [10–17] mostly use fast Fourier transforms (FFTs) [18] to extensively search
over the complete 6D (3D translational plus 3D rotational) space, assuming no conformational
changes of the docking partners. The local shape matching methods [19–24] typically represent a
protein by the shape of its molecular surface and find matches of high shape complementarity between
two proteins. The randomized search methods [25–37] use stochastic algorithms such as Monte Carlo
methods to search the docking poses through the free energy landscape starting from a randomized
initial pose, with the protein represented as all-atom or coarse grain models. Depending on the
sampling algorithms used, the scoring can take place after or can be coupled during the sampling
process. In contrast to sampling and scoring scheme, template-based docking methods [38] use
information such as sequence similarity, evolutionary conservation, and interface complementarity to
search for complexes that are homologous to the proteins to be docked, and then use the complexes
as docking templates. Due to the massive candidate searching and evaluation, these docking methods
are usually time-consuming, hindering applications that require high-throughput complex structure
prediction.

Recent breakthroughs in machine learning, especially in deep learning techniques, have been applied
to several protein docking related tasks. MaSIF [39] and ScanNet [40] use geometric deep learning
methods to predict the binding sites of a protein based on the structural and chemical features of
its molecular surface, independent of the binding partners. For partner specific protein interface
prediction, several methods [41–48] predict protein inter-chain contacts (residues within some cut-off
distance) using Graph Neural Networks (GNNs) that input structural and possibly evolutionary
features of the proteins. The predicted binding sites or inter-chain contact maps from these deep
learning methods can guide docking and generate protein complex structures [49, 50], but the
resulting complex structures have not achieved the accuracy comparable to the conventional docking
approaches. End-to-end deep learning methods that predict protein complex structures from protein
sequences and multiple sequences alignments (MSAs) have also been developed. These methods
[51–53] extend the ability of AlphaFold2 [2] that was originally designed for protein folding to protein
multimer structure prediction. Remarkably, AlphaFold-Multimer (AF-M) [54] includes multiple
chains during training and outperforms other AlphaFold2-based approaches. However, searching
for MSAs slows the inference process, hampering its applications to fast protein complex structure
predictions. Furthermore, MSAs do not apply to the docking of important protein families like
antibodies or T-cell receptors that evolve at different timescales than their binding partners [55].

Several deep learning methods have been developed for fast rigid docking. Ganea et al. [1] developed
EquiDock, an equivariant graph matching neural network that predicts the rotation and translation
to place one of the proteins at the correct docked position relative to the second protein. Sverrisson
et al. [49] developed a generative model based on the interface features derived from dMaSIF [56]
for generating ensembles of docking candidates that are then scored by a trained discriminative
model. However, due to the rigid-body assumption, these methods are not capable of predicting the
conformational changes upon protein binding. In addition, the docking success rates of these methods
are lower than the conventional docking methods. In this work, we develop a iterative transformer
network for fast and flexible protein-protein docking. Our method, GeoDock, is to our knowledge
the first deep learning method allowing docking with backbone flexibility. We demonstrate superior
performance compared to EquiDock and several conventional docking methods.

2 Methods

Datasets. For training and evaluating our models, we use (1) Database of Interacting Protein
Structures (DIPS) [42] and (2) Docking Benchmark 5.5 (DB5.5) [57, 58]. DIPS comprises 42,826
non-redundant experimentally resolved binary protein complexes, after excluding the complexes that
have any individual protein with over 30% sequence identity to any protein in the DB5.5. Following
EquiDock, We partitioned the DIPS dataset into train/validation/test splits of size 37,402/983/941.
DB5.5 is the gold standard dataset for evaluating the performance of a docking algorithm; it contains
271 complex structures with both bound and unbound conformations. We curated the 25 complexes
that were used as the test set in EquiDock and use the remaining 246 complexes for fine-tuning the
model pre-trained on the DIPS dataset. For the final evaluation, we use the same test sets as used in
the EquiDock work for both DIPS and DB5.5.
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Random Initialization We generate the initial docking pose by first separating the centers of mass of
the two docking partners by 50.0 Å, and randomizing the orientations of each of them by unbiased
sampling of unit quaternions. The two partners are then perturbed by a random direction and
magnitude specified by a Gaussian distribution around 3.0 Å. The random initialization process
ensures fair comparisons between our method and other global docking algorithms.

Interface Biased Cropping. The interface region between docking partners is smaller than the
non-interface region, since only some of the residues are in contact between the partners. To achieve
a better balance between the interface and non-interface regions, we used a cropping procedure that
maximizes the coverage of the interface regions while maintaining the continuity in sequence space.
Specifically, for each docking partner, we find the first and the last contact residues (within 12 Å
between the docking partners) in sequence space and crop the region between the two residues. After
cropping the interface regions, we randomly crop a continuous block of residues on each partner
up to 384 residues in total (summing over the docking partners) to fit the memory size of the GPU
(NVIDIA A100 40GB) we used. Cropping is used only when training the models.

Protein Docking Graph Representation. We represent the initial docking pose as a fully connected
graph. Each residue is represented as a node with an amino-acid identity. Each pair of nodes is
connected by a unique edge capturing relations between the nodes. For node embeddings, we use
the ESM-2 (650M) pre-trained language model [5], which inputs a protein sequence and outputs
per-residue embeddings. The embeddings from the language model have been shown to improve
downstream structure prediction tasks such as protein folding [59, 5]. For edge embeddings, we
adopt the relative spatial encodings from Ingraham et al. [60] constructed by SE(3)-invariant distance,
direction, and orientation between pairwise residues, and the relative positional encodings from Evans
et al. [54] representing distances between residues in the sequence and identifying if residues are on
the same docking partner or not. The graph representation contains rich structural information about
the docking pose without any task-specific geometric or hand-crafted chemical features.

Figure 1: Diagram of the iterative transformer network for predicting a docked pose from a random-
ized initial docking pose.

Protein Backbone Frames. Along with the graph representation, we represent the 3D atom coor-
dinates of a docking pose as backbone frames. The representation is adopted from the Structure
Module in AlphaFold2 [2]. Each residue is represented as a backbone frame encoding the Euclidean
transform from the origin frame. The Euclidean transform comprises a 3D rotation matrix and a
3D translation vector. The rotation matrix is computed using the Gram-Schmidt process with the
backbone atom (N,Cα, C) coordinates. The translation vector is defined as the atom coordinate of
Cα. The backbone frames map each residue from the origin frame to the current locations and are
updated through each iteration of the transformer network.
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Iterative Transformer Network. We consider docking as an iterative update process from a
randomized initial docking pose to a refined docked pose. We update the pose via an iterative
transformer network as shown in Figure 1. Inspired by the Evoformer and the Structure Module in
AlphaFold2 [2], the network comprises a graph module followed by a structure module. The graph
module updates the node and edge embeddings using self-attention with pair-bias and a triangular
update module. The structure module updates the node embedding by an invariant point attention
(IPA) layer and predicts the rotations and translations for updating the backbone frames. The network
inputs the graph representation (node and edge embeddings) along with the backbone frames from the
previous iteration, and it outputs their updates. We iterate the network six times with shared weights.
The number of trainable parameters is around 2M. The last iteration outputs a predicted docked pose
and is compared against the ground truth docked pose by the masked FAPE loss described below.

Masked FAPE Loss. We adopt the FAPE loss used in AlphaFold2 [2]. FAPE loss calculates the
deviation of predicted coordinates from the ground truth coordinates when aligning each one of the
predicted backbone frames to the corresponding ground truth backbone frame. In the original paper,
FAPE loss is applied to all pairs of residues. Here we modify to only consider the loss for residue
pairs with Cα within 12 Å. This choice emphasizes the accurate positioning of residue pairs within
the binding interfaces and de-emphasizes the non-interacting residue pairs.

3 Results

Figure 2: DIPS and DB5.5 (bound) test sets results of DockQ score distributions and docking success
rates with CAPRI acceptable, medium, or high quality ranking. The success rates are calculated
as the fraction of cases within a specific range of DockQ scores. Scores above 0.23 are considered
acceptable, scores between 0.49 and 0.80 are considered medium quality, and scores above 0.80 are
considered high quality [61].

Training Details. We train our models on the DIPS training dataset first, using Adam with learning
rate 10−4 and weight decay 10−6. The best DIPS validated model was then tested on the DIPS test
set. For DB5.5, we fine-tuned the model on the DB5.5 training set using the same optimization
settings. The best DB5.5 validated model was finally tested on the DB5.5 test set.

Baselines and Evaluation. We compare GeoDock with the existing methods compared in the
EquiDock paper. Each method belongs to one of the categories mentioned in the introduction.
ClusPro [16] is an exhaustive global search method using FFT; PatchDock [21] is a local shape
feature matching approach; ATTRACT [31] is a randomized search docking algorithm; HDOCK [62]
is a template-based docking method; EquiDock [1] is a deep learning rigid-body docking approach.
Following EquiDock, we only used the bound conformation for both DIPS and DB5.5 test sets.
The predicted protein complex structures of these methods are taken from the EquiDock GitHub
repository. We evaluate models using DockQ score [61], which evaluates the quality of the interface

4



and yields a score between [0, 1]. To be consistent with the EquiDock paper, we only use Cα
coordinates to calculate the DockQ scores. Following the practice in the CAPRI blind prediction
challenge [63], we use a DockQ score threshold of 0.23 to count as a successful dock, corresponding
to an "acceptable" CAPRI ranking.

Docking Results. Results on both the DIPS and DB5.5 (bound) sets are shown in Figure 2. We
note that in the EquiDock paper, they used average interface root mean square deviation (IRMSD) as
an evaluation metric, which is only one component of the DockQ scores and CAPRI assessments.
Although EquiDock achieved a better average IRMSD compared to the other methods, the DockQ
success rate of EquiDock is the lowest. From the distribution of DockQ score, ATTRACT, HDOCK
and PatchDock show bimodal distributions, clustering around low (failure) and high (success) DockQ
scores. ClusPro and GeoDock have more continuous distributions, with tails extending from medium
to high DockQ scores. EquiDock has the largest cluster at low DockQ scores, which indicates the
predictions are generally classified as incorrect. HDOCK scores on DB5.5 are high (80% success);
Since HDOCK is a template based docking mehtod, we suspect this accuracy results from the DB5.5
targets being in the HDOCK’s template set. With the same training dataset as EquiDock, our method
outperforms EquiDock (Appendix Figure 4) and achieves comparable docking success rates to the
conventional docking methods on both DIPS and DB5.5 test set.

Figure 3: Comparison of the unbound structure (grey) superimposed over the bound (green), and the
GeoDock predicted structure (blue).

Backbone Flexibility. We show in Figure 3 that GeoDock is able to move the backbone at the flexible
regions. The current GeoDock model pushes the backbone away from the bound state similar to
previous conformer selection methods [64]. We will next fine-tuning our model with an ensemble of
sampled backbone conformations (e.g. from ReplicaDock2 [29]) to test whether the model can better
capture the unbound to bound conformational changes.

Inference Speed. The inference times of GeoDock are 7 ± 7 seconds for the DIPS test set (residue
sizes 100-1,600) and 8 ± 15 seconds for the DB5.5 test set (residue sizes 200-2,500) on a 48-core
CPU, which is close to EquiDock (5 ± 5 and 5 ± 10 seconds) and is between 80-500 times faster
than the other methods [1]. Inference time is important for applications that require high throughput
protein complex structure prediction, such as structure-based virtual screening.

4 Conclusion

We have presented GeoDock, a fast, end-to-end protein docking approach with an iterative trans-
former network. Our method outperforms EquiDock and achieves comparable success rates to the
conventional docking methods. Despite the model being currently only trained on the bound protein
complexes, it moves the backbone and can be extended to flexible docking with adequate fine-tuning
on datasets with conformational changes upon binding. This is particularly important for cases
such as allosteric inhibition or docking from uncertain unbound model structures, where the flexible
regions on the proteins hinder the success of rigid docking. For target-specific protein binder design,
e.g., screening antibodies for a specific antigen, a high-throughput docking algorithm is usually
required to scan over a vast search space of potential hits. With further development, GeoDock can
serve as a fast and flexible protein-protein docking tool and facilitate the design of protein binders
and drugs for a wide variety of targets.
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5 Appendix

Figure 4: Comparison of DockQ scores of GeoDock versus EquiDock on the DIPS and DB5.5 test
sets.

Figure 5: Receptor and ligand backbone RMSD (input versus prediction) distributions of GeoDock
on the DIPS and DB5.5 (unbound) test sets.

To demonstrate our method is capable of predicting binding-induced conformational changes, we
show in Figure 5 the receptor and ligand backbone RMSD distributions respectively on both DIPS and
DB5.5 (unbound) test sets. The backbone RMSD measures the conformational difference between
the input and predicted structures of the individual proteins (receptor and ligand) from a docking pair.
For the rigid docking methods, the backbone RMSD is always zero.
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