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Abstract

Large pretrained protein language models have improved protein sequence-to-
function prediction. This often takes the form of transfer learning, where final-layer
representations from large pretrained models are extracted for downstream tasks.
Although pretrained models have been empirically successful, there is little current
understanding of how the features learned by pretraining relate to and are useful
for downstream tasks. In this work, we investigate whether transferring a partial
model, by using the output from a middle layer, is as effective as full model
transfer, and if so, whether successful transfer depends on the downstream task and
model properties. Across datasets and tasks, we evaluate partial model transfer
of pretrained transformer and convolutional neural networks of varying sizes. We
observe that pretrained representations outperform the one-hot baseline for most
tasks. More importantly, we find that representations from middle layers can be
as effective as those from later layers. To our knowledge, our work is the first to
report the effectiveness of partial model transfer for protein property prediction.
Our results point to a mismatch between the pretraining and downstream tasks,
indicating a need for more relevant pretraining tasks so that representations from
later layers can be better utilized for downstream tasks.

1 Introduction

Proteins serve critical biological functions, including cellular structure, metabolism, and signaling.
Understanding and engineering proteins is of great interest because it has the potential to impact
human health, sustainable manufacturing, agriculture, and beyond [Lutz and Iamurri, 2018]. A
protein’s function is largely determined by its amino acid sequence, but the rules dictating sequence-
to-function relationships are complex and poorly understood [Hedstrom, 2002, Alexander et al.,
2009]. Because experimental approaches to determine protein functions from their sequences are
time- and resource-intensive, the ability to computationally predict a protein’s function from its amino
acid sequence would enable more efficient protein engineering.

Recently, large pretrained protein language models have advanced our ability to predict protein
function from sequence, especially when labeled training data is sparse [Rives et al., 2020, Yang
et al., 2022, Elnaggar et al., 2022, Brandes et al., 2022, Alley et al., 2019, Rao et al., 2019]. These
models pair large-scale protein sequence databases with unsupervised pretraining; the pretraining
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task is usually to reconstruct corrupted protein sequences [Bepler and Berger, 2021, Ofer et al., 2021].
Representations from pretrained protein language models outperform the one-hot baseline across
protein engineering tasks [Yang et al., 2022, Wittmann et al., 2021, Dallago et al., 2021].

Although pretrained models have been empirically successful, there is little current understanding
of how the features learned in pretraining are useful for downstream tasks. In the absence of this
knowledge, the common practice is to transfer the entire model, using the output from the last layer
as a representation for protein sequences of interest. We hypothesize that this might not be the best
practice for two reasons.

First, previous work on transfer learning for images has shown that the middle layers of a model often
transfer better to downstream tasks than the last layer, because earlier layers extract more general
information, while later layers become more specific to the pretraining task [Gidaris et al., 2018,
Jenni and Favaro, 2018]. This intuition may be applicable to protein sequence representations: the
earlier layers may capture general information sufficient for the downstream task while the more
specific features from later layers may not be effective for a specific downstream task. Second, we
suspect that not all downstream tasks are related to the pretraining task in the same way. We expect
downstream tasks that are more related to the pretraining task will benefit from the more specific
features learned from later layers, but it is unclear how to quantify relatedness between downstream
and pretraining tasks.

In this work, we investigate whether transferring a partial model, by using the output from a middle
layer, is as effective as full model transfer, and if so, whether successful transfer depends on the
downstream task and model properties. Across datasets and tasks, we evaluate partial model transfer
of pretrained transformer and convolutional neural networks of varying sizes. We observe that
pretrained representations outperform the one-hot baseline for most tasks, indicating that transfer
learning is generally effective. More importantly, we find that representations from middle layers can
be as effective as those from later layers, suggesting that downstream tasks may only be benefiting
from shallow features learned earlier in a model’s hierarchical representation. To our knowledge, our
work is the first to systematically assess the effectiveness of partial architecture transfer on proteins,
indicating a need for more relevant pretraining tasks so that representations from later layers can be
fully utilized for downstream tasks.

2 Methods

2.1 Downstream tasks

To assess how transfer learning performance depends on downstream tasks, we evaluate performance
over a diverse set of tasks, reflecting both local and global variation. In total, we test 7 protein
function tasks from 4 datasets from the recent FLIP benchmark [Dallago et al., 2021], summarized in
Table 1 and visualized in Figures A1 and A2.

The GB1 and AAV datasets measure the effects of local variation. GB1 is the 56 amino-acid
B1 domain of protein G, an immunoglobulin-binding protein. The GB1 dataset covers binding
measurements for simultaneous mutations of up to 4 epistatic sites [Wu et al., 2016]. VP1 is an
adeno-associated virus (AAV) capsid protein, over 700 amino acids long [Bryant et al., 2021]. The
AAV dataset measures the effects of sparsely sampled mutations across a contiguous 28 amino-acid
region over the binding interface, including insertions and deletions, on viral viability.

The other two datasets measure global protein properties for sequences spanning different functional
families and domains of life. The thermostability dataset measures the melting temperature of
48,000 proteins across 13 species ranging from archaea to humans [Jarzab et al., 2020]. Subcellular
localization is a classification dataset where the goal is to predict the cell compartment to which a
eukaryotic protein localizes [Armenteros et al., 2017, Stärk et al., 2021].

To determine the impact of distribution shifts, we analyze different train and test splits of the two
local protein engineering datasets, including sampled (in-distribution) and out-of-distribution splits,
as shown in Table A2, Figure A1, and Figure A2. Out-of-distribution splits more closely resemble
protein engineering applications where a few low-functioning variants with a limited number of
mutations are initially generated, but high-functioning variants across the larger sequence space are
the engineering end goal. For GB1, we test 3 different splits:
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Table 1: Summary of downstream tasks
Dataset Description Variation Task type

GB1 Immunoglobulin binding Local Regression
AAV Viral viability Local Regression
Thermostability Melting temperature Global Regression
Subcellular localization (scl) Cellular location Global Classification

• Sampled: sequences randomly partitioned between 80% training and 20% testing
• Low vs high: an out-of-distribution task. Models are trained on mutants with function lower

than the parent and tested on those with higher function.
• Two vs rest: an out-of-distribution task with fewer training samples. Models are trained on

single and double mutants and tested on triple and quadruple mutants.

For AAV, we test 2 different splits:

• Two vs many: an out-of-distribution split. Models are trained on single and double mutants
and tested on variants with three or more mutations.

• One vs many: an out-of-distribution task with fewer training samples. Models are trained
on single mutants and tested on variants with more mutations.

2.2 Pretrained models

To evaluate the effectiveness of transferring a partial model, we systematically evaluate the per-
formance of pretrained models on the aforementioned downstream tasks. We consider 2 different
pretrained model architectures, transformer and convolutional models. For the transformer archi-
tecture, we use Evolutionary Scale Modeling (ESM) [Rives et al., 2020]. For the convolutional
architecture, we use Convolutional Autoencoding Representations of Proteins (CARP) [Yang et al.,
2022]. Both are pretrained with UniRef50 on masked language modeling, a pretraining task that
requires models to reconstruct corrupted sequences. To test the effect of model size, we evaluate
architectures with different numbers of layers and parameters for both architectures (details in Table
A1). Due to the sequence length limit of the ESM-1b transformer model, the first and last 511 amino
acids are taken for all sequences exceeding 1022 amino acids. This length restriction chiefly impacts
the subcellular localization dataset: targeting signals often occur at the N- or C-terminal, and we
reason that taking both terminals preserves biologically-relevant signals.

2.3 Layer-by-layer evaluation

To assess the performance of partial model transfer, we extract feature representations after every
transformer or convolutional block of each model. We mean pool along the length dimension of the
representations from each layer and train downstream linear models with these representations. Layer
0 corresponds to the input embedding before going through any model layers.

For the regression tasks, we train ridge regression models with Scikit-learn [Buitinck et al., 2013].
We tune the hyperparameter α based on the validation set. As protein engineers often seek to identify
top-ranked mutants as opposed to predicting the absolute function of mutations, we use ranking
as the primary metric for the validation and test datasets, but use mean-squared error (MSE) for
the training set. For the classification task, we train linear classification models with mini-batches
in PyTorch and perform early stopping based on the validation set. We evaluate the test set with
accuracy (acc) and area under the receiver operating characteristic curve (ROC-AUC) metrics, in
addition to cross-entropy loss.

2.4 Baselines and ablations

To evaluate if learned representations improve over the simplest representation, we compare pretrained
representations to linear models trained on one-hot encodings. To disentangle the effects of pretraining
and architecture, we randomly initialize model weights for the layer-by-layer evaluation (hereafter
referred to as “random init”). Previous work in medical image transfer analysis [Matsoukas et al.,
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2022] further proposed randomizing layers to match the distribution of pretrained weights. This helps
further understand if features are being re-used from pretrained models, or if the features are simply
sensibly initialized to interact well with the model architecture (e.g. magnitudes compatible with
activation functions, sparsity, etc.). In our setting, we implement this by randomly permuting the
learned weights within each layer (hereafter referred to as “stat transfer”).

3 Results

3.1 ESM-1b performance saturates early for most tasks
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Figure 1: Performance of ESM-1b layer transfer on in-distribution and out-of-distribution tasks.

We first assess how transfer learning performance depends on the downstream task. For regression
tasks, we use the Normalized Discounted Cumulative Gain (NDCG), which reflects ranking quality,
as our performance metric; for the classification task, we use ROC-AUC. Figure 1 shows ESM-1b
transfer learning performance on all 7 tasks. For most tasks, ESM-1b (solid orange lines) performance
plateaus after the first five layers. However, ESM-1b outperforms the one-hot baseline (dotted black
lines), suggesting that even though performance saturates early, the pretrained features are still
informative for downstream tasks. In addition, ESM-1b with pretrained weights outperforms the
ESM-1b architecture with random init (dashed blue lines). In fact random init does not always
outperform the one-hot baseline. Thus, performance is not due to inductive biases of the transformer
architecture alone, confirming that pretraining has benefits in capturing features relevant to protein
function prediction. The pretrained weights usually outperform stat transfer (dashed green lines),
most notably on the subcellular localization classification task. However, for the GB1 – sampled
and AAV – two vs many tasks, stat transfer performs better than random init, and almost on par
with pretraining. This suggests that for some tasks, such as subcellular localization, pretraining is
required to generate linearly separable features. In contrast, for the GB1 – sampled task, a better
weight initialization is sufficient to generate linearly separable features.

Next, we repeated our experiments with more challenging out-of-distribution train and test splits
(GB1 – low vs high, GB1 – two vs rest, AAV – one vs many, AAV – two vs many). Figure 1 shows
that for the GB1 and AAV datasets, the out-of-distribution tasks also exhibit a similar early peaking
behavior to the in-distribution tasks, except that most representations perform poorly on the most
challenging AAV – one vs many task. We hypothesize that the AAV – one vs many task does not
provide enough data to fit a downstream model.

3.2 Early saturation holds across different ESM-1 model sizes
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Figure 2: On the GB1 – sampled dataset, ESM-1 partial transfer performance saturates at early layers.

We observe that early saturation of performance occurs across pretrained ESM-1 models, regardless
of parameter size and number of layers, and for both regression and classification tasks (Figure 2,
Section A.3). For in-distribution tasks such as GB1 – sampled, we observe that the highest NDCG
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achieved across model sizes is similar, suggesting that for these tasks larger models do not learn more
informative features than smaller models.

3.3 Convolutional models also saturate early, but show stronger inductive biases
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Figure 3: Performance of CARP-640M layer transfer on in-distribution and out-of-distribution tasks.

Next, we interrogate how architecture interacts with layer-by-layer performance by repeating the
analysis for CARP-640M, as shown in Figure 3. For many tasks, we observe a more abrupt increase
in performance, increasing from performance worse than one-hot to optimal performance rapidly.
We hypothesize this is due to the inductive bias of convolutional neural networks: at some point, the
receptive field becomes sufficiently large to resolve the information necessary for the downstream
tasks. Consistent with this hypothesis, we primarily observe this behavior for datasets where
all sequences are identical in length (GB1 and AAV), while datasets with a variety of lengths
(thermostability and subcellular localization) exhibit more gradual increases in performance. We
observe that for some downstream tasks, performance degrades as layer depth increases. This
observation is in contrast to the transformer architectures, where performance past the saturation point
is more stable. This trend is especially significant for the AAV – one vs many task in Figure 3. We also
observe more subtle trends with the NDCG metric on the thermostability and subcellular localization
datasets, and this trend is made more evident by considering the Spearman’s rank correlation for the
thermostability dataset (Figure A10). Overall, the decreasing generalization from the pretraining task
to downstream task suggests that convolutional architectures may be more prone to overadapting
to the pretraining task. Additionally, due to the inductive bias of convolutional neural networks
towards motif-finding, stat transfer diminishes CARP-640M’s performance more significantly than
ESM-1b’s, as seen most clearly in the thermostability task (Figures 1, 3). Conversely, the noticeable
improvement of stat transfer over random init for GB1 – sampled with ESM-1b is no longer observed
with CARP-640M (Figure 1, 3). Similarly to ESM, we observe that early saturation occurs across
pretrained CARP model sizes and for both regression and classification tasks, as shown in Figure 4
and Section A.3.
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Figure 4: On the GB1 – sampled task, CARP partial transfer performance saturates at early layers.

4 Discussion

In this work, we systematically evaluate partial model transfer from large pretrained protein language
models to various downstream protein function prediction tasks. We observe that pretrained models
outperform their random init and stat transfer counterparts as well as the one-hot baseline for most
tasks, indicating successful transfer learning from the sequence reconstruction pretraining task to
various downstream protein function prediction tasks. However, we observe consistent early peaking
behavior for both ESM and CARP, suggesting that most generalizable features are learned in early
layers and that features from later layers are not always optimal for downstream tasks. Critically, this
work points to a mismatch between language model pretraining and downstream protein function
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prediction tasks. For many tasks only low-level features generated by early layers contribute to
performance on downstream tasks, indicating that more relevant pretraining tasks are needed to fully
utilize the capacity of the pretrained model on downstream tasks.
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A Appendix

A.1 Pretrained models

Table A1: pretrained model summary
Name Architecture # Layer # Parameters Embedding dimension

esm1_t6_43M_UR50S ESM-1 transformer 6 43M 768
esm1_t12_85M_UR50S ESM-1 transformer 12 85M 768
esm1_t34_670M_UR50S ESM-1 transformer 34 670M 1280
esm1b_t33_650M_UR50S ESM-1b transformer 33 650M 1280
carp_600k CARP convolutional 16 600k 128
carp_38M CARP convolutional 16 38M 1024
carp_76M CARP convolutional 32 76M 1024
carp_640M CARP convolutional 56 640M 1280
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A.2 Dataset analysis

Table A2: Downstream task summary
Task Task type Split type # Train # Val # Test Model type (# class)

GB1 – sampled Local In sample 6289 699 1745 Scikit-learn ridge regression
GB1 – low vs high Local Out of distribution 4580 509 3644 Scikit-learn ridge regression
GB1 – two vs rest Local Out of distribution (fewer training samples) 381 43 8309 Scikit-learn ridge regression
AAV – two vs many Local Out of distribution 28626 3181 50776 Scikit-learn ridge regression
AAV – one vs many Local Out of distribution (fewer training samples) 1053 117 81413 Scikit-learn ridge regression
Thermostability Global In sample 22335 2482 3134 Scikit-learn ridge regression
Subcellular localization (scl) Global In sample 9503 1678 385 PyTorch linear classifier (10)
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(a) GB1 splits: sampled, two vs rest (out-of-distribution with fewer training samples), and low vs high (out of
distribution)

(b) AAV splits: one vs many (out-of-distribution with fewer training samples), two vs many (out of distribution)

(c) Thermostability split: mixed

Figure A1: Empirical cumulative distribution functions for the 7 tasks.
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(a) GB1

(b) AAV

(c) Thermostability

Figure A2: Strip-histogram for protein engineering datasets

A.3 Full results for ESM and CARP

All results have 5 rows and 4 columns. For ESM, the first three columns corresponds to pretraining
with an ESM-1 model, ranging from the smallest architecture with the fewest number of layers
and parameters to the largest. The last column corresponds to the ESM-1b model. For CARP, the
columns corresponds to pretraining with a CARP model, ranging from the smallest architecture with
the fewest number of layers and parameters to the largest. For regression tasks, (AAV, GB1, and
thermostability), the rows are in the order of MSE for training, validation, and testing, followed by
testing NDCG, and testing Spearman’s rank correlation. For classification (subcellular localization),
the rows are cross-entropy for training, validation, and testing, followed by testing accuracy, and
testing area under the receiver operating characteristic curve.
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(a) ESM AAV – two vs many out-of-distribution

(b) ESM AAV – one vs many out-of-distribution with fewer training samples

Figure A3: pretrained ESM layer by layer evaluation on two AAV protein engineering datasets
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(a) ESM GB1 – sampled

(b) ESM GB1 – low vs high out-of-distribution

(c) ESM GB1 – two vs rest out-of-distribution with fewer training samples

Figure A4: pretrained ESM layer by layer evaluation on three GB1 protein engineering datasets
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Figure A5: pretrained ESM layer by layer evaluation on a thermostability dataset

Figure A6: pretrained ESM layer by layer evaluation on an annotation dataset for subcellular
localization classification task
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(a) CARP AAV – two vs many out-of-distribution

(b) CARP AAV – one vs many out-of-distribution with fewer training samples

Figure A7: pretrained CARP layer by layer evaluation on two AAV protein engineering datasets
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(a) CARP GB1 – sampled

(b) CARP GB1 – low vs high out-of-distribution

(c) CARP GB1 – two vs rest out-of-distribution with fewer training samples

Figure A8: pretrained CARP layer by layer evaluation on three GB1 protein engineering datasets

17



Figure A9: pretrained CARP layer by layer evaluation on a thermostability dataset

Figure A10: pretrained CARP layer by layer evaluation on a subcellcular classification dataset
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