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Abstract

Determining which proteins interact together from their amino acid sequences
is an important task. In particular, even if an interaction is known to exist in
some species between members of two protein families, determining which other
members of these families are interaction partners can be tricky. Indeed, it requires
identifying which paralogs interact together. Various methods have been proposed
to this end. Here, we present a new one, which relies on a protein language model
trained on multiple sequence alignments and directly exploits the fact that this
model was trained to fill in masked amino acids. We obtain promising results on
two different benchmark pairs of interacting protein families where partners are
known. In particular, performance is good even for shallow alignments, while
previous coevolution-based methods require deep ones. Performance is also found
to quickly improve by giving the model correct examples of interacting sequences.

1 Introduction

Mapping functional protein-protein interactions is an important question in cell and systems biology.
High-throughput experiments capable of resolving protein-protein interactions remain challenging [1],
even for model organisms. Meanwhile, statistical and machine learning methods trained on an ever
increasing amount of data have been developed to find contacts between known interaction partners
from sequences [2–9], and predict functional interaction partners from sequence [10–13] and/or
structure data [14–16] and/or molecular surface descriptors on structures [17].
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Paralog matching is the problem of matching interaction partners correctly among the paralogous pro-
teins belonging to two interacting families. Aside from further elucidating the nature and evolutionary
history of protein-protein interaction networks, addressing this problem for a given pair (or set) of
interacting protein families allows for the construction of a concatenated (joint) multiple sequence
alignment (MSA) which can then be used, in addition to a specific sequence query, as input to a
structure prediction model for protein complexes such as AlphaFold-Multimer [15, 18] (but see also
[19]). The quality of the pairings in this MSA strongly affects the accuracy of the predicted structure
for the query complex [19], making the paralog matching problem an integral part of the structure
prediction workflow for heteropolymers. In the case of prokaryotes, genes of interacting proteins
are frequently colocalized in operons and can therefore often be matched by chromosomal vicinity
with good confidence, a method which is often used in practice [2, 5]. However, even in prokaryotes,
many important interactions exist across distinct operons [20, 21]. Furthermore, interaction partners
in eukaryotes are generally not encoded in close genomic locations. Thus, paralog matching remains
an open problem in general.

Aside from genome colocalisation, methods for addressing this problem include phylogenetic profiling
[22–24], exploiting similarities between phylogenetic trees of groups of orthologous proteins [25–30]
and relying on orthology, determined by reciprocal closest matching sequences [13–16, 31]. Other
coevolutionary methods make use of full amino acid sequences and rely upon the existence of
correlations between residues of interacting proteins [10, 11, 32], due both to the need to maintain
physico-chemical complementarity among amino acids in contact, and to shared evolutionary history,
which is in fact quite useful for the pairing [33–35]. However, the performance of these models is
fundamentally limited on small alignments, as they require accurate estimation of two-body statistics
for all pairs of residue positions.

The core idea behind coevolution-based methodologies is to single out, among all possible sets
of complete pairings between interacting paralogs, those which maximise a global coevolutionary
signal in the candidate joint MSA. Building on this principle, while attempting to overcome the
aforementioned limitations with small alignments, we propose using recently developed protein
language models that take MSAs as inputs [36, 37]. These models are able to directly exploit the
covariation signal, while also benefiting from training over large sequence databases containing a
large number of diverse protein families. Thus motivated, we focus on MSA Transformer [36], a
protein language model which was trained on MSAs using the masked language modeling (MLM)
objective, and present a differentiable pipeline for optimizing paralog matchings using the MLM loss.

2 Methods

We use the pre-trained 100-million-parameter MSA Transformer model [36], which takes MSAs as
inputs and was trained with a variant of the masked language modeling (MLM) objective [38], on a
training set of 26 million monomer MSAs constructed from UniRef50 clusters. The model’s training
objective was to correctly predict the identity of randomly masked residue positions in the MSAs in
its training set. Its MLM loss for an MSA M, and its masked version M̃, is:

LMLM(M,M̃; θ) = −
∑

(m,i)∈ mask

log p(xm,i | M̃; θ) . (1)

Here, xm,i denotes the amino acid at the i-th residue position in the m-th sequence of M, while θ
stands for all the model parameters. At each residue position in the input MSA, MSA Transformer
outputs a vector of probabilities for each of the 21 possible amino-acid and gap symbols, and
p(xm,i | M̃; θ) in Eq. (1) is the probability associated with the correct residue xm,i at MSA position
(m, i). MSA Transformer’s interleaving of multi-headed (tied) row attention blocks and (untied)
column attention blocks, over several layers, implies that the accessible context for a masked token
consists not only of amino acids at different positions along the same sequence, but also of amino
acids from other sequences [36, 39].

After pre-training, each summand in the right-hand side of Eq. (1) can be interpreted as the model’s
estimate of the (negative) log-likelihood of the amino acid xm,i at a masked position (m, i) [40–42].
We phrase paralog matching for a pair of protein families as the problem of concatenating a pair of
MSAs, each one corresponding to one of the protein families and containing several paralogs per
species, so that correct interaction partners are placed on the same row of the concatenated MSA.
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In this context, we posit that the trained MSA Transformer model should regard randomly masked
residues in correctly concatenated MSAs as more likely, on average, than randomly masked residues
in incorrectly concatenated MSAs. For proteins families that actually interact, this holds true despite
the fact that MSA Transformer was only trained on monomeric MSAs, because coevolutionary signal
is present in these MSAs and is accessible to the model, as we show in Fig. A1. Hence, we set
out to find interaction partners by looking for pairings that minimise a suitably constructed MLM
loss. Indeed, we show in Fig. A2 that the MLM loss decreases as the fraction of correctly matched
sequences increases.

For a pair of interacting MSAs, a brute-force search through all possible in-species one-to-one
matchings would scale factorially in the size of each species. Instead, we formulate a differentiable
optimization problem that can be more efficiently solved, using gradient methods, to yield configu-
rations minimizing our MLM loss. Note that one-to-one matchings can be encoded as permutation
matrices. We exploit the fact, shown in [43], that permutation matrices can be approximated arbitrarily
well by using the so-called Sinkhorn operator S, which is defined on square matrices X as follows:

S(X) = lim
l→∞

Sl(X), where Sl(X) = (Tc ◦ Tr)l(exp(X)), (2)

Tc and Tr are the row- and column-wise normalization operators, and exp denotes the component-
wise matrix exponential.2 The set PN of permutation matrices of N objects can be parametrized
exactly by square matrices X via the matching operator

M(X) = argmax
P∈PN

[trace(PTX)], (3)

which can be computed using standard non-differentiable algorithms for linear assignment problems
[44].3 The aforementioned approximation result is then that M(X) = limτ→0+ S(X/τ) for almost
all X [43, Theorem 1]. Hence, by choosing a suitably small value of τ , and using Sl [Eq. (2)] instead
of S for a suitably large l, we can define a smooth mapping Ŝ which sends arbitrary square matrices
to “soft permutations” approximating bona fide (“hard”) permutations. In our experiments, we use
τ = 1 and l = 10. Applying general soft permutations directly on an MSA (after one-hot encoding its
residues) yields a dataset of consisting of “amino acid mixtures” at each MSA position. Such datasets
are out of distribution relative to MSA Transformer’s pre-training. Besides, we wish to optimize for
an MLM loss defined on realistic MSAs. In order to be able to backpropagate through Ŝ, while also
evaluating MLM losses only on MSAs shuffled by hard permutations, we compute the full matching
operator M [Eq. (3)] in the forward pass, but propagate gradients backwards through Ŝ alone.4

Our use of a language model allows for contextual conditioning, a common technique in natural
language processing. Indeed, if any correctly paired sequences are already known, they can be
included as part of the joint MSA input to MSA Transformer. In this case, we exclude their pairing
from the optimization process – in particular, by not masking any of their amino acids. We call these
known paired sequences “positive examples” and, as we show in Results, the presence of even just a
few of them can lead to large gains in accuracy.

Let M1 and M2 be MSAs of interacting protein families, consisting of Npos positive examples
and K unmatched species, each of size Nk where k = 1, . . . ,K. Using the tools just described,
we optimize a set {Xk}k=1,...,K of square matrices, each of size Nk ×Nk. Our MLM-based loss
for this optimization is defined as follows: (1) perform a shuffle of M1 relative to M2 using the
permutation matrices corresponding to the current {Xk}k (plus an optional noise term, see below), to
obtain a concatenated MSA M; (2) create m distinct masks for M (excluding any positive example
tokens from the masking); (3) compute m losses, given by Eq. (1) for each of the masks, and average
them. Importantly, we mask the amino acids of only one of the two MSAs, chosen uniformly at
random within it with a high masking probability p (70%).5 Our rationale for using large masking
probabilities is that, in this case, the model is forced to predict masked residues in one of the two
MSAs by using information coming mostly from the other MSA – see Fig. A2. The averaging from
several different masks helps us achieve smoother loss curves; in practice, to limit the computational
burden, we use m = 4 throughout.

2That is, Sl consists of applying exp and then iteratively normalizing rows and columns l times.
3More precisely, the right-hand side of Eq. (3) has a unique solution for almost all X [43].
4See [45] for a similar use of “gradient bypassing” in the context of protein design. We write the hard

permutation as [M(X)− Ŝ(X)]+ Ŝ(X), and halt gradient backpropagation through the term in square brackets.
5Uniformly random masking with p = 15% was used during MSA Transformer’s pre-training [36].
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Furthermore, following [43], after updating (or initializing) each Xk, we add to it a noise term given
by a matrix of standard i.i.d. Gumbel noise multiplied by a scale factor. The addition of noise ensures
that the Xk do not get stuck at degenerate values for the right-hand side of Eq. (3), and more generally
encourages the algorithm to explore larger regions in the space of permutations. As scale factor for
this noise we choose 0.1 times the sample standard deviation of the entries of Xk. Finally, since
the matching operator is scale-invariant, we can regularize the matrices Xk to have small Frobenius
norm. We find this to be beneficial and implement it through weight decay. Since species in our
MSAs do not have a fixed size, for the k-th species in our dataset we optimize Xk with weight
decay wk = 0.1(Nk/10)

2. We use the Adam optimizer and a learning rate scheduler consisting of
a warm-up period (first half of a “1cycle” policy [46]) bringing the learning rate up to λmax = 0.1,
followed by a “reduce on loss plateau” learning rate scheduler. In all our runs, we initialize each Xk

with zero-mean i.i.d. Gaussian entries (σ = 0.1), and perform n = 200 gradient steps.

We observe that, even though the loss generally converges to a minimum average value during our
optimization runs, there are often several distinct hard permutations associated to the smallest loss
values. This may indicate a flattening of the loss landscape relative to the inherent fluctuations in
the MLM loss, and/or the existence of multiple local minima. To extract a single configuration of
matchings from each of our runs, we average the hard permutation matrices associated to the q lowest
losses, and evaluate the matching operator [Eq. (3)] on the resulting averages.6 This yields a single
hard permutation for the run. Furthermore, we propose using each entry in these averages as an
indicator of the model’s confidence in the matching of the corresponding pair of sequences. Indeed,
pairs that are present in most low-loss configurations are presumably essential for the optimization
process. Accordingly, we refer to such averaged matrices as “confidence matrices”.

We also test two methods for improving performance further. In the first method, which we call
Multi-Run Aggregation (MRA), we perform Nruns optimization runs for each interacting MSA, using
independent initializations. Then, we average the hard permutations independently obtained from
each run (using lowest losses as explained above), to obtain more reliable confidence matrices and
hard permutations. The second method is an iterative procedure analogous to the Iterative Pairing
Algorithm (IPA) of Refs. [10, 32]. At the beginning of each run, we determine the pairing with
highest confidence according the previous Nprev runs, in the same way as for the MRA method (we
use Nprev = 4). This pairing is promoted to a positive example in all subsequent runs. NIPA runs are
performed; in the last one, all remaining unmatched sequences are paired at once.

3 Results

We developed and tested our method using joint MSAs extracted from two datasets. The first dataset
is composed of 23,632 cognate pairs of histidine kinases (HK) and response regulators (RR) from
the P2CS database [47, 48], paired using genome proximity, and previously described in [10, 32].
HK and RR are interacting protein families from prokaryotic two-component signaling systems.
These proteins have a strong specificity with their cognate partners, a large number of homologs,
and interaction partners known from genome proximity, which makes them an attractive benchmark
dataset. The average size of the species in this dataset is 10.23 (std: 7.85). The second dataset
consists of 17,950 ABC transporter protein pairs, homologous to the Escherichia coli MALG-MALK
pair of maltose and maltodextrin transporters, also paired using genome proximity [5, 10]. The
average size of the species in this dataset is 5.68 (std: 5.60).

We fine-tuned all the hyperparameters involved in our algorithm (see Methods) using two joint MSAs
of depth ∼ 50, constructed by selecting random species from the HK-RR dataset.7 We then tested
our method on new sequences from both the HK-RR dataset and the MALG-MALK dataset. We
restricted our experiments to MSAs of depth ≲ 50 because, in this small data regime, we can most
effectively leverage MSA Transformer’s extensive pre-training, while alternative coevolutionary
methods [10, 11, 32] require considerably deeper alignments to achieve good performance. Further-
more, MSA Transformer’s large memory footprint provides a constraint on the depth and length of
the concatenated alignment.

We tested our MRA and IPA methods for different values of Nruns and NIPA (see Methods), on 40
MSAs from the HK-RR dataset and 40 MSAs from the MALG-MALK dataset, constructed in the

6We choose q = 20 as we typically observe fast convergence.
7Species are added one by one until an MSA depth between 45 and 55 is reached.
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same way as the two HK-RR MSAs used for hyperparameter fine-tuning. We tested different numbers
Npos of positive examples consisting of groups of entire species (including Npos = 0, meaning no
positive examples). We also tested a special case of the MRA method in which, using 49 positive
examples, we optimize matchings for one randomly selected species from the HK-RR dataset at a
time. We refer to this as “species-by-species” (SBS) optimization, and repeat it for 300 species, using
only one optimization run in each case (Nruns = 1).

For each of our experiments, we report two measures of performance, accuracy and TP fraction, as
well as for other methods for comparison. Accuracy is defined as the fraction of correct pairs over all
predicted ones (here a full one-to-one mapping is predicted), while the TP fraction is the accuracy
over the top 10% predicted pairs, when ranked by predicted confidence (see Methods).

Results are shown in Fig. 1(a). They show that our methods perform always better than the null
expectation,8 and that they in fact outperform other coevolution-based methods (DCA-IPA [10], MI-
IPA [32] and GA-IPA [35]). They also show that both accuracy and TP fraction increase significantly
as more positive examples are used. As can be seen in Fig. 1(b), for the HK-RR dataset and without
positive examples, the accuracy for both the MRA and IPA method increases noticeably as Nruns and
NIPA (respectively) are increased.

MSAs Type Pos. Ex. Iter. Acc. TP fr.

HK-RR Null Model - - 0.09 -
MALG-MALK Null Model - - 0.20 -

HK-RR DCA-IPA [10] 0 - < 0.2 -
HK-RR MI-IPA [32] 0 - < 0.2 -
HK-RR GA-IPA [35] 0 - < 0.3 -

HK-RR MRA 0 20 0.36 0.78
HK-RR MRA 11 5 0.47 0.96
HK-RR MRA 19 5 0.59 1.00
HK-RR MRA 45 5 0.71 1.00
HK-RR IPA 0 20 0.38 0.64
HK-RR IPA 11 5 0.46 0.86
HK-RR IPA 19 5 0.57 0.93
HK-RR IPA 45 5 0.70 0.98
HK-RR SBS 49 1 0.68 0.86

MALG-MALK MRA 0 5 0.45 0.87
MALG-MALK IPA 0 5 0.42 0.72

(a)
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Figure 1: Performance of pairing. (a) We report two measures of performance, accuracy (Acc.)
and TP fraction (TP Fr.), as defined in the text, for variants of our methods [MRA, IPA, SBS, with
various numbers of positive examples (Pos Ex.) and iterations (Iter.)], as well as for other methods
for comparison. (b) For the MRA (blue) and the IPA (red) method and the set of 40 HK-RR MSAs
we used for testing, and without using positive examples, we show the dependence of accuracy (top)
and TP fraction (bottom) on the number of iterations performed (Nruns for MRA, NIPA for IPA).

4 Discussion

Our results demonstrate that our methods yield good performance in the paralog matching problem,
on two distinct datasets of interacting protein families. Hence, losses based on masked language
modeling can be used to good effect for pairing sequences belonging to interacting families. This
differentiates our methods from other recent work [49], in which MSA Transformer is also used to
address the paralog matching problem, using column attention matrices [39].

There are several ways in which our methods could be improved. First, for simplicity, we masked
only one of the two interacting MSAs in our experiments. Further work is required to assess how
to best mask concatenated MSAs. Second, our methods could be combined with complementary
approaches, allowing e.g. a better initialization [35]. Finally, it would be interesting to further test
and improve the generalizability of our methods to various other interacting families. In particular, an
important application would be on eukaryotic families, which often have many paralogs and cannot
be paired by genome proximity.

8This is the expected fraction of correctly paired sequences in a random within-species matching.
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A1 Contact maps of concatenated MSAs

To understand whether the protein language model MSA Transformer has learned some notion of
interacting partners, we perform a simple experiment: we feed to the model an input MSA made of
the concatenation of two paired MSAs of interacting sequences (i.e. interacting sequences are joined
in the same row) and we compare the output contact maps with the contacts predicted for an input
made of the same MSAs but concatenated with randomly shuffled pairs (so that interacting sequences
are typically no longer in the same row of the joint MSA).

In Fig. A1 we observe that MSA Transformer is able to correctly predict the inter-protein contacts
when given as input a concatenated MSA made of correctly matched sequences. Instead, if the
model is given as input a concatenation of the same MSAs whose rows have been previously shuffled,
it is not able to recover the inter-protein contact map (even if it correctly recovers correctly the
intra-protein contact maps).

Figure A1: Comparison of contact maps predicted by MSA Transformer for the correct concatenation
of an HK MSA and an RR MSA (“Correct pairs”), and for an incorrect concatenation (“Shuffled
pairs”).

These results suggests that MSA Transformer can distinguish between interacting and non-interacting
pairs of protein sequences, despite the fact that dimers (written as sequence concatenations or
otherwise) were not in the training set used for its MLM pre-training [36].

A2 Suitability of the Masked Language Modeling loss

To go beyond the qualitative results of Fig. A1 and define a method for identifying interacting protein
pairs, we need a way to quantify the correctness of the chosen pairs. In practice, we would like a score
that is minimal when all matches are correct and monotonically decreases for increasing number
of correct pairs. A natural choice for this score is the loss used in MSA Transformer’s pre-training,
i.e. the masked language modeling (MLM) loss Eq. (1). As explained in Methods, we adapt the
MLM objective to our task by using a slightly modified masking process in which only one of the
two concatenated MSAs is masked.

In Fig. A2, we show that this modified loss decreases for increasing numbers of correctly matched
sequences in the MSA. We see that the sweet spot of the masking probability p (i.e. the value that
gives steeper and smoother loss curves) is at moderately high values (0.4 ≤ p ≤ 0.7). As we also
explain in Methods, high masking probabilities make it more challenging for the model to predict the
masked amino acids using only information coming from the masked MSA, thus encouraging it to
use, instead, information coming from the matched MSA. In this way, we make the value of the loss
more sensitive to the correctness of the matching. For these reasons, in all our experiments we use a
masking probability of p = 0.7.
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Figure A2: MLM loss vs. number of correct pairs for different masking probabilities. We use an
MSA of M = 50 sequences and 5 different species. To estimate the expected loss accurately, we
used 20 different masks at each step. Ltar denotes the expected loss when all pairs are correctly
matched. For visualization purposes, in every plot we rescale the loss by shifting it by Ltar.
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