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Abstract

Assessing the severity of new pathogenic variants requires an understanding of
which mutations enable escape of the human immune response. Even single point
mutations to an antigen can cause immune escape and infection by disrupting
antibody binding. Recent work has modeled the effect of single point mutations
on proteins by leveraging the information contained in large-scale, pretrained
protein language models (PLMs). PLMs are often applied in a zero-shot setting,
where the effect of each mutation is predicted based on the output of the language
model with no additional training. However, this approach cannot appropriately
model immune escape, which involves the interaction of two proteins—antibody
and antigen—instead of one protein and requires making different predictions
for the same antigenic mutation in response to different antibodies. Here, we
explore several methods for predicting immune escape by building models on
top of embeddings from PLMs. We evaluate our methods on a SARS-CoV-2
deep mutational scanning dataset and show that our embedding-based methods
significantly outperform zero-shot methods, which have almost no predictive power.
We also highlight insights gained into how best to use embeddings from PLMs
to predict escape. Despite these promising results, simple statistical baseline
models perform comparably, showing that computationally expensive pretraining
approaches may not be beneficial for escape prediction. Furthermore, all models
perform relatively poorly, indicating that future work is necessary to improve
escape prediction with or without pretrained embeddings1.

1 Introduction

Pathogens are constantly evolving in their search to evade the immune system and infect host
organisms [1]. In many organisms, including humans, this evolutionary battle occurs in the context
of antibody-antigen interactions [2]. Antibodies are proteins produced by the immune system that
are designed to bind to antigens, which are pathogenic proteins that induce an immune response.
Antibodies that effectively bind to an antigen and neutralize the pathogen put evolutionary pressure
on the pathogen to mutate its antigen in a process known as immune escape [3]. Predicting which
mutations cause escape is crucial to identifying dangerous pathogenic variants that can cause infection
and disease even in the presence of antibodies from prior infection, vaccination, or therapies [3–5].

Machine learning models have been developed that can predict the effect of protein mutations on
various protein functions [4, 6–9]. Recent approaches to mutation effect prediction have leveraged
large protein language models (PLMs) that have been trained in an unsupervised manner on huge
databases with hundreds of millions to billions of protein sequences [10, 11]. PLMs learn the
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underlying statistics of naturally occurring protein sequences and can predict the likelihood that a
given amino acid appears at a position in a protein. Prior work has shown that the relative likelihoods
of a mutated and wildtype amino acid at a given position are predictive of the effect of that mutation
in a zero-shot manner (i.e., without additional training) [6, 7, 12, 13].

However, a major limitation of the zero-shot likelihood approach is that it predicts the same likelihood
for a mutation regardless of the protein function in question [7]. Since proteins can have multiple
functions that are affected differently by the same mutation, one likelihood cannot model the effect of
a mutation on all of these functions simultaneously. Additionally, the likelihood only accounts for the
protein that is mutated, which means that it ignores any interacting proteins such as antibodies.

We propose to overcome these limitations by modeling immune escape using antibody and antigen
embeddings produced by a PLM. These embeddings encode information about the protein, including
aspects of 3D structure, that can inform the effect of protein mutations [14]. We build a lightweight
neural model that learns to extract information from the embeddings to predict escape in an antibody-
dependent manner. We develop several variants of this embedding-based approach and evaluate them
on a SARS-CoV-2 deep mutational scanning dataset from Cao et al. [5]. We show that embeddings
significantly outperform zero-shot likelihoods, which have almost no predictive power. We discuss
insights gained from our experiments about how best to use embeddings from PLMs to predict
escape. We also develop two statistical baseline models. These models perform comparably to the
embedding models, indicating that pretrained embeddings may not be beneficial for predicting escape.
Furthermore, the relatively poor performance of all models demonstrates that future work is necessary
to improve escape prediction with or without pretrained embeddings.

2 Methods

Our goal is to design a model that can predict the effect of antigenic single point mutations on the
binding ability of antibodies. The input to the model is the amino acid sequence of the wildtype
antigen, the site on the antigen that is mutated, the new amino acid that replaces the wildtype amino
acid at that site, and the amino acid sequences of the antibody’s heavy and light chains. The output of
the model is an escape score, which represents the degree to which antibody binding is reduced by
the mutated antigen.

Mutation Model. The mutation baseline model computes the average escape score for each pair
of (wildtype, mutant) amino acids and uses that average to predict escape for new antigens
with the same amino acid mutation pair. This model ignores the antibody sequences and the entire
antigen sequence except for the site that is mutated, and it assumes that escape depends solely on the
identities of the wildtype and mutant amino acids. Since there are 20 amino acids, this model has
20× 20 = 400 parameters. See Figure S.1 for a visualization of the model.

Site Model. The site baseline model computes the average escape score for each antigen site and
uses that average to predict escape for new antigens with the same mutation site. Like the mutation
baseline, this model ignores the antibody sequences and the entire antigen sequence except for the
mutated site. Additionally, it ignores the identities of the wildtype and mutant amino acids. The
model has one parameter for each site of the antigen. See Figure S.1 for a visualization of the model.

Likelihood Model. For our likelihood model, we adopt the zero-shot mutation prediction framework
of Meier et al. [7]. In this framework, the antigen sequence is input to a pretrained protein language
model model with the mutated site replaced by a mask token, and the escape score is predicted as the
model’s log odds ratio of the mutated amino acid versus the wildtype amino acid at that site. The
likelihood model does not require any additional training and it does not incorporate the antibody
sequences.

Embedding Models. Models that use pretrained protein language model embeddings provide
a more flexible way of predicting mutation effect. In these models, we train a small multilayer
perceptron to use some form of protein embedding as input to predict the escape score. All of the
models use an embedding of the mutated antigen, and some additionally use an embedding of the
wildtype antigen and/or embeddings of the antibody heavy and light chains. The embedding variants
are described below and are illustrated in Figure S.4.
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Antigen Sequence Mutant. The language model is given the mutated antigen sequence and
computes embeddings for each amino acid. Each embedding encodes the identity of the amino acid
as well as its role in the context of the antigen sequence. The amino acid embeddings are averaged to
form an embedding for the full antigen sequence. We refer to this embedding as Antigen Seq Mut.

Antigen Residue Mutant. As above, embeddings are computed for each amino acid in the mutated
antigen. Here, the embedding of the mutated residue is used instead of the sequence average. We
refer to this embedding as Antigen Res Mut.

Antigen Difference. Antigen embeddings for the mutated sequence and the wildtype sequence are
computed, either both at the sequence level or both at the residue level. The difference between the
embeddings (mutant minus wildtype) is computed. These embeddings are called Antigen Seq Diff
and Antigen Res Diff for the difference of sequence or residue embeddings, respectively.

Antibody. The language model computes embeddings for the heavy and light chains of the antibody.
For any of the antigen embeddings above, the antigen and antibody heavy and light chain embeddings
are concatenated. We refer to these embeddings as the name of the antigen embedding + Antibody.

3 Experiments

Here, we describe the data, data splits, tasks, metrics, and models that we use in our experiments.

3.1 Data

We use SARS-CoV-2 deep mutational scanning data from Cao et al. [5]. This data consists of 247
antibodies that are known to bind the original strain of SARS-CoV-2 by binding to the receptor
binding domain (RBD) of the spike protein. The binding ability of each antibody is measured for the
wildtype RBD antigen as well as for all 3,819 single point mutations to the antigen (201 sites in the
RBD with 19 amino acid substitutions at each site). For each antibody and each antigen mutation, an
escape score is computed as a normalized measure of the reduction in antibody binding compared to
the wildtype antigen (see Figure S.1). Of the 943,293 escape scores in the dataset, 30,658 (3.2%) are
non-zero, all in the range (0, 1] except for 74 outliers above 1 with a max of 3.6 (see Figure S.2). Cao
et al. [5] clustered the 247 antibodies into six groups based on their escape scores (see Figure S.3).

3.2 Data Splits

The practical usefulness of an escape prediction model, as well as the difficulty of learning such a
model, depends on how the data is split. Below we describe the data splits we use.

Mutation. Mutations are randomly split between train and test. This assumes that for a new
antibody, we already know escape scores for some but not all mutations across all antigen sites.

Site. Antigen sites are randomly split between train and test. This assumes that for a new antibody,
we already know escape scores for some but not all antigen sites.

Antibody. Antibodies are randomly split between train and test. This assumes that we do not know
any escape scores for a new antibody, but that antibody may have a similar pattern of escape to
antibodies in the train set.

Antibody group. Antibody groups, as defined by a clustering of escape scores, are randomly split
between train and test. This assumes that we do not know any escape scores for a new antibody, and
no antibody in the train set has a similar pattern of escape to that antibody.

The latter two splits are more practically useful because they demonstrate the effectiveness of escape
prediction for antibodies that have not undergone any experimental escape measurements. Models
that are effective under these data splits could be used to guide antibody selection or design.
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For all four splits, we train and test the models across all antibodies (cross-antibody setting) using
five-fold cross-validation. For the mutation and site splits, we also train and test separate models for
each of the 247 antibodies (per-antibody setting) since each antibody can appear in train and test.

3.3 Tasks and Metrics

For all of the models except for the likelihood model, which doesn’t require training, we train the
model either for a regression task, where escape scores are real values, or for a classification task,
where escape scores are binarized into zero or non-zero escape. All models are evaluated with the
metrics ROC-AUC (area under the receiver operating characteristic curve) and PRC-AUC (area under
the precision-recall curve), and regression models are additionally evaluated with the metrics MSE
(mean squared error) and R2 (coefficient of determination).

3.4 Protein Language Model

For the likelihood and embedding models, we use the pretrained protein language model ESM2 [14].
We specifically use the esm2_t33_650M_UR50D version of the model consisting of 33 layers and
650M parameters that was trained on the UniRef50 database [15]. The embeddings produced by this
model have a dimensionality of 1,280.

3.5 Multilayer Perceptron

For all the embedding models, we train a multilayer perceptron (MLP) to predict escape score from
the embedding. The MLP has two hidden layers with 100 neurons in each layer and ReLU activation
followed by a single linear output with sigmoid activation for classification. The model is trained with
mean squared error loss for regression and binary cross entropy for classification using the Adam
optimizer [16]. Per-antibody models were trained for 50 epochs while cross-antibody models were
trained for one epoch. We implemented the MLP using PyTorch version 1.12.1 [17]. Due to the
lightweight nature of the model, we were able to train each model in under an hour on a single CPU.

4 Results

In this section, we highlight some of the key results from our experiments (see Figure 1). We only
show classification model results since the regression models performed poorly. Additionally, since
the relative ranking of models was similar between ROC-AUC and PRC-AUC but the differences in
PRC-AUC scores were more noticeable, we only present PRC-AUC results. We show results for all
data splits and for a subset of the models, leaving out embedding models whose performance was not
insightful for space. The complete set of results across all settings is in Appendix D.

Mutation Model. The mutation baseline model is a very weak model. On the mutation and site
splits in the per-antibody setting, the model has essentially no predictive power, and on all four splits
in the cross-antibody setting, the model performs poorly. This is to be expected since the model
ignores the mutation site even though the mutation site is very informative of immune escape due to
the consistent interaction of key sites with binding antibodies.

Site Model. The site baseline model is strong across most splits with the exception of the site split
where the model has no information about unseen sites. The site model is frequently competitive
with the best embedding models despite containing only 201 parameters instead of 650M parameters.
The site model is significantly more effective in the per-antibody mutation split than in any of the
cross-antibody splits since escape is highly consistent at a given antigen site for an antibody across
amino acid mutations. Even so, the fact that the model retains some predictive power across antibodies
and antibody groups indicates that patterns of escape at specific sites are conserved.

Likelihood Model. The likelihood model has virtually no predictive power across all data splits.
This is in contrast to examples in the literature where likelihoods achieve reasonable mutation effect
prediction performance [7]. This finding demonstrates a fundamental limitation of the zero-shot
prediction framework since likelihoods derived from models trained to recreate naturally occurring
proteins may not be calibrated to predict the probability of antigen escape.
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Figure 1: Classification model results with the PRC-AUC metric across data splits (x-axis) and
models (color-coded bars). Error bars indicate the standard deviation across 247 antibodies for
per-antibody splits and across five-fold cross-validation for cross-antibody splits.

Embedding Models. The embedding models generally match or exceed the performance of the
two baseline models and the likelihood model across all data splits. This indicates that pretrained
protein language models contain information that is useful for mutation effect prediction but require
that their representations are adapted to the task rather than used in a zero-shot manner.

These results provide several interesting takeaways regarding how best to use pretrained embeddings
to predict escape. The Antigen Seq Diff embedding consistently outperforms the Antigen Seq
Mut embedding, which indicates that the change in embedding from wildtype to mutant is more
informative than the mutant embedding in isolation. The Antigen Res Mut embedding outperforms
the Antigen Seq embeddings (Mut or Diff), perhaps because the sequence embeddings contain largely
irrelevant information from the non-mutated residues. Interestingly, using embedding differences
does not improve performance at the residue level (see Appendix D). As seen from the Antigen Res
Mut + Antibody embedding, including antibody embeddings provides a benefit in all cross-antibody
data splits except for the antibody group split, indicating that the antibody embedding is useful only
in cases with the same or a similar antibody but not with a very different antibody.

5 Conclusion

We presented several methods for predicting immune escape using pretrained protein language model
embeddings. We performed a comprehensive set of experiments on a SARS-CoV-2 deep mutational
scanning dataset and showed that embeddings from these language models are much more effective at
predicting escape than zero-shot likelihoods. Notably, the Antigen Res Mut + Antibody embeddings
performed best, indicating that escape should be modeled at the residue level with both antigen and
antibody embeddings. Although these results are promising, the relatively strong performance of
the simple site baseline model and the overall poor performance of all models across most splits
demonstrate that significant future work is needed to make accurate and useful escape predictions.
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Figure S.1: SARS-CoV-2 immune escape data from Cao et al. [5] and associated statistical models.
(Left) The average escape score across all amino acid mutations for each antibody and each antigen
site in the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. (Middle) A mutation
model fit on the full dataset, showing the escape score for each wildtype to mutant amino acid change
averaged across all antigen sites and antibodies. (Right) A site model fit on the full dataset, showing
the escape score for each antigen site averaged across all amino acid mutations and antibodies. Note:
In all figures, the 74 escape scores greater than 1 (max 3.6) are truncated to 1.

A Data and Code Availability

The SARS-CoV-2 deep mutational scanning data from Cao et al. [5] is available at https://github.
com/jbloomlab/SARS2_RBD_Ab_escape_maps/tree/main/data/2022_Cao_Omicron. The
file data.csv contains the escape data for each antibody-antigen mutation combination, and the
file antibodies.csv contains the sequences for the heavy and light chains for all the antibodies.
The ESM2 pretrained protein language model [7] that we used is the esm2_t33_650M_UR50D model
from https://github.com/facebookresearch/esm. Our code, data, embeddings, and results
are available at https://github.com/swansonk14/escape_embeddings.

B Data Visualization

Figures S.1, S.2, and S.3 visualize the SARS-CoV-2 deep mutational scanning data from Cao et al.
[5]. Figure S.1 shows the escape scores across antibodies and antigen sites along with the mutation
and site models fitted on the whole dataset. Figure S.2 shows a histogram of the non-zero escape
scores. Figure S.3 shows the escape scores across antibodies and antigen sites with antibodies divided
into groups according to the escape-based clustering performed by Cao et al. [5].

C Embedding Model Figure

Figure S.4 shows an illustration of the embedding models used in this paper.

D Complete Results

The remaining figures in the appendix show the complete set of results for all combinations of data
splits, models, and tasks that we ran. These results are also available in tabular form along with the
data and embeddings at https://github.com/swansonk14/escape_embeddings.
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Figure S.2: The distribution of the 30,658 non-zero escape scores in the SARS-CoV-2 deep mutational
scanning data from Cao et al. [5]. Note: The 74 escape scores greater than 1 (max 3.6) are truncated
to 1.
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according to the antibody clusters defined by Cao et al. [5]. Note: The 74 escape scores greater than
1 (max 3.6) are truncated to 1.

10



+

–

N A T

PLM

MLP Escape = 0.9

Avg

N I T

PLM

Avg

M D W

PLM

Avg

Antigen (wt) Antigen (mut) Antibody (heavy)

M E T

PLM

Avg

Antibody (light)

Seq Res

MutDiff

Antibody

Seq Res

Figure S.4: An illustration of the various PLM embedding models for predicting immune escape. The
different embedding types are described in detail in Section 2. Note that ⊕ indicates concatenation
and ⊖ indicates elementwise difference.

11



Mutation
Per-Antibody

Mutation
Cross-Antibody

Site
Per-Antibody

Site
Cross-Antibody

Antibody
Cross-Antibody

Antibody Group
Cross-Antibody

0.0

0.2

0.4

0.6

0.8

1.0

PR
C-

AU
C

Classification PRC-AUC
Mutation
Site
Likelihood
Antigen Seq Mut
Antigen Seq Diff
Antigen Res Mut
Antigen Res Diff
Antigen Seq Mut + Antibody
Antigen Seq Diff + Antibody
Antigen Res Mut + Antibody
Antigen Res Diff + Antibody

Figure S.5: Classification model results using the PRC-AUC metric.
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Figure S.6: Classification model results using the ROC-AUC metric.
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Figure S.7: Regression model results using the PRC-AUC metric.
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Figure S.8: Regression model results using the ROC-AUC metric.
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Figure S.9: Regression model results using the MSE metric.
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Figure S.10: Regression model results using the R2 metric.
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