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Abstract

A long-standing goal of machine-learning-based protein engineering is to acceler-
ate the discovery of novel mutations that improve the function of a known protein.
We introduce a plug and play framework for evolving proteins in silico that sup-
ports mixing and matching a variety of unsupervised evolutionary models with
supervised models to help constrain search to regions likely to contain functional
proteins. Our framework achieves this by sampling from a product of experts
distribution defined in discrete protein space and does not require any model fine-
tuning or re-training. Instead of resorting to brute force or random search, as is
typical of previous plug and play algorithms for protein engineering, we derive
a fast discrete sampler that uses gradients to identify promising mutations. Our
in silico directed evolution experiments on wide fitness landscapes show that we
efficiently discover variants with high evolutionary likelihood and estimated ac-
tivity that are multiple mutations away from the wild type protein. Our framework
is also analyzed across a range of different unsupervised evolutionary models in-
cluding a 650M parameter protein language model.

1 Introduction

Engineering proteins to improve their productivity or catalyze new reactions requires scientists to
navigate the complex landscape mapping a protein’s amino acid sequence to its structure and func-
tion (Li et al., 2020). Directed evolution is a classic approach inspired by natural evolution where
random mutations to a protein’s sequence are screened until higher-performing variants are found,
at which point the process repeats starting from these variants (Kuchner & Arnold, 1997). However,
this becomes impractical when a protein’s activity cannot be assessed in a high-throughput fashion.
Brute force search only explores a limited (single or double) mutation window size; for a protein
with 400 amino acids, there are∼ 1019 ways to make five single substitutions assuming the standard
vocabulary of 20 amino acids. It is also remarkably difficult to find proteins with improved function.
Most of the protein space is non-functional and beneficial mutations are rare (Arnold, 1998).

As supervised machine learning for predicting protein function from primary sequence im-
proves (Dallago et al., 2021; Hsu et al., 2022), machine-learning-based directed evolution has
emerged as a way to improve candidate selection between design rounds, with aims of reducing
time spent in the wet lab (Yang et al., 2019; Wu et al., 2021; Biswas et al., 2021). We argue that
the promising performance of recent unsupervised evolutionary sequence models for mutation effect
prediction (Meier et al., 2021; Hsu et al., 2022; Weinstein et al., 2022) has motivated a reconsidera-
tion of simple black-box algorithms as a way to mix and match unsupervised and supervised models
for candidate selection without requiring any fine-tuning or retraining. Combining both types of
models is advantageous because unsupervised evolutionary models learn information that, for e.g.,
is useful for steering search away from adversarial sequences that can fool supervised models due to
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Figure 1: Our goal is to improve the candidate selection step between design rounds of directed
evolution. To that end, we introduce a plug and play sampler for discovering high-fitness variants
near a wild-type (WT) protein. Our framework assigns probabilities to proteins with a product of
experts distribution, which allows us to easily compose unsupervised evolutionary protein models
with supervised models of protein fitness. We derive a fast gradient-based discrete MCMC sampler
to efficiently sample from this distribution. An example MCMC trajectory of single amino acid
mutations is shown in red. Each protein is a sequence of amino acids, e.g., “KMQAI”.

overestimation errors (Szegedy et al., 2014). Supervised models contain specific information about
beneficial mutations gleaned from assay-labeled data. Black-box algorithms are particularly appeal-
ing for “plug and play” search due to their simplicity, flexibility, compatibility with discrete spaces,
and use of interpretable mutation operators. However, they converge extremely slowly to variants
with high predicted fitness. A simple plug and play framework for directed evolution has remained
elusive due to the difficulty of fast search in discrete, high-dimensional spaces.

To that end, this paper introduces Plug and Play Directed Evolution (PPDE), a method for searching
for high-fitness variants of a wild-type (WT) protein directly in discrete protein space. PPDE flexibly
combines unsupervised evolutionary models and supervised models by using a product of experts
distribution (Hinton, 2002) p(x) =

∏M
i pi(x). Combining both types of protein models in this

manner encourages variants to have both high evolutionary likelihood and high predicted activity.
We sample efficiently from the high-dimensional, discrete, and unnormalized distribution p(x) by
deriving a fast Markov chain Monte Carlo (MCMC) sampler that uses gradients of p(x) to propose
mutations (Figure 1). PPDE nearly maintains all of the characteristics of black-box algorithms—it
additionally assumes that p(x) is differentiable at each discrete point of protein space. We character-
ize the efficiency of this sampler and empirically show that our framework works with a variety of
pre-trained unsupervised evolutionary models without continuous relaxations and without retrain-
ing or fine-tuning. Although our formulation can be applied to a broad class of biological sequence
design tasks, we focus on proteins due to the current widespread availability of pre-trained models.

1.1 Background

Before describing our sampler for plug and play directed evolution, we first introduce gradient-
based discrete MCMC. Let f(x) be the unnormalized log probability of x such that log p(x) =
f(x) − logZ where Z =

∑
x∈X exp(f(x)) is a normalizing constant. Uninformed Metropolis

Hastings (MH) (Metropolis et al., 1953; Hastings, 1970) proposals such as a uniform distribution
are often inefficient for sampling from high-dimensional discrete distributions since candidate states
x′ are proposed “blindly”. In general, the efficiency of MH algorithms is highly dependent on the
choice of proposal distribution. MH with locally-balanced informed proposals (Zanella, 2020) uses
distributions of the form

q(x′|x) ∝ exp(f(x′)− f(x)) 1
2 1(x′ ∈ N (x)). (1)

This proposal is biased towards local state transitions that incur an increase in likelihood2. Since
enumerating all local moves in N (x) in discrete high-dimensional spaces is infeasible, an effi-

2We take the square root of the exponential in this proposal as the choice of local balancing function w(t) =
tw(1/t), ∀t > 0. This function “balances” the acceptance and rejection probabilities in the local neighborhood
N (x) to achieve a high acceptance rate. The square root w(t) =

√
t was empirically validated as a good

default option in Zanella (2020).
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cient alternative is available for functions f(x) whose gradient can be evaluated at the discrete
state x (Grathwohl et al., 2021). A gradient-based locally-balanced informed proposal for discrete
MCMC uses a first-order Taylor-series approximation around each x′ in the neighborhood N (x) to
bias the proposal towards promising next states:

q̃(x′|x) ∝ exp

(
1

2
∇xf(x)

T (x′ − x)
)

1(x′ ∈ N (x)). (2)

When N (x) is the 1-Hamming ball, this proposal amounts to a tempered softmax over single
changes to one dimension of x. One forward pass and one backwards pass is required to compute
the forward q̃(x′|x) and reverse q̃(x|x′) approximate proposals.

2 Plug and Play Directed Evolution

We consider the problem of searching for mutations that improve a target property of a given WT
protein. This search problem is defined over discrete protein sequences x := {x0, . . . , xL−1},
x ∈ X , of length L with each xi taking on a value in a vocab of size V (typically V = 20 for the 20
standard amino acids). We assume that each xi is one-hot encoded.

We now present our probabilistic framework for sampling from a combination of unsupervised and
supervised sequence models without requiring any re-training or fine-tuning. We construct a distri-
bution that has its probability mass on proteins that have both high evolutionary density f(x) (i.e.,
high likelihood of being a naturally occurring protein) and high predicted activity g(x) by taking the
product of multiple pre-trained “expert” distributions:

log p(x) ∝
∑
i

fi(x) + λ
∑
j

gj(x). (3)

Each fi(x) is an unsupervised evolutionary model and each gj(x) is a supervised model. Typically,
fi(x) has been trained to do density estimation on unlabeled yet aligned sequences (e.g., multiple
sequence alignments (MSAs)) or unaligned sequences, while gj(x) may be an ensemble of nonlin-
ear regressors trained to predict activity on a labeled dataset of mutants. The unsupervised experts
pf (x) ∝

∏
i exp (fi(x)) act as a soft constraint that keeps the sampler near regions of high evolu-

tionary density and away from, e.g., adversarial optima of the supervised models. Examples include
the EVmutation Potts model (Hopf et al., 2017) and the ESM protein language models (Rives et al.,
2021; Lin et al., 2022). The supervised experts pg(x) are soft constraints that guide sampling towards
proteins that have high activity, where pg(x) is a Boltzmann distribution pg(x) ∝

∏
j exp (λgj(x))

that assigns high probability to sequences with high activity. The hyperparameter λ allows us to
balance the contribution of the unsupervised and supervised experts.

2.1 Product of experts gradient-based discrete MCMC

Sampling from the product of experts (Equation 3) is difficult since log p(x) is unnormalized. We
derive a fast gradient-based discrete MCMC sampler for log p(x) by assuming that each expert is
a continuous function that is differentiable at each discrete x ∈ X (e.g., as is the case when the
experts are neural networks). During each step of MCMC, we use the gradient of each expert to
approximate the likelihood change in the local neighborhood N (x) to bias the mutation proposal
towards promising mutations.

We adapt the gradient-based path proposal from Sun et al. (2022), which is capable of performing
large jumps in protein space per step of MCMC. In detail, our path proposal with path length R ∼
Unif(1, U) is q̃R(x′|x) =

∏R
r=1 q̃

(
xr|xr−1

)
where q̃

(
xr|xr−1

)
is

exp

(
1

2

M∑
i=1

∇xfi(x)
T (xr − xr−1) + λ

N∑
j=1

∇xgj(x)
T (xr − xr−1)

)
1(xr ∈ N (xr−1)). (4)

We use this path proposal to sample R single amino acid substitutions, which we apply to the
current protein x := x0 at each step of MCMC. The terminal state of a single path x′ := xR is the
variant that results from the accumulation of the R substitutions. To avoid computing extra forward
and backwards passes at intermediate path states, following Sun et al. (2022) we re-use the gradient
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Algorithm 1 Plug and Play Directed Evolution (PPDE)
input one-hot encoded wild-type protein xWT , unsupervised experts fi, supervised experts gj ,

scale λ, max path length U
output evolved protein x

define x := x0, x′ := xR−1, π(x) :=
∑

i fi(x) + λ
∑

j gj(x)
while still searching do

// compute the forward path proposal distribution

sample path length R ∼ Unif(1, U)
for r ∈ {1, . . . , R− 1} do
d(xr|xr−1) =

∑
i∇xfi(x)

T (xr − xr−1) + λ
∑

j ∇xgj(x)
T (xr − xr−1)

q̃(xr|xr−1) = categorical

(
softmax

(
d(xr|xr−1)

2

))
// sample a single amino acid substitution and apply

xr ∼ q̃(xr|xr−1)
// compute the reverse path proposal distribution for r = R− 1, . . . , 1
d(xr−1|xr) = ∇x′

∑
i fi(x

′)T (xr−1 − xr) + λ∇x′
∑

j gj(x
′)T (xr−1 − xr)

q̃(xr−1|xr) = categorical

(
softmax

(
d(xr−1|xr)

2

))
// accept x′ with probability

min

{
1, exp(π(x′)− π(x))

∏1
r=R−1 q̃(x

r−1|xr)∏R−1
r=1 q̃(x

r|xr−1)

}

taken with respect to the path origin x0. The same is done for the reverse path proposals q̃(xr−1|xr)
with respect to the terminal state xR. Algorithm 1 shows pseudo-code for our fast MCMC sampler
for plug and play directed evolution of proteins. The sampler follows the basic structure of MH
MCMC. At each sampler step, we first compute the forward path proposal distribution q̃R(x′|x)
which we use to sample the proposed protein x′. Then, we compute the reverse path proposal dis-
tribution q̃R(x|x′). We use these probabilities to compute an acceptance probability for determining
whether to accept or reject x′, after which the process repeats until termination.

2.2 Sampler Analysis

The following corollary to Theorem 3 from Sun et al. (2022) relates the smoothness of each expert
to the sampler’s ability to efficiently explore protein space.

Corollary 1 Assume each expert fi is differentiable, ∇xfi(x) is Ki-Lipschitz, the max path length
is U , and a 1-Hamming ball neighborhood N (x). Let QR(x, x

′) and Q̃R(x, x
′) be the Markov

transition kernels induced by our sampler with the product of experts proposal qR(x′|x) and with
its approximation q̃R(x′|x), respectively. These transition kernels are related by

Q̃R(x, x
′) ≥

(
M∏
i=1

e−Ki
U(U+1)

2

)
QR(x, x

′). (5)

See Appendix A.1 for the proof. This result tells us that a single expert whose gradient has a large
Lipschitz constant could greatly reduce the overall efficiency of the sampler.

3 In silico Directed Evolution Experiments

We use the three benchmark proteins from Hsu et al. (2022) with higher-order mutants as well as
their provided MSAs for our in silico directed evolution experiments. The Poly(A)-binding protein
(PABP) dataset of variants measuring binding activity (95 residue subsequence, each variant has ≤
2 mutations), the ubiquitination factor E4B (UBE4B) protein dataset measuring ligase activity (103
residue subsequence, each variant has ≤ 6 mutations), and GFP protein dataset measuring fluores-
cence (237 residues, each variant has ≤ 15 mutations). To emulate a realistic protein engineering
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Figure 2: Cumulative maximum product of experts log probability averaged across the population.
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Figure 3: Plugging in different unsupervised experts into PPDE for UBE4B.

setup with reasonable amounts of data for training our supervised experts g(x), we use the “2-vs-
rest” mutation train/test split suggested in Dallago et al. (2021)—that is, after splitting each dataset
80/20, we keep only sequences with two or fewer mutations for training and subsample 10% of these.
This amounts to 3K sequences for PABP, 2K for UBE4B, and 1K for GFP. We use the EVmutation
Potts and ESM2 family of protein language models as pre-trained unsupervised experts.

As baselines, we use simulated annealing with random mutation proposals as in Biswas et al.
(2021). We also consider a simpler variation (random sampling) without acceptance criteria.
CMA-ES (Hansen & Ostermeier, 1996) is a black-box evolutionary algorithm for continuous spaces
and MALA-approx (Nguyen et al., 2017) is gradient-based MCMC for continuous spaces. Both
require continuous relaxations. We run each sampler from the WT 128 times for 10K steps and
use the sample with the highest log p(x) to assemble the final population of 128 variants. Activ-
ity of proteins (log fitness) is scored relative to WT with the Augmented EVmutation Potts oracle
from Hsu et al. (2022) trained on all mutants in each 80% train split. We use a different transformer,
the MSA Transformer (Rao et al., 2021), conditioned on 500 randomly subsampled sequences from
each protein’s provided MSA as an evolutionary density score relative to WT. We also calculate the
population diversity and average number of mutations from WT. Higher is better for all metrics.

Results: See Tables 1,2 in the appendix for numerical results. PPDE enables efficient discovery
of promising mutants farther away from WT than random-walk-based baselines. Figure 2 shows
that, across all three proteins, PPDE most rapidly and effectively explores the product of experts
distribution. Figure 3 highlights the plug and play ability of PPDE.

4 Conclusions

In this study, we have shown how to flexibly combine unsupervised models of evolutionary density
and supervised models of protein fitness and how to efficiently sample from the resulting distribution
to discover proteins that maximize a desired function while avoiding poor local optima. This strategy
leverages the vast amounts of unlabeled data that are available for unsupervised pre-training to
improve generated sequences, even when relatively few labelled data are available for training the
fitness function. Future work may extend this framework to larger problems in biological design.
For instance, the simultaneous engineering of several sequences in multimeric enzyme complexes,
or incorporating substrate structure in evaluating the likelihood of enzyme-substrate complexes.
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A Appendix

A.1 Proof for Corollary 1

The basic idea of the proof is to use the triangle inequality to obtain a bound on the approximation
error of a sum of experts which assumes that each expert has sufficiently smooth gradients.

Definition A function f : RN → R has K-Lipschitz continuous gradient when

‖∇x′f(x
′)−∇xf(x)‖ ≤ L‖x′ − x‖ (6)

for all x, x′ ∈ RN .

For convenience, we reproduce a pertinent result here from Nesterov (1998) (Lemma 1.2.3).

Lemma 1.2.3 Nesterov (1998) If f : RN → R has an L-Lipschitz gradient, then for any x, x′ ∈ RN

we have:

|f(x′)− f(x)− 〈∇xf(x), x
′ − x〉| ≤ L

2
‖x′ − x‖2. (7)

Lemma 1 For functions f and g with Kf -Lipschitz and Kg-Lipschitz gradients respectively, the
sum-composition h = f + g has (Kf +Kg)-Lipschitz gradient.

Proof : By the triangle inequality:

‖∇x′h(x
′)−∇xh(x)‖ = ‖∇x′(f(x

′) + g(x′))−∇x(f(x) + g(x))‖
= ‖∇x′f(x

′) +∇x′g(x
′)−∇xf(x)−∇xg(x)‖

≤ ‖∇x′f(x
′)−∇xf(x)‖+ ‖∇x′g(x

′)−∇xg(x)‖
≤ (Kf +Kg)‖x′ − x‖. (8)

Lemma 2 Suppose fi, i = 1, . . . ,M are functions withKi-Lipschitz gradient. Then for any x, x′ ∈
RN we have∣∣∣∣∣

M∑
i=1

(
fi(x

′)− fi(x)
)
−
〈 M∑

i=1

∇xfi(x), x
′ − x

〉∣∣∣∣∣ ≤
∑M

i=1Ki

2
‖x′ − x‖2. (9)

Proof: Let g =
∑M

i=1 fi where each fi, i = 1, . . . ,M has Ki-Lipschitz gradient. By Lemma 1 we
can see that g has a

∑M
i=1Ki-Lipschitz gradient. Then Lemma 2 follows immediately by applying

Lemma 1.2.3 from Nesterov (1998) to g.

The proof of Corollary 1 proceeds by bounding the approximation error between two consecutive
states xr−1 and x′ ∈ N (xr−1) in a path of length R ∼ Unif(1, U). For simplicity we assumeN (x)
is the 1-Hamming ball, i.e., ‖xr − xr−1‖2 = 1.

For g =
∑M

i=1 fi which has K =
∑M

i=1Ki-Lipschitz gradient, Lemma 2 gives us that

−K
2
≤ g(x′)− g(xr−1)− 〈∇g(xr−1), x′ − xr−1〉 ≤ K

2
.

Then an upper bound for g(x′)− g(xr−1) is

g(x′)− g(xr−1) ≤ 〈∇g(xr−1), x′ − xr−1〉+ K

2

= 〈∇g(x0), x′ − xr−1〉+ 〈∇g(xr−1)−∇g(x0), x′ − xr−1〉+ K

2

≤ 〈∇g(x0), x′ − xr−1〉+Kr +
K

2

= 〈∇g(x0), x′ − xr−1〉+K(r − 1

2
).
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Following similar steps, we also have

g(x′)− g(xr−1) ≥ 〈∇g(x0), x′ − xr−1〉+K(r +
1

2
).

The remainder of the proof for Corollary 1 exactly follows Equations 64-72 in the proof of Theorem
3 in Sun et al. (2022) with g(x) which has K-Lipschitz gradient.
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Table 1: 50th(100th) percentile scores. Population size is 128. Across all three proteins, PPDE (Potts) and PPDE (Potts+ESM2) in particular discover variants with
higher predicted fitness and average mutations than the random-mutation-based samplers and MALA-approx . PPDE (Potts) achieves the highest evolutionary
density scores on PABP; we attribute slightly lower evolutionary density scores compared to the baselines (except CMA-ES) on the more challenging UBE4B and
GFP proteins because PPDE discovers variants with higher average mutations ( ∼ 2− 4+ mutations vs. ∼ 1 mutation) and higher predicted fitness. CMA-ES finds
variants with high numbers of mutations (∼ 10− 17) but low evolutionary density scores (3.47 on PABP, -94.76 on UBE4B and -62.43 on GFP compared to 6.92,
-4.79, and -5.98 for PPDE (Potts)). CMA-ES seems to have significant difficulty with the larger proteins UBE4B and GFP; e.g., on GFP it achieves a log fitness
of -2.50 compared to -0.04 for PPDE. We conclude that CMA-ES can be recommended for use only when a single protein variant is desired and the length of the
protein is relatively small (e.g., ≤ 95 residues).

Log fitness↑
(Augmented EVmutation)

Evolutionary density↑
(MSA Transformer)

Exploration
(mean±std # muts)

Potts expert PABP UBE4B GFP PABP UBE4B GFP PABP UBE4B GFP

PPDE 0.27(0.86) 0.39(1.18) -0.04(0.24) 6.92(13.43) -4.79(-2.14) -5.98(-0.76) 3.5± 0.9 2.7± 0.6 2.0± 0.3

Random search 0.09(0.82) -0.19(0.34) -0.04(0.04) 4.26(6.87) -1.09(2.46) -0.11(-0.11) 1.3± 0.5 1.1± 0.3 1.0± 0.2

Sim. annealing 0.09(0.44) -0.19(0.28) -0.04(0.10) 3.55(8.63) -0.94(2.70) -5.89(-0.99) 1.3± 0.5 1.0± 0.2 1.0 ±0.1

MALA-approx 0.09(0.56) -0.19(0.58) -0.04(0.10) 2.25(5.14) -0.89(1.54) -6.74(-1.88) 1.3± 0.5 1.03± 0.2 1.03± 0.2

CMA-ES 1.37(1.37) 2.54(2.54) -2.50(-0.15) 3.47(3.47) -94.76(0.0) -62.43(0.0) 17.0± 0 15.5± 6.2 10.2± 9.4

Unsupervised experts

Potts (No supervised) 0.70(1.47) 0.12(0.99) -0.18(0.21) 9.17(18.54) -4.24(-2.68) -1.88(-1.59) 4.7 ± 1.2 2.6 ± 0.5 1.2 ±0.4

None (Supervised only) 0.14(0.44) 1.66(5.26) -0.23(0.14) -2.56(0.48) -6.83(-6.29) -9.28(-2.13) 1.9 ± 0.8 1.3 ± 0.7 1.7± 0.8

ESM2 0.14(0.63) 1.66(5.56) -5.55(0.16) -2.38(5.56) -6.58(-3.83) -126.82(5.90) 2.9± 1.3 2.2± 2.2 14.9± 12.6

Potts+ESM2 0.44(1.48) 1.30(3.33) -0.04(0.33) 9.12(19.34) -13.6(1.98) -7.17(8.11) 5.3±1.8 4.3±0.7 2.1±0.3

Table 2: Population diversity (% unique sequences out of 128). PPDE samplers achieve the best diversity scores across all proteins.
Random
search

Simulated
annealing MALA-approx CMA-ES PPDE

(Potts only)
PPDE

(Super. only)
PPDE
(Potts)

PPDE
(ESM2)

PPDE
(Potts+ESM2)

PABP 32.8 28.9 28.9 0.8 85.2 60.2 65.6 63.1 85.2
UBE4B 7.0 4.7 6.2 3.1 12.5 18.8 18.8 36.5 31.3
GFP 9.4 3.9 9.4 92.2 8.6 59.4 22.7 92.9 21.9
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