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Abstract

We propose a parametric forward model for single particle cryo-electron mi-
croscopy (cryo-EM), and employ stochastic variational inference to infer posterior
distributions of the physically interpretable latent variables. Our cryo-EM for-
ward model accounts for the biomolecular configuration (via spatial coordinates
of pseudo-atoms, in contrast with traditional voxelized representations) the global
pose, the effect of the microscope (contrast transfer function’s defocus parameter).
To account for conformational heterogeneity, we use the anisotropic network model
(ANM). We perform experiments on synthetic data and show that the posterior of
the scalar component along the lowest ANM mode and the angle of 2D in-plane
pose can be jointly inferred with deep neural networks. We also perform Fourier
frequency marching in the simulation and likelihood during training of the neural
networks, as an annealing step.

1 Introduction

Single particle electron cryomicroscopy (cryo-EM) is a structural biology technique that gives detailed
near-atomic-level information of biomolecules. Experimentalists labour for weeks, months, or even
years to perfect experimental conditions that yield images which can be algorithmically processed
to yield 3D structural insights. Here we propose an inference procedure that aims to determine
the distribution of atomic heterogeneity from 2D images of single particles collected in a cryo-EM
experiment, focusing on inferring interpretable parameters in a probabilistic framework.

Cryo-EM is a unique inverse imaging problem, in that there is a rich tradition of parametric equations
in the forward model: for example, the three dimension structure of large biomolecules (typically
folded proteins sometimes with nucleic acid and lipid) and the electron optics equations of the
microscope. However, most cryo-EM data processing packages (1; 2; 3; 4; 5; 6) employed by
practitioners transform raw 2D microscope images into one or more voxelized 3D maps that discretely
represents a 3D scalar field numerically. This has been largely influenced by the historical context of
data processing pipelines which grew out of a tradition of digital signal processing and computerized
tomography (7; 8; 6). After map reconstruction practitioners then use another set of software tools to
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fit atomic models into these 3D maps (9; 10; 11). Atomic models live in a coordinate based space,
∈ R3na , where na is the number of atoms; and the structural biology research community deposits
them to the Protein Data Bank (12). To solve the “reconstruction problem” in cryo-EM one averages
2D images together into a 3D map of the Coulombic density. This siloed workflow is common (13)
but at the same time problematic when does not quantify uncertainty propagation through the stages
of computational workflows.

In contrast, recent work has focused on an atom or pseudo-atom encoding (14; 15; 16; 17) and some
of this work has been compared and contrasted against voxelized treatments in a unifying framework
in a recent review (18). Coordinated based approaches provides an opportunity to encode domain
knowledge through physics based parametric forms, distribution types suited to their spaces (e.g.
directional distributions for 2D pose), and distributional parameters coming from prior knowledge
(e.g. CTF estimate, published atomic structures).

Here we propose a method to learn an ensemble of atomic structures directly from raw 2D cryo-
EM measurements, and we perform inference on three latents: (1) continuous conformational
heterogeneity (in contrast to discrete configurations), (2) the defocus of the point spread function of
the microscope’s objective lens, and equivalently its Fourier transform, the contrast transfer function
(CTF), and (3) global 2D rotational pose. We consider the restricted case with a known fixed reference
atomic model, and experiment on synthetic data with pose restricted to in plane 2D rotations as
a proof of concept. Evaluation of the forward model, with all the cryo-EM specific deterministic
computations, is rapid enough that it can be applied to each gradient step in gradient-based inference
methods. We choose to approach this problem in a stochastic variational amortized inference setting
(19; 20; 21). Our contributions are:

1. Scale the forward model to a large number of atoms in a large field of view (“box size"),
with a fast approximate projection.

2. Perform inference on global 2D pose and conformational heterogeneity through deep encoder
neural network architectures that map to a latent space that is physically interpretable through
the forward model.

3. Employ frequency marching during training in the forward model and its likelihood, without
having to retrain the inference neural networks.

4. Characterize the global rotation posterior with a projected normal mixture. (22).

2 Related Work

Over the past several years previous studies have employed a coordinate based representation
(pseudo)atoms and perform inference with deep neural nets. EMAN2’s deep Gaussian mixture
model (14) uses an auto-encoder to represent continuous heterogeneity as a mixture of N = 2000−
3000 Gaussian pseudo-atoms with learnable amplitude and location. Cryofold (15) represents the
biomolecule as a set of coarse grained pseudo-atoms and learn parameters which control how intense
and how spread out the Gaussian kernels are. They use a variational auto-encoder (VAE) to learn
offsets to Gaussian centers and incorporate a prior that respects the polymeric nature of the folded
protein. Rosenbaum et al. proposed a method that learns a conformational ensemble from synthetic
cryo-EM measurements using a VAE approach (16) with a multilayer perceptrons (MLP) neural
network architecture and all distributions are Gaussian. They learn the 3D pose and conformation of a
coarse grained atomic representation, where each amino acid residue is represented by one Gaussian
spherical density. They regularize the output of the conformational encoder and keep it close to the
reference conformation with a backbone continuity loss. In contrast to these methods here the ANM
employed in our forward model couples together heterogeneity of pseudo-atoms through the ANM
component. We also sample from a projected normal distribution in the latent space for pose, and
employ a mixture of projected normals in the variational posterior to account for uncertainty in the
pose estimate.

Concurrent with this work Nashed et al.(17) demonstrate that the ANM modes capture the hetero-
geneity of adenylate kinase transitioning between open and closed conformations. A continuous
trajectory was discreatly sampled in 50 states with a tool in a molecular viewer program to generate
synthetic data. An autoencoder was used to estimate the up to 16 normal mode components, where the
estimated values were used in a physics decoder. Other latent variables (rotation, CTF defocus, open
conformation of atomic model) were provided and not inferred. The physics decoder represented
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the full atomic model with multiple Gaussians with atom-type specific parameters from established
tabulated values. The elastic network model is computed on a subset of atoms, and then interpolated
for the remaining atoms, avoiding the expensive diagonalization of the 3N × 3N Hessian, where N
is the number of atoms. Although very similar, the approach outlined here infers both conformational
heterogenity and pose, uses a mixture of a directional distribution to parametrize the later in the
variational posterior, and employs Fourier cropping. Admittedly, we infer in-plane 2D pose, employ
only one ANM mode, use a reduced number of atoms, corrupt data with less noise, and generate
synthetic data is directly from the forward model instead of interpolating between states, which would
represent an alternate distribution than the model’s prior.

3 Methods

3.1 Stochastic forward model (decoder/simulator)

Each observed image Yi is simulated by a stochastic forward model; cf. Figure 1, Algorithm 1, and
Eq. A11 in the appendix. A representative sample is shown in Figure 1. The forward model samples
latents and maps them to the observation; it is also an interpretable physics decoder in stochastic
variational inference, where the guide/encoder is responsible for sampling latents.

Algorithm 1 Generative (forward) model of image formation

Require: ref. conformation m0 ∈ R3na , pert. modes (um)m ∈ (R3na)M , pert. scales σα ∈ RM ,
pseudo-atom radius σa ∈ R, rotation param. µs ∈ R2, defocus param. µz, σz ∈ R, detector noise
param. σn ∈ R, space grid x ∈ (R2)N×N , freq. grid k ∈ (R2)N×N , cropping size K ≤ N ∈ N.
α ∼ N (· | 0, diag(σα))
m = m0 +

∑
m αmum ▷ stoch. pseudo-atom conformation from ANM perturbations

s ∼ PN (· | µs)
θ = atan2(s)
R = Rz(θ) ▷ stoch. horizontal rotation matrix from unit vector
V = Vx(m,R, σa) ▷ projected electron density field, cf. Eq. (11)
z ∼ N (µz, σz)
H = sin(−z · |k|2) ▷ circular symmetric CTF; defocus in “natural units"
Y ∼ N

(
· | F̂−1

k

(
(ΠKF̂kV)⊙H

)
, σn ·KN ·1

)
▷ convolution & freq. cropping via FFT
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(a) Cartoon of forward model.
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(b) Prior model.
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(c) Inference model.

Figure 1: (a): The reference atom positions are additively perturbed along the ANM mode component,
rotated, and projected to 2D by integrating along the z-axis. The CTF is applied to the 2D projection,
and Gaussian white noise is applied. The reference conformation m0 (in black), along with two states
of m, at ±α0 (in blue and red) are shown. (b): Graphical model of the stochastic physics simulator
of cryo-EM image formation; cf. Algorithm 1. (c): Graphical model of the inference model. The
observed image is fed to three neural networks that independently predict distributional parameters,
which are sampled from using a distribution of choice (Gaussian for defocus and ANM, and 2D
Projected Normal for 2D in plane pose). See Algorithm 2 in the appendix for more detail.
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3.2 Stochastic variational inference

We used the stochastic variational inference in the framework provided by the deep probabilistic
programming language Pyro (pyro.infer.SVI) (20), which minimizes the evidence lower bound:

ELBO ≡ Eqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] (1)

In Eq 1 the observed single particle images are x, latents in the graphical model are z (notation
consistent with Pyro’s documentation). The stochastic forward model is pθ(x, z) = pθ(x|z)pθ(z)
is our forward model / physics based decoder. Prior domain knowledge of the the image formation
process is included in required distributional parameters, and incorporates knowledge of the sample,
the noise level, microscope fluctuations. The learned posterior qϕ(z|x), is the variational distribution
/ encoder that consumes the measured data and maps it to latent space.

Our choices for the variational posterior / encoder are shown in Figure 1c and Algorithm 2 in the
appendix, with the neural network architectures outlined and further details in Figure A1. Here
we used three (one for each ANM, pose, and CTF defocus) CNN-MLP based neural networks
with no conditioning or weight sharing, with architectures similar to those previously published in
(23; 24; 25). We used a mixture of two projected normal distributions for the rotation, transforming
the unit 2-vector (s, belonging to the circle group S1) to an angle that defines a rotation about the
imaging axis (z-axis).

3.3 Training

Training / optimizing the objective is done with pyro.infer.SVI, which takes a model, guide,
optimizer, and loss as arguments. Here the Trace_ELBO loss is used (see Eq. 1). For the opimizer,
we use pyro.optim.ClippedAdam optimizer with default parameters. During training, the neural
networks in the guide always see the full resolution data, while in model, the observed data and
simulation are cropped to a specified resolution K in Fourier space. The Gaussian white noise in the
likelihood computation is adjusted by the boost in signal: i.e. σn → σn× K

N , where K is the maximal
wave number after cropping and N is the full resolution wave number before cropping. The parameters
in the guide are registered for optimization with pyro.module and no parameters in the prior model
(e.g. µs) are optimized, although this is possible in Pyro. The pyro.optim.ClippedAdam optimizer
with a learning rate of 0.001, a batch size of 500 is used, with Np = 2000 training examples and 2000
independent and identically distributed (iid) testing examples. We noticed no difference in evaluation
between testing and training data, indicating that the neural networks were not memorizing noise.

3.4 Data Set

We generated synthetic data from using the stochastic forward model of same biomolecule as in (16),
Aurora A Kinase, with box size (N = 64 pixels), and pseudo-atoms positions from every second
alpha carbon (PDB: 1OL5), for computational efficiency, and thus the protein is coarse grained as
133 pseudo-atoms by using every second alpha carbon backbone atom, which gives the general
shape of the molecule. Unless otherwise noted, data was generated with the same parameters in the
model (its prior): for the CTF defocus, µz = 50, σz = 3 (in "natural units" of defocus; for the ANM
modes, ∀m, µαm

= 0, σα0
= 3, and ∀m ̸= 0, σαm

= 0, corresponding to a single mode; for the
measurement noise σn = 0.1, corresponding to a signal to noise (signal variance / noise variance) of
2.6; for pose an in plane uniform prior of µs = (0, 0) was used. For the deterministic projection a
Gaussian spread of σa = 0.8 pixels was used and densities were truncated to within a 6σa × 6σa

pixel patch centred at each atom. See additional detail of the forward model in appendix A.3.

4 Experiments

We first established that the each latent (CTF defocus, 2D pose, ANM scalar) could be estimated
while keeping the other two latents fixed at their ground truth values (data not shown). Inferring
the pose was possible when there was a non-uniform prior on the pose, for example a standard
deviation of 20− 60◦. However inferring fully non-uniform pose became prohibitively difficult at
full resolution, and we sought an alternative strategy instead of training for an excessively long time
at full resolution.
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(a) Training loss. (b) K=32 (c) K=48 (d) K=64

Figure 2: Effect of frequency marching on pose prediction. (a): Training was done at Fourier
cropping levels to 32 pixels (b), 48 pixels (c) and 64 pixels (full resolution) (d) for 4000 epochs
each, for a total of 1.2 · 104 epochs. (b-d) : At the end of each training stage ((b):4000, (c): 2 · 4000,
(d):3 · 4000 epochs), samples for 2000 synthetic test set images were drawn from the respective
posterior (checkpoint), and the joint and marginal distributions are shown, along with kernel density
estimate contours showing iso-proportions of the density.

4.1 Frequency marching for pose prediction

Frequency marching is commonly employed in 2D or 3D array based representations of the potential.
Inference begins at a low resolution stage using a small number of low frequency Fourier components,
and this proceeds to incorporate higher frequency information as training proceeds. Pixel based ℓ2
loss suitable for Gaussian white noise are sensitive to slight de-registration of pose (26), depending on
the relative length scale between pixel size, width of pseudo-atoms (here σa), and the pose accuracy.
This motivated us to take a closer look at how low pass filtering via Fourier cropping (Figure A2)
could be employed during training.

After visualizing the likelihood (Figure A3), we noted how quickly the gradient signal vanishes,
meaning samples too far from the ground truth value would have little to no gradient signal. To
mitigate the vanishing gradient, we introduced a series of Fourier cropping levels during training.
One can think of this as a transfer learning series, or piecewise SVI optimizations where the networks
parameters start at some non-random state. Figure 2b-d shows a correlation of predicted to ground
truth poses that improves as training progresses and the resolution used in the likelihood increases.
Every time the Fourier cropping level (i.e. resolution) level changes, the training data is transformed
to that resolution, and also during the simulation a corresponding Fourier crop is introduced. After
cropping the noise remains white Gaussian, but adjusted by a factor from the cropping. This can be
seen from the fact that Fourier cropping is a convolution with a constant top hat (i.e. step function)
filter in real space, thereby summing nearby pixels. Thus the effect of Fourier cropping is to add iid
Gaussian white noise, which translates to decreasing variance and boosting the signal to noise ratio.
While three resolution levels are shown for reasons of clarity, any arbitrary "cropping schedule" could
be employed such as a one Fourier wave number at a time. As training proceeds from K = 32 to
K = 48 and finally K = 64 the correlation improves. Note that a line offset by ±180◦ is apparent
in the joint correlation plots, which is due to the 180◦ pseudo symmetry of the observed 2D views.
As training proceeds at higher resolution the correlation from 180◦ pseudo-symmetry is mitigated.
This supports a claim that using a mixture in the variational posterior for pose could help account for
uncertainty arising from (pseudo)-symmetries of a biomolecule.

4.2 Inference of ANM and pose

We first worked up to doing joint inference on ANM and pose. In initial experiments we performed
inference on single latents and pairs of latents, meaning the ground truth value was used in the
posterior for the “missing" latents. While all single latents proved trainable in a small number of
epochs, only the latent pairs of defocus-ANM and defocus-rotation were readily trainable. In contrast
the ANM-pose latent pair proved difficult to train: the posterior sometimes collapsed to a large biased
prediction (e.g. α0 = 10) or remained diffuse and uncorrelated. When we optimized the networks
for both pose and ANM at the same time, i.e. at each gradient step the weights for the pose network
and ANM network were updated, training failed.
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Figure 3: Joint inference of ANM and pose. After training the ground truth pose and ANM latents
correlate with their sampled values from the posterior. Training samples and countours are as in
Figure 2.

To overcome this, we decided to first optimize for pose, then fixed the pose weights and optimized for
ANM. This approach, which was inspired by the training schedule in (27), made learning possible
(Figure 3). This proved feasible for a uniform pose distribution and an ANM distribution ranging
several pixels σα0

= 3, with a defocus fixed at z = 50, and the Fourier cropping fixed at 32 pixels
(half of the original level). The prediction and ground truth correlated with an average pose residual
of 33◦, and average ANM residual of 1.0.

5 Conclusion and Future outlook

Our approach is inspired by simulation based inference and probabilistic programming literature
(19; 28; 21), which perhaps can be put in contrast to approaches within the deep learning and computer
vision, where general inference procedures are proposed that aim to be suitable without an intimate
familiarity with the scientific domain, and in particular the domain specific mathematical modelling
tradition.

Here we have shown a proof of principle of inference on synthetic cryo-EM images under a parametric
forward model that is thereby physically interpretable. We used a two component mixture of the
projected normal for sampling from in plane 2D pose. Extending to 3D pose is possible by sampling
unit quaternions from the four dimensional form of the projected normal distribution, although it
would require some more work to solve the issue with double cover. We employ a mixture of projected
normals in the variational posterior, and this should allow us to inspect the mixture components that
would be expected to arise from symmetries of the biomolecule’s coordinates, and to marginalize
over such symmetries.

We predicted the scalar on one ANM mode, and this can be extended to several low modes to express
richer forms of heterogeneity. We used a mean field approximation, meaning that each network in the
variational posterior takes as input the observed image, and does not condition on predicted latents
for that observed image, and in future work we indent to relax this assumption. While the ANM is
easily sampled from and scored, it is considered suitable for modelling low frequency fluctuations
around a reference conformation, and does not immediately incorporate known prior information
about bonds lengths and angles (e.g. in rings) and secondary structure elements, although there are
extensions that incorporate shared rigidity among in a set of pseudo-atoms (29). Beyond ANMs, we
are interested in modelling heterogeneity in a manner that can incorporate prior knowledge (sequence,
secondary structure, polymeric nature of a biomolecule) and that furthermore has a distribution that
is readily sampled from and scored.

5.1 Acknowledgements
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Brooks Paige, Olexandr Isayev, Erik Peterson, Peter L. McMahon, Jakob Macke, Kyle Cranmer,
Jiaxin Zhang, Haruko Wainwright, Adi Hanuka, Manuela Veloso, Samuel Assefa, Stephan
Zheng, and Avi Pfeffer. Simulation Intelligence: Towards a New Generation of Scientific
Methods. arXiv, 2021.

[22] Daniel Hernandez-Stumpfhauser, F. Jay Breidt, and Mark J. van der Woerd. The general pro-
jected normal distribution of arbitrary dimension: Modeling and Bayesian inference. Bayesian
Analysis, 12(1):113–133, 2017.

[23] Youssef S. G. Nashed, Frederic Poitevin, Harshit Gupta, Geoffrey Woollard, Michael Kagan,
Chun Hong Yoon, and Daniel Ratner. CryoPoseNet: End-to-End Simultaneous Learning
of Single-particle Orientation and 3D Map Reconstruction from Cryo-electron Microscopy
Data. In 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW),
volume 1, pages 4049–4059. IEEE, oct 2021.

[24] Axel Levy, Frédéric Poitevin, Julien Martel, Youssef Nashed, Ariana Peck, Nina Miolane,
Daniel Ratner, Mike Dunne, and Gordon Wetzstein. CryoAI: Amortized Inference of Poses for
Ab Initio Reconstruction of 3D Molecular Volumes from Real Cryo-EM Images. arXiv, mar
2022. http://arxiv.org/abs/2203.08138.

[25] Ruyi Lian, Bingyao Huang, Liguo Wang, Qun Liu, Yuewei Lin, and Haibin Ling. End-to-end
orientation estimation from 2D cryo-EM images. Acta Crystallographica Section D Structural
Biology, 78(2):174–186, 2022.

[26] Rohan Rao, Amit Moscovich, and Amit Singer. Wasserstein K-Means for Clustering Tomo-
graphic Projections. arXiv, (2016):1–11, 2020.

[27] Ellen D Zhong, Adam Lerer, Joseph H Davis, and Bonnie Berger. CryoDRGN2 : Ab initio
neural reconstruction of 3D protein structures from real cryo-EM images. Iccv, pages 4066–
4075, 2021.

[28] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based infer-
ence. Proceedings of the National Academy of Sciences of the United States of America,
117(48):30055–30062, 2020.

[29] Florence Tama, Florent Xavier Gadea, Osni Marques, and Yves-Henri Sanejouand. Building-
block approach for determining low-frequency normal modes of macromolecules. Proteins:
Structure, Function, and Genetics, 41(1):1–7, oct 2000.

8

http://arxiv.org/abs/2209.15121
https://arxiv.org/abs/2201.02867
https://arxiv.org/abs/2201.02867
http://arxiv.org/abs/2203.08138


[30] She Zhang, James M Krieger, Yan Zhang, Cihan Kaya, Burak Kaynak, Karolina Mikulska-
Ruminska, Pemra Doruker, Hongchun Li, and Ivet Bahar. ProDy 2.0: increased scale and scope
after 10 years of protein dynamics modelling with Python. Bioinformatics, 37(20):3657–3659,
oct 2021.

[31] Ken Dill, Robert L. Jernigan, and Ivet Bahar. Protein Actions. Garland Science, New York, NY
: Garland Science, Taylor Francis Group, LLC, [2017] |, sep 2017.

[32] Benjamin A. Himes and Nikolaus Grigorieff. Cryo-TEM simulations of amorphous radiation-
sensitive samples using multislice wave propagation. BioRxiv, page 6, 2021.

9



A Appendix

A.1 Inference

Algorithm 2 Inference (inverse) model, i.e., variational posterior per image

Require: image Y, rotation mixture size n ∈ N, neural networks ϕz|α|s,mz|α|s, sz|α|s,ws.

z ∼ N (· | mz(ϕz(Y)), sz(ϕz(Y))) ▷ proposal for defocus
α ∼ N (· | mα(ϕα(Y)), sα(ϕα(Y))) ▷ proposal for ANM coefficients
s ∼ ∑n

k=1 ws(ϕs(Y))k · PN (· | ms(ϕs(Y))k) ▷ mixture proposal for rotation
θ = atan2(s)

A.2 Neural network architecture

Figure A1: The neural network architectures is a series of three double convolutions with ReLU
activations, (Conv2d, ReLU, Conv2d, ReLU, MaxPool) which is then flattened to an MLP two
layers deep and 512 units wide with ReLU activations (Linear,ReLU,Linear,ReLU), to a final
linear layer of size λlatent to match the number of distribution parameters needed for the respective
latent.

A.3 Forward Model

The forward model is outlined in Algorithm 1.

A.3.1 Conformational heterogeneity

The conformational heterogeneity can be understood from the perspective of an energy model
physically inspired by each pseudo-atom being a "ball" attached by "springs" to other pseudo-atoms
(31). The balls are centered at the positions of the pseudo-atom nuclei m0 ∈ R3na , where na is the
number of pseudo-atom balls, and any new conformation m ∈ R3na has probability P(m), governed
by energy U(m) ∈ R and inverse temperature β ∈ R.

P(m) = Z−1 exp[−βU(m)] (2)

U = Uanm =
γ

2

∑
ij

(rij − r0,ij)
2 (3)
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The anisotropic network model has energy Uanm, where rij is the distance between pseudo-atom pair
ij in the sample m, r0,ij is the corresponding reference distance in m0, and γ is a spring constant.
The second derivative elements of the 3na × 3na Hessian has a convenient analytical form with 3× 3
symmetric ij submatrices given by

Hij =
γ

r2ij

 x2
ij xijyij xijzij

xijyij y2ij yijzij
xijzij yijzij z2ij

 (4)

And the ii diagonal submatrices given by the row/column sum Hii =
∑

j ̸=i Hij . The anisotropic
network model is anisotropic in the sense that each xyz direction has its own Hessian component and
can be different from other directions–hence anisotropic. The probability is then approximated by a
second order Taylor expansion about a reference pseudo-atomic configuration m0, which is assumed
to be at a local extremum point so the gradient term vanishes:

U(m) = U(m0)−
1

2
(m−m0)

TH(m−m0) (5)

The eigendecomposition of H = UΛ−1UT, enables to project any pseudo-atom configuration m
onto components of U, uT

m, because αm = uT
m(m − m0). Thus m is a deterministic change of

basis to the set {αm}3na
1 .

This exponential probability density function reduces the probability to a diagonal multivariate
Gaussian through the orthogonality of the basis.

P(m) = P({αm}) (6)

= (det [2πΛ])−1/2
∏
m

exp−β
α2
m

λm
(7)

=
∏
m

P(αm) (8)

Thus a sample of pseudo-atomic positions is obtained by additively perturbing the mean pseudo-
atomic positions m0 ∈ R3na by a perturbation vector, uperturb =

∑
m αmum ∈ R3na , where each

αm is sampled from a Gaussian distribution, and each elastic network mode are fixed for constant
m0.

m = m0 + uperturb (9)

In the simplified model employed here, uperturb is restricted the single lowest mode, and thus m is
being sampling according to the distribution

P(m|σα0
, {σαm

= 0}m ̸=0) = P(α0|α1 = 0, ..., αna−1 = 0) ∝ N (αm|0, σαm
=

λ0

2β
) (10)

In brief, we explicitly compute the Hessian H of a reference conformation m0, compute its low
mode eigenvectors and values, and keep this precomputed in memory. During stochastic simulation
we sample a Gaussian scalar and additively perturb the reference conformation. Thus stochastic
sampling of m is as fast as sampling Gaussians, scaling their corresponding eigenvectors, summing
them to one eigenvector, and adding this perturbation to the reference conformation m0.

We use the PyTorch function torch.linalg.eigh to perform the eigendecomposition of the Hessian
on the GPU.

A.3.2 Fourier Cropping

Fourier cropping was performed by sampling the CTF at full resolution (here N = 64 pixels), and
then after the multiplication in Fourier space, transforming only the K central Fourier pixels back to
real space. The effect of this can be visualized in Figure A2.
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K=N=64

K=48

K=32

Figure A2: Three levels of Fourier cropping are shown. The noise is adjusted by σn → K
N σn.
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A.3.3 Projection

The 3D coordinates are projected down to, and sampled on a 2D array object of size N ×N . There
is no sum done along the imaging (z) axis, because we take analytical advantage of the spherical
shape of the isotropic Gaussian kernel, i.e. the convariance matrix of a single atom a atom is direction
independent, Σ−1

a = I3
2σ2

a
. The projection is done by simply dropping the z coordinate after rotation

(Rm(p)) as noted in (14; 32). We use the PyTorch data object torch.sparse_coo_tensor to
implement this efficiently in batch on the GPU. The intensity at each pixel (i, j) is given by Eq. 11,
whose parameters are further explained in Algorithm 1.

(Vx(m,R, σa))i,j =

na∑
p=1

exp

{
−∥xi,j −PxyRm(p)∥2

2σ2
a

}
(11)

A.3.4 Likelihood

Under a white Gaussian likelihood, the probability falls off very quickly when the pose is out of
registration.

Figure A3: The likelihood of a was evaluated over the grid of latents: {α0} × {θ} = ({(α0, θ) :
α0 ∈ [−10, 10], θ ∈ [−180, 180]} for the shown noisy image, with α′

0 = 0, θ′ = 0 (red dot). The
absolute scale of the likelihood is shown in the color bar in log_prob units.
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