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Abstract

Biological functions of RNAs are determined by their three-dimensional (3D)
structures. Thus, given the limited number of experimentally determined RNA
structures, the prediction of RNA structures will facilitate elucidating RNA func-
tions and RNA-targeted drug discovery, but remains a challenging task. In this
work, we propose a Graph Neural Network (GNN)-based scoring function trained
only with the atomic types and coordinates on limited solved RNA 3D structures
for distinguishing accurate structural models. The proposed Physics-aware Multi-
plex Graph Neural Network (PaxNet) separately models the local and non-local
interactions inspired by molecular mechanics. Furthermore, PaxNet contains an
attention-based fusion module that learns the individual contribution of each in-
teraction type for the final prediction. We rigorously evaluate the performance of
PaxNet on two benchmarks and compare it with several state-of-the-art baselines.
The results show that PaxNet significantly outperforms all the baselines overall,
and demonstrate the potential of PaxNet for improving the 3D structure modeling
of RNA and other macromolecules.

1 Introduction

RNAs play an essential role in many cellular processes in organisms, such as mediating gene
translation, regulating gene expression, catalyzing biochemical reactions, and transferring cellular
information [1–3]. These cellular functions are determined by their unique three-dimensional (3D)
structures. However, due to the high cost of experimental methods, the high-resolution RNA 3D
structures deposited in the Protein Data Bank (PDB) are still very scarce [4]. Thus, there is an urgent
need to develop computational RNA 3D structure prediction methods for elucidating RNA functions
and promoting RNA-targeted drug discovery [5].

At the current state, most existing computational methods for the prediction of RNA 3D structures
are non-deep learning methods, and are based on physics or knowledge-guided approaches like
coarse-grained representations [6–8], fragment-assembling [9–11], statistical potentials [12–15], etc.
Only a limited number of deep learning approaches have been proposed to be scoring functions for
evaluating RNA 3D structural models [16, 17]. Specifically, ARES [17] is a Graph Neural Network
(GNN) that outperforms the previous state-of-the-art methods using only a small number of RNA
structures for training without any assumptions about structural characteristics. This has demonstrated
the power of deep learning on tackling the challenge of RNA 3D structure prediction.

In this work, we aim at developing a new deep learning-based approach to predict RNA 3D structures.
Inspired by the physical principles in molecular mechanics methods [18] that separately considers
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Figure 1: Illustration of PaxNet pipeline. (a) Construction of multiplex graph G = {Gglobal, Glocal}
based on a given RNA 3D structure. (b) Overall architecture of PaxNet, which consists of message
passing modules and a fusion module.

the local and non-local interactions when computing molecular energy, we propose Physics-aware
Multiplex Graph Neural Network (PaxNet), which is a GNN based on message passing scheme [19].
PaxNet represents each RNA 3D structure using a two-plex (or layer) multiplex graph, where one plex
only contains local interactions, and the other plex further contains non-local interactions. PaxNet
takes the multiplex graphs as input and uses different message passing modules to incorporate the
geometric information in different kinds of interactions. Furthermore, with a fusion module, the
contribution of each kind of interaction can be learned and fused to compute the final prediction.
Similar to ARES, PaxNet only uses atomic types and coordinates as input without having any
assumptions about other structural and physiochemical characteristics.

To verify the effectiveness of PaxNet, we train and evaluate PaxNet on the datasets used in [17]
for the RNA 3D structure prediction. Our PaxNet outperforms previous state-of-the-art methods
on all benchmarks in general. The results suggest that PaxNet provides a powerful method for the
representation learning of RNA 3D structures. Our main contributions are as follows:

• We propose a novel GNN, Physics-aware Multiplex Graph Neural Network (PaxNet) for the
prediction of RNA 3D structures. Inspired by molecular mechanics, PaxNet models the local and
non-local interactions differently by building multiplex graphs to represent RNA structures and
designing diverse message passing modules.

• Comprehensive experiments for RNA 3D structure prediction are conducted to demonstrate that
our proposed PaxNet outperforms the state-of-the-art methods.

2 Method

The overview of Physics-aware Multiplex Graph Neural Network (PaxNet) is shown in Figure 1.
Given a RNA 3D structure, a corresponding multiplex graph G (Figure 1a) is built, where each plex of
G contains a different group of atomic interactions. Then PaxNet (Figure 1b) uses different message
passing modules to update the atomic type embeddings h with the geometric information in different
plex of G accordingly. To learn the contributions from each plex, a fusion module based on attention
mechanism is used for the final prediction. Further details of PaxNet, which are not covered in this
section, can be found in Appendix A.2.

2.1 Multiplex Graph Representation of RNA 3D Structure

Each RNA 3D structure consists of atoms that are associated with 3D coordinates and atomic
numbers. Based on solely this information, we can define different pairwise interactions between
atoms, i.e. according to different cutoff values of the pairwise distances. Then a multiplex graph
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can be constructed to represent the RNA: For each kind of predefined interaction, we use a plex to
contain all atoms as nodes and the interactions as edges. The resulting plexes that share the same
group of atoms naturally form a multiplex graph.

In particular, we are inspired by molecular mechanics [18], in which the molecular energy E is
modeled with a separate consideration of local and non-local interactions: E = Elocal + Enon-local.
Motivated by this, we also decouple the modeling of these two kinds of interactions in PaxNet. For
local interactions, we can define them by using either chemical bonds or finding the neighbors of each
node within a relatively small cutoff distance depending on the given task. For global interactions, we
define them by finding the neighbors of each node within a relatively large cutoff distance. As a result,
we construct a two-plex multiplex molecular graph G = {Gglobal, Glocal} as shown in Figure 1a.

2.2 Physics-aware Message Passing Modules

To update the atomic (or node) embeddings, two message passing modules are used in PaxNet, which
are Global Message Passing and Local Message Passing for Gglobal and Glocal in G, respectively.
The design of these message passing modules is inspired by physical principles. In molecular
mechanics when modeling molecular energy E = Elocal + Enon-local, the term for local interactions
Elocal = Ebond +Eangle +Edihedral includes Ebond that depends on bond lengths, Eangle on bond angles,
and Edihedral on dihedral angles. The term for non-local interactions Enon-local = Eelectro + EvdW
includes electrostatic and van der Waals interactions which depend on interatomic distances. So that
for the geometric information in molecular mechanics, the local interactions need pairwise distances
and angles, while the non-local interactions only need pairwise distances. The message passing
modules in PaxNet also use geometric information in this way when modeling these interactions.

As shown in Figure 1b, the Local Message Passing which updates the node embeddings based on
local interactions will incorporate the related adjacency matrix Alocal, pairwise distances dlocal and
angles θlocal. The Global Message Passing which updates the node embeddings based on global
interactions (both non-local and local interactions) will contain only the related adjacency matrix
Aglobal and pairwise distances dglobal. The node embeddings learned by each message passing
module are passed to the next layer or to the fusion module for final prediction.

2.3 Fusion Module

To combine the node embeddings from message passing modules in every hidden layer for final
prediction, we design a fusion module as shown in Figure 1b. The fusion is a two-step pooling
process. In the first step, we use an attention mechanism [20] for each hidden layer t of PaxNet
to get the corresponding prediction yt using the node embeddings computed by the two message
passing modules in hidden layer t. In each attention operation, attention weights for each group of
node embeddings are learned and used to compute the corresponding prediction yt using a weighted
summation. In the second step, the predictions from all hidden layers are averaged together to
compute the final predicted result y.

3 Experiments

Task. In our experiments, we focus on the prediction of 3D RNA structures. Following the previous
works [14, 21, 17], we refer it to the task of identifying accurate structural models of RNA from
less accurate ones: Given a group of candidate 3D structural models generated based on an RNA
sequence, a desired scoring function can distinguish accurate structural models among all candidates.
For PaxNet, only a limited number of RNA structures are used for learning, and no assumptions
about structural characteristics are incorporated to perform the identification. In practice, PaxNet
predicts the root mean square deviation (RMSD) from the unknown true structure for each structural
model. A lower RMSD would suggest a more accurate structural model predicted by PaxNet.

Datasets. To access the performance of PaxNet on predicting 3D RNA structures, we use the
same datasets as those used in [17], which include a dataset for training and two benchmarks for
evaluation. The training dataset contains 18 relatively older and smaller RNA molecules determined
experimentally [22]. Each RNA is used to generate 1000 structural models via the Rosetta FARFAR2
sampling method [21]. The two benchmarks for evaluation contain relatively newer and larger
RNAs. In detail, benchmark 1 consists of the first 21 RNAs in the RNA-Puzzles structure prediction
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Figure 2: Performance comparison on benchmark 1. Given a group of candidate structural models
for each RNA in benchmark 1, we rank the models using PaxNet and the other four leading scoring
functions for comparison. Each cross in the figures corresponds to one RNA. (a) The best-scoring
structural model of each RNA predicted by the scoring functions is compared. PaxNet in general
identifies more accurate models (with lower RMSDs from the native structure) than those decided
by the other scoring functions. (b) Comparison of the 10 best-scoring structural models. The
identifications of PaxNet contain accurate models more frequently than those from other scoring
functions. (c) The rank of the best-scoring near-native structural model for each RNA is used for
comparison. PaxNet usually performs better than the other scoring functions by having a lower rank.

challenge [23]. Each RNA is used to generate at least 1500 structural models using FARFAR2, where
1% of the models are near native (i.e., within a 2Å RMSD of the experimentally determined native
structure). To simulate a difficult modeling scenario, benchmark 2 contains no near-native models,
and includes 16 RNAs that are all substantially different from any of those used in the aforementioned
datasets1. The source of the datasets can be found in [17]. The statistics of the datasets are listed in
Appendix A.3.1.

Experimental Settings. We use the same data splits as those used in [17] to be the training set
and validation set. For the training process, PaxNet is optimized to minimize the difference between
the output value and the ground-truth RMSD of each structural model from the corresponding
structure on the training set. An early-stopping strategy is adopted to decide the best epoch based on
the validation loss. For the benchmark 1, we compare PaxNet with four state-of-the-art baselines:
ARES [17], Rosetta (2020 version) [21], RASP [13], and 3dRNAscore [14]. For benchmark 2,
besides the aforementioned baselines, we additionally include SimRNA [6], Rosetta (2010 version),
and Rosetta (2007 version). More details of the implementations can be found in Appendix A.3.2.

1We use the updated version of benchmark 2 provided by the authors of [17], which leads to corrected and
different results as those shown in their original paper.
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Figure 3: Performance comparison on benchmark 2.

Table 1: Comparison of space and time complexity.

Model # of Parameters Memory (GB) Inference Time (s)

ARES 18073 13.47 2.14
PaxNet 12530 7.83 0.57

4 Results

Benchmark 1. On benchmark 1, PaxNet significantly outperforms all other four scoring functions as
shown in Figure 2. When comparing the best-scoring structural model of each RNA (Figure 2a), the
probability of the model to be near-native (<2Å RMSD from the native structure) is 90% when using
PaxNet, compared with 62, 43, 33, and 5% for ARES, Rosetta, RASP, and 3dRNAscore, respectively.
As for the 10 best-scoring structural models of each RNA (Figure 2b), the probability of the models
to include at least one near-native model is 90% when using PaxNet, compared with 81, 48, 48, and
33% for ARES, Rosetta, RASP, and 3dRNAscore, respectively. When comparing the rank of the
best-scoring near-native structural model of each RNA (Figure 2c), the geometric mean of the ranks
across all RNAs is 1.7 for PaxNet, compared with 3.6, 73.0, 26.4, and 127.7 for ARES, Rosetta,
RASP, and 3dRNAscore, respectively. The lower mean rank of PaxNet indicates that less effort is
needed to go down the ranked list of PaxNet to include one near-native structural model. A more
detailed analysis of the near-native ranking task can be found in Appendix A.4.1. We also conduct an
ablation study to demonstrate the effectiveness of the global and local message passing as well as
fusion modules in PaxNet. The details of the results are shown in Appendix A.4.3.

Benchmark 2. For each RNA in benchmark 2, we identify the best-scoring structural model scored
by each scoring function. For each scoring function, we show the median across RNAs. As shown
in Figure 3, PaxNet performs better than all scoring functions by having the lowest median RMSD
across RNAs. We find a similar trend when considering the 10 best-scoring structural models for
each RNA, which is shown in Appendix A.4.2.

Efficiency Evaluation. When implementing computational methods for RNAs, a common bottleneck
comes from the relatively high complexity caused by the number of involved atoms. Thus we evaluate
the efficiency of PaxNet by comparing it with the strongest baseline, ARES. When solving the
same given task, we find PaxNet is much more efficient than ARES regarding both space and time
complexity as shown in Table 1. Details of the settings can be found in Appendix A.3.2.

5 Conclusion

In this work, we focus on the task for RNA 3D structure prediction and propose a GNN-based
method, PaxNet, to tackle the task from a deep learning perspective. Different from the existing
deep learning-based methods in this field, PaxNet is inspired by the physical principles in molecular
mechanics to decouple the modeling of local and non-local interactions in RNA 3D structures. With
only atomic types and 3D coordinates and without any assumptions about structural features, PaxNet
can be trained on limited RNA 3D structures to make more accurate predictions than the previous
state-of-the-art models. The limitation of PaxNet is that we still need an extra sampling method to
generate candidate structural models. It would be interesting to extend PaxNet to perform de novo
RNA 3D structure prediction without a separate sampling process. PaxNet can be also possibly
applied to other tasks related to macromolecules due to its general framework.
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A Appendix

A.1 Notations and Definitions

Notations. Let G = (V,E) be a graph with N = |V | nodes and M = |E| edges. The nearest
neighbors of node i are defined as N (i) = {j|d(i, j) = 1}, where d(i, j) is the shortest distance
between node i and j. In later formulations, we will use hi as the embedding of node i, eji as the
edge embedding between node i and j, mji as the message being sent from node j to node i in the
message passing scheme, F as the hidden dimension in our model, MLP as multi-layer perceptron, ∥
as concatenation operation, ⊙ as element wise production and W as weight matrix.

Here we give the definition of a multiplex molecular graph, which is the format of our RNA
representation, as follows:
Definition 1. Multiplex Molecular Graph. We denote a molecular structure as an (L + 1)-tuple
G = (V,E1, . . . , EL) where V is the set of nodes (atoms) and for each l ∈ {1, 2, . . . , L}, El is the
set of edges (molecular interactions) in type l that between pairs of nodes (atoms) in V . By defining
the graph Gl = (V,El) which is also called a plex or a layer, the multiplex molecular graph can be
seen as the set of graphs G = {G1, G2, ..., GL}.

Next we introduce the message passing scheme [19] which is a framework widely used in spatial-
based GNNs [24] and is the basis of our PaxNet:
Definition 2. Message Passing Scheme. Given a graph G, the node feature of each node i is xi, and
the edge feature for each node pair j and i is eji. The message passing scheme iteratively updates
message mji and node embedding hi for each node i using the following functions:

mt
ji = fm(h

t−1
i ,ht−1

j , eji), (1)

ht
i = fu(h

t−1
i ,

∑
j∈N (i)

mt
ji), (2)

where superscript t denotes the t-step iteration, fm and fu are learnable functions. For each node i,
xi is the input node embedding h0

i .
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Figure A.4: Illustration of the architecture of PaxNet. (1) Overall architecture of PaxNet. (2)
Architecture of Global Message Passing. (3) Architecture of Local Message Passing. (4) Update
function in message passing. (5) Residual block.

Figure A.5: An example of the geometric information in G. By defining the one-hop neighbors
{j} and two-hop neighbors {k} of node i, we can define the pairwise distances d and the related
angles θ including one-hop angles and two-hop angles.

A.2 Architecture of PaxNet

The architecture of PaxNet is shown in Figure A.4. The detailed description of the modules in PaxNet
will be covered in this section.

Global Message Passing. In this module, we update the node embeddings in global plex Gglobal by
capturing the pairwise distances dglobal based on the message passing in Definition 2. Each message
passing operation is:

mt−1
ji = MLPm([ht−1

j ∥ht−1
i ∥ eji]), (3)

ht
i = ht−1

i +
∑

j∈N (i)
mt−1

ji ⊙ ϕd(eji), (4)

where i, j ∈ Gglobal are connected nodes that define a message embedding, ϕd is a learnable
function for pairwise distance. The edge embedding eji encodes the corresponding pairwise distance
information.

After the message passing, an update function containing multiple residual blocks is used to get the
node embeddings for the next layer as well as hglobal to be fed into the fusion module. Illustrations
of these operations are shown in Figure A.4.

Local Message Passing. For the updates of node embeddings in the local plex Glocal, we incorporate
both pairwise distances dlocal and angles θlocal. When updating the embedding of node i, we consider
the one-hop neighbors {j} and the two-hop neighbors {k} of i. Specifically for the angles related to
those nodes, we show an example in Figure A.5 and cluster them depending on the edges around
i: (a) The one-hop angles are angles between the one-hop edges (θ1, θ2 and θ3 in Figure A.5). (b)
The two-hop angles are angles between the one-hop edges and two-hop edges (θ4, θ5 and θ6 in
Figure A.5).
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Table A.2: Dataset statistics.
Dataset # of RNAs Avg. # of Non-hydrogen Atoms # of Structural Models

Training Set 18 865 18000
Benchmark 1 21 2172 428195
Benchmark 2 16 1681 76442

To perform message passing, we use the same way as Equation (3) to compute the message embed-
dings m. The message passing operation in the t-th iteration is:

m
′t−1
ji = mt−1

ji +
∑

j′∈N (i)\{j}

mt−1
j′i ⊙ ϕd(ej′i)⊙ ϕθ(θj′i,ji)

+
∑

k∈N (j)\{i}

mt−1
kj ⊙ ϕd(ekj)⊙ ϕθ(θkj,ji), (5)

ht
i = ht−1

i +
∑

j∈N (i)

m
′t−1
ji ⊙ ϕd(eji), (6)

where i, j, k ∈ Glocal, ϕd is a learnable function for pairwise distance, ϕα is a learnable function
for angles. eji encodes the corresponding pairwise distance information. θkj,ji encodes the angle
θkj,ji = ∠kji accordingly. In Equation (5), we use two summation terms to separately encode the
one-hop and two-hop angles with the associated pairwise distances to update mji.

As shown in Figure A.4, we design the remaining functions in Local Message Passing similarly to
those in Global Message Passing to get hlocal to be fused and the input for the next iteration.

Communication between Message Passings. To address the cross-layer relations between Gglobal

and Glocal, we let the information in those plexes communicate with each other as depicted in
Figure A.4. We first perform Global Message Passing on Gglobal in each iteration. Then the updated
node embeddings are transferred to Glocal for Local Message Passing. Finally, the further updated
node embeddings are passed back to Gglobal for the next iteration.

Fusion Module. As shown in Figure A.4, to fuse the node embeddings for a final prediction, we
design Fusion Module with a two-step pooling:

In the first step, we use attention mechanism for each hidden layer t of PaxNet to get the corresponding
node-level prediction yt using the node embeddings ht

global and ht
local from hidden layer t. We first

compute the attention weight αm,i that measures the contribution of hm,i, which belongs to node i
on plex m in G:

αt
m,i =

exp(LeakyReLU(W t
mht

m,i))∑
m exp(LeakyReLU(W t

mht
m,i))

, (7)

where m ∈ {global, local}, and W t
m ∈ R1×F is a learnable weight matrix different for each hidden

layer t and plex m. With αt
m,i, we then compute the node-level prediction yi,t of node i in hidden

layer t using weighted summation:

yi,t =
∑

m
αt
m,i(W

t
outmht

m,i), (8)

where W t
outm ∈ R1×F is a learnable weight matrix different for each hidden layer t and plex m.

In the second step, the node-level predictions yi,t are used to compute the final prediction y:

y =
1

NT

∑N

i=1

∑T

t=1
yi,t. (9)

where N is the total number of nodes, T is the number of hidden layers in PaxNet.

A.3 Experimental Settings

A.3.1 Dataset Statistics

The statistics of the datasets used in this paper are summarized in Table A.2.
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Figure A.6: Detailed analysis of near-native ranking task on benchmark 1. The results of the
lowest RMSD among N best-scoring structural models of each RNA predicted by each scoring
function are compared.

A.3.2 Implementation Details

When building multiplex graphs for RNA structures, we use cutoff distance dl = 2.6Å for the local
interactions in Glocal and dg = 20Å for the global interactions in Gglobal. Following [17], we
only use the carbon, nitrogen, and oxygen atoms in RNA structures. For the input features, we use
atomic numbers Z as node features and pairwise distances between atoms as edge features computed
from atomic positions. We represent Z with randomly initialized, trainable embeddings and expand
pairwise distances and angles with basis functions to reduce correlations. For the basis functions
eRBF and aSBF , we use NSHBF=7, NSRBF=6 and NRBF=16. In our message passing operations,
we define ϕd(e) = W ee and ϕα(α) = MLPα(α), where W e is a weight matrix, MLPα is a
multi-layer perceptrons (MLP). For the MLPs used in our model, they all have 2 layers to take
advantage of the approximation capability of MLP. For all activation functions, we use the self-gated
Swish activation function. PaxNet is optimized by minimizing the smooth L1 loss between the
predicted value and the ground truth using the Adam optimizer. For the best-performed PaxNet, we
use a batch size=8, learning rate=1e-4, number of hidden layer=1, number of hidden dimension=16.
PyTorch is used to implement PaxNet. All of the experiments are done on an NVIDIA Tesla V100
GPU (32 GB).

For efficiency evaluation, we use PaxNet and ARES to predict for the structural models of RNA in
puzzle 5 of RNA-Puzzles challenge. The RNA being predicted has 6034 non-hydrogen atoms. The
model settings of PaxNet and ARES are the same as those used for reproducing the experiments on
the benchmarks. We use batch size=8 when performing the predictions.

A.4 Additional Results

A.4.1 Detailed Analysis of Near-native Ranking Task on Benchmark 1

For each RNA in benchmark 1, we rank the structural models using PaxNet and four baseline scoring
functions. For each scoring function, we select the N ∈ {1, 10, 100} best-scoring structural models
for each RNA. For each RNA, scoring function, and N, we show the lowest RMSD across structural
models in Figure A.6). The RMSD results are quantized to determine if each RMSD is below 2Å,
between 2Å and 5Å, between 5Å and 10Å, or above 10Å. From the results, we find that for each
RMSD threshold (2Å, 5Å, or 10Å) and for each N, the number of RNAs with at least one selected
model that has RMSD below the threshold is greater when using PaxNet than when using any of the
other four baseline scoring functions.
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Figure A.7: Additional Results on Benchmark 2. For each RNA and for each of the eight scoring
functions, we identify the minimum RMSD across the 10 best-scoring structural models. For each
scoring function, we show the median across RNAs.

Figure A.8: Results of ablation study on benchmark 1. The rank of the best-scoring near-native
structural model for each RNA is used for comparison.

A.4.2 Additional Results on Benchmark 2

We score all structural models for each RNA and for each of the eight scoring functions, and then
identify the minimum RMSD across the 10 best-scoring ones. For each scoring function, we use
the median across RNAs for comparison. As shown in Figure A.7, PaxNet outperforms all scoring
functions except ARES.

A.4.3 Ablation Study

To evaluate the effectiveness of the modules in our PaxNet, we conduct ablation study on benchmark
1 by designing three PaxNet variants: PaxNet without the fusion module (replace the fusion module
with average pooling), PaxNet without the local message passing module, and PaxNet without the
global message passing module. From the results shown in Figure A.8, we find the original PaxNet
overall performs better than all ablated variants: The geometric mean of the ranks across all RNAs is
1.7 for PaxNet, compared with 2.1, 2.0, and 79.9 for PaxNet without fusion module, PaxNet without
local message passing module, and PaxNet without global message passing module, respectively.
In particular, PaxNet without global message passing module performs the worst among all ablated
variants, which implies the importance of non-local interactions in RNA structures.
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