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Abstract

Neoantigen-targeting vaccines have achieved breakthrough success in cancer im-
munotherapy by eliciting immune responses against neoantigens, which are proteins
uniquely produced by cancer cells. During the immune response, the interactions
between peptides and major histocompatibility complexes (MHC) play an impor-
tant role as peptides must be bound and presented by MHC to be recognised by the
immune system. However, only limited experimentally determined peptide-MHC
(pMHC) structures are available, and in-silico structure modelling is therefore
used for studying their interactions. Current approaches mainly use Monte Carlo
sampling and energy minimisation, and are often computationally expensive. On
the other hand, the advent of large high-quality proteomic data sets has led to an
unprecedented opportunity for deep learning-based methods with pMHC struc-
ture prediction becoming feasible with these trained protein folding models. In
this work, we present a graph neural network-based model for pMHC structure
prediction, which takes an amino acid-level pMHC graph and an atomic-level
peptide graph as inputs and predicts the peptide backbone conformation. With
a novel weighted reconstruction loss, the trained model achieved a similar accu-
racy to AlphaFold 2, requiring only 1.7M learnable parameters compared to 93M,
representing a more than 98% reduction in the number of required parameters.

1 Introduction

Cancer immunotherapeutics have revolutionised the field of oncology by using the patient’s immune
system to trigger tumour regression [Finck et al., 2020, Waldman et al., 2020]. Among them, cancer
vaccines aim to induce and enhance tumour-specific T-cell responses in patients by delivering targeted
immunogenic neoepitopes [Blass and Ott, 2021]. The cellular immune response activation towards
an antigen relies on a series of tightly regulated biological processes whose keystones are the major
histocompatibility complexes (MHC). These essential cell surface proteins bind peptides and display
them to the intercellular space where they can interact with immune cells. The features underlying
the binding and presentation of antigenic peptides are therefore key to understanding the immune
response and have valuable health implications.

However, the MHC is a highly polymorphic protein and there are 209 possible 9-mer peptide
sequences, with limited structural information available in public databases [Berman et al., 2000].
In-silico structure modelling methods are thereby applied for predicting peptide-MHC (pMHC)
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structures. State-of-the-art methods mostly rely on energy minimisation strategies via random
sampling but require a long computation time, making scalability a challenge [Abella et al., 2019,
Parizi et al., 2022]. The advent of large high-quality proteomic data has led to an unprecedented
opportunity for deep learning-based protein folding methods such as AlphaFold 2 [Jumper et al.,
2021], OmegaFold [Wu et al., 2022], and ESMFold [Lin et al., 2022], which have been proven to
predict reliable and accurate protein structures. Furthermore, these trained models can be fine-tuned
on pMHC structures for other downstream tasks such as binding prediction [Motmaen et al., 2022].

In this paper, we propose a graph neural network (GNN) that takes an amino acid residue graph for
the pMHC interface and an atom graph for the peptide as inputs to predict the peptide backbone
conformation. A post-processing step recovers the full-atom coordinates and constructs the entire
pMHC structure. By training on a novel weighted reconstruction loss, the proposed GNN predicted
accurate structures with similar performance compared to AlphaFold 2 [Jumper et al., 2021] and
pMHC fine-tuned AlphaFold 2 [Motmaen et al., 2022] with only 1.7M learnable parameters, which
represents a more than 98% reduction in the number of parameters. We demonstrate that the predicted
structures are closer to native structures, both in terms of geometry and biological consistency.
Furthermore, we show that our method considerably improves upon others in terms of fulfilling
biological constraints on peptide positioning within certain areas of the MHC called binding pockets
[Nguyen et al., 2021].

2 Methods
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Figure 1: Neural Network Architecture. Each model stage (pMHC interface encoding, peptide
atomic encoding, refinement and prediction) are represented by a rectangular dashed box in light blue,
mauve, and red, respectively. Model layers and layers’ inputs/outputs are represented by rectangular
colour-filled boxes, in yellow and green, respectively. The blue-filled rectangular box represents the
final model output (peptide atom coordinates).

2.1 pMHC Graph Representation

Unlike protein folding models that predict structures from amino acid sequences and pairwise features
of template structures, in this work, we propose to input an initial conformation by replacing the
residues in the template structure with target ones. Specifically, given a target pMHC, we identify
a template pMHC structure from a set of experimentally determined pMHC structures via peptide
sequence similarity and replace the amino acid residues with target ones for both peptide and MHC.
In other words, we input the target pMHC sequence with the conformation from the selected template.

The resulting pMHC structure is represented by two graphs, one representing the pMHC interface
at the amino acid-level to capture the interaction between the peptide and MHC, and another one
representing the peptide on the atom-level to refine the information for conformation prediction.
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The pMHC graph consists of the amino acid residues of the peptide together with the α1 and α2

domains of the MHC [Wilson and Fremont, 1993]. Nodes represent residues, with edges connecting
nodes if the distance between the Cα of the corresponding residues is smaller than 8 Å, following Xia
and Ku [2021]. For each node, the features include the type of amino acid, Kidera factors [Kidera
et al., 1985], Atchley factors [Atchley et al., 2005], and the coordinates of the Cα, O, Ccarbo, N
and Cβ atoms of the residue. For glycine, a virtual Cβ position is computed following Cock et al.
[2009]. For each edge, the features include the edge classes depending on the bond type (covalent or
non-covalent) and the chains (peptide or MHC) of the nodes it connects to.

The peptide graph consists of the backbone atoms (Cα, O, Ccarbo, and N ) and Cβ atoms. Nodes
represent atoms, with edges connecting nodes if a covalent bond exists between the corresponding
atoms. The node features encode the atom classes and the edge features encode the edge classes
depending on whether it is a single or double covalent bond and whether the atoms it connects come
from the same residue.

2.2 Neural Network Architecture

The neural network consists of three stages (Figure 1). First, the amino acid-level pMHC graph is
fed into a GNN block and each amino acid residue is represented by a node embedding. Meanwhile
the atom-level peptide graph is constructed where atom features are encoded and summed with
their corresponding residue embeddings. The resulting embeddings together with the atom-level
peptide graph are fed into another GNN block to refine the atom embeddings. Finally, each atom’s
coordinates are predicted from their embeddings via two shared dense layers.

The key component is the GNN block which consists of four message passing layers with an
multi-head attention mechanism [Shi et al., 2021]. The message passing layer is wrapped into a
Transformer-like architecture involving a ReLU-activated feed-forward network. To reduce the impact
of distant neighbours, the distance between each pair of nodes is considered in the denominator inside
the message passing layer:

xi = W1xi +
∑

j∈Nbr(i)

αijmij , (1)

mij = W2x
t
j +W3x

t
ij , (2)

αij = softmax
(
(W4xi)

⊤(W5xj +W6xij)

dij
√
demb

)
(3)

where W1,W2,W3,W4,W5 and W6 are learnable parameters of shape demb × demb; xi is the
embedding for node i; xij is the embedding for edge between node i and j, and j iterates through
all neighbour nodes of i; mij , αij , and dij are the message, attention, distance from node j to i,
respectively; and demb is the dimension of the embedding.

2.3 Loss

We propose a novel loss LStruct to ensure chemical and geometric constraints on the peptide structure.
It includes 1) LMSE (Appendix A.1), a mean squared error (MSE) of atom coordinates between
ground truth and prediction, 2) LIntra (Appendix A.2), a MSE of pairwise distances between atoms
inside each residue, 3) LInter (Appendix A.3), a MSE of pairwise distances between atoms across
different residues, 4) LDihedral (Appendix A.4), a MSE of the trigonometric functions (cos and sin) of
dihedral angles:

LStruct = LMSE + λ1LIntra + λ2LInter + λ3LDihedral, (4)

where λ1, λ2 and λ3 are hyper-parameters.

2.4 Post-processing

For each peptide residue, as the network outputs only the backbone and Cβ atom coordinates,
calculation of side chain atoms is necessary to obtain a full-atomic structure. We use the Rosetta
Packer algorithm [Leaver-Fay et al., 2011] which selects the side chain conformations from the 2010
BBDep Rotamer library [Shapovalov and Dunbrack, 2011], such that the overall energy (Rosetta
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REF15 energy [Alford et al., 2017]) of the structure is minimised, similar to the post-processing
applied by Jumper et al. [2021] in AlphaFold 2. During the post-processing, only side chain atoms
are updated, the predicted backbone atoms remain unchanged.

3 Experiment Setting

3.1 Data

We focus on MHC class I with a data set of 749 pMHC crystal structures retrieved from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) [Berman et al., 2000].
Structures with any missing backbone or Cβ atom and with non-9-mer peptides were removed. The
β-2 microglobulin chain was not used in this work. After this process, 458 structures were kept. The
structures were further split into train, validation, and test sets such that the test set matched the same
as the one used by Motmaen et al. [2022] with no peptide shared between the splits. The resulting
data set contains 293, 36, and 38 structures for train, validation, and test split, respectively. PDB IDs
and amino acid frequencies of each subset are provided in Appendix B. All structures were aligned
into the same coordinate system based only on the MHC Cα atoms with respect to a randomly chosen
structure (PDB code: 1AKJ).

3.2 Metrics

We calculated the root mean square deviation (RMSD) on backbone and full-atom peptide structures
for evaluation. Structures predicted by AlphaFold 2 and OmegaFold were aligned with respect to
the 1AKJ MHC chain prior to evaluation. Additionally, we considered a mean average error (MAE)
of the dihedral angles ϕ and ψ, averaged across the peptide. As the peptide positioning has to fulfil
biological constraints and be inserted into MHC surrounding areas called binding pockets [Nguyen
et al., 2021], we evaluated whether the predicted structures exhibit accurate binding positions by
calculating the MAE on distances from the peptide to the MHC binding pockets (Appendix C). The
total reweighted and attractive energy scores with Rosetta [Raveh et al., 2011] were reported to
quantitatively assess the biological consistency of the structures.

3.3 Implementation

The GNN model was implemented with PyTorch Geometric [Fey and Lenssen, 2019] and trained on
a Nvidia A100 40GB GPU. The optimiser was Adam with an initial learning rate of 3× 10−4. Hyper-
parameters were empirically set without extensive tuning (Appendix D). The official implementation
of AlphaFold 2 monomer [Jumper et al., 2021], pMHC fine-tuned AlphaFold 2 [Motmaen et al.,
2022], and OmegaFold [Wu et al., 2022] were used for benchmarking.

4 Results

Table 1: Metrics on test set per model. The reported values are average with standard deviation.

Metric (Unit) GNN AlphaFold 2
[Jumper et al., 2021]

Fine-tuned AlphaFold 2
[Motmaen et al., 2022]

OmegaFold
[Wu et al., 2022]

Backbone RMSD (Å) 1.26 ± 0.64 1.18 ± 0.61 1.19 ± 0.62 22.62 ± 11.21
Full-atom RMSD (Å) 2.51 ± 1.01 2.11 ± 1.12 2.07 ± 1.11 23.43 ± 11.10

Dihedral MAE (°) 25.80 ± 12.55 20.76 ± 12.13 21.41 ± 12.53 63.85 ± 16.75

Binding Pocket A MAE (Å) 0.11 ± 0.15 0.24 ± 0.52 0.28 ± 0.54 16.48 ± 9.24
Binding Pocket B MAE (Å) 0.25 ± 0.16 0.29 ± 0.54 0.35 ± 0.56 13.41 ± 7.88
Binding Pocket C MAE (Å) 0.42 ± 0.30 0.49 ± 0.60 0.58 ± 0.72 9.14 ± 8.16
Binding Pocket D MAE (Å) 0.36 ± 0.36 0.43 ± 0.48 0.49 ± 0.50 12.44 ± 8.64
Binding Pocket E MAE (Å) 0.49 ± 0.37 0.56 ± 0.67 0.58 ± 0.75 11.40 ± 9.38
Binding Pocket F MAE (Å) 0.10 ± 0.09 0.25 ± 0.54 0.31 ± 0.60 14.72 ± 9.37

Attractive score MAE (kcal/mol) 185.44 ± 83.15 340.72 ± 86.01 342.82 ± 85.04 189.91 ± 84.88
Total energy score MAE (kcal/mol) 147.19 ± 53.04 306.96 ± 86.21 305.14 ± 88.19 199.63 ± 64.54

The metrics of the proposed model together with the baselines AlphaFold 2 [Jumper et al., 2021],
pMHC fine-tuned AlphaFold 2 [Motmaen et al., 2022], and OmegaFold [Wu et al., 2022] are reported
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(a) PDB ID: 2GIT
Peptide: LLFGKPVYV

(b) PDB ID: 3H7B
Peptide: MLWGYLQYV

Figure 2: Examples of predicted structures. Experimental, GNN, and AlphaFold 2 fine-tuned
predicted peptide are represented in green, blue, and orange, respectively. The MHC chain is
represented in grey. AlphaFold 2 structures are not represented to simplify visualisation. GNN
matches AlphaFold 2 fine-tuned structures and captures most of the peptide backbone shape and
curvatures.

in Table 1 and their distributions in Figure 6 (Appendix E). For the GNN, results for the first seed are
given in Table 1 and for four other seeds in Table 9 (Appendix E). The proposed method achieved on
average 1.26 Å and 2.51 Å backbone and full-atom RMSD, respectively. This is comparable with
the AlphaFold 2-based counterparts, despite having only 1.7M learnable parameters compared to
93M in AlphaFold 2. High backbone accuracy is necessary since full-atom structures are produced
based on the backbone coordinates, therefore small errors in the backbone might propagate and have
large effects on the side-chains. OmegaFold, on the other hand, generated inaccurate results with an
RMSD of >10 Å (Figure 7 in Appendix E). The average dihedral MAE of the GNN is 26°, which is
acceptable since the Packer algorithm uses a dihedral angle resolution of 10°. When comparing the
distance to binding pockets, the proposed method achieved lower MAE, meaning that our method
predicted structures better satisfying the constraints on the anchor residues. In terms of energies, all
models predicted structures with higher energy scores than native, but the proposed method achieved
the smallest difference, suggesting that structures predicted by the GNN are energetically more
consistent with native structures than other methods. Examples of the predicted pMHC structures
are visualised in Figure 2. Ablation studies were performed to analyse the impact of the proposed
novel loss functions. The results are summarised in Table 10 in Appendix F, showing that additional
loss terms led to improved structure geometry (dihedral angles) and more energetically consistent
structures. Binding pockets were less impacted by the new loss terms, with the overall peptide
position in the binding groove predominantly determined via the MSE loss term.

5 Conclusion and Discussion

In this work, we proposed a novel graph neural network architecture taking both residue-level and
atom-level graphs to predict full-atomic pMHC structures. By minimising the composed losses on
atom coordinates, pairwise distances, and dihedral angles, we demonstrated that a lightweight model
with only 1.7M parameters is capable of producing accurate and biologically consistent structures,
which is comparable to large protein folding models such as AlphaFold 2 (93M parameters). While
the proposed method achieved plausible results, it solely predicts the backbone and Cβ atoms for
the peptide and relies on the Rosetta Packer algorithm to obtain full-atomic structures. Extending
the network to predict full-atom pMHC structures may enable us to achieve higher accuracy, and
to further reduce inference time. Moreover, the experiments were focused only on the interactions
between 9-mer peptides and MHC class I. Future work could include extending the model to peptides
of variable length and MHC class II to build a universal structure prediction model for pMHC
complexes.
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A Loss

A.1 Mean Squared Error Loss

The role of the mean squared error loss is to give the correct overall shape and position in the space
of the peptide atoms. There are 9 amino acids and 5 atoms per amino acid. Let y(j)a and ŷ(j)a denote
the true and predicted coordinates of the jth atom in the ath amino acid of the peptide, respectively.
As some peptide residues are more variable than others, residue-wise weights (denoted by wa) are
added to strengthen the attention given to the middle amino acids. Raw residue-wise weights are
calculated by running the model with uniform weighting (i.e. wa = 1/9) and then extracting the
residue-wise MSE loss on the validation subset. Weights wa are normalised to sum to 1 and the
values are provided in Table 2. The formula of this loss is given by:

LMSE =
1

45

9∑
a=1

5∑
j=1

wa||y(j)a − ŷ(j)a ||2. (5)

Table 2: MSE weights values per amino acid.
Residue 1 2 3 4 5 6 7 8 9

Weight 0.0356 0.0308 0.0621 0.1201 0.2900 0.1927 0.1117 0.0684 0.0887

A.2 Intra-residue Loss

Predicted 
coordinates

True 
coordinates

3

5 atoms  
per residue

9 residues

9

5

5

Intra-residue  
distance matrices

Intra-residue  
loss

Compute intra-residue  
atomic distances

Figure 3: Intra-residue loss computation process

Let d(j,k)a and d̂(j,k)a denote the distances between the jth and kth atoms in the ath amino acid of the
peptide for the ground truth and predicted structures, respectively:

d(j,k)a = ||y(k)a − y(j)a ||, (6)

d̂(j,k)a = ||ŷ(k)a − ŷ(j)a ||. (7)

The intra-residue loss is defined as (Figure 3):

LIntra =
1

225

9∑
a=1

5∑
j=1

5∑
k=1

||d(j,k)a − d̂(j,k)a ||2. (8)

The intra-residue loss adds constraints on the local geometry inside each peptide amino acid residue.
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Figure 4: Inter-residue loss computation process

A.3 Inter-residue Loss

Let da,b and d̂a,b denote the distances between the Cα atoms of the ath and bth amino acids of the
peptide for the ground truth and predicted structures, respectively:

da,b = ||y(0)a − y
(0)
b ||, (9)

d̂a,b = ||ŷ(0)a − ŷ
(0)
b ||, (10)

where y(0)a and ŷ(0)a represent the coordinates of the Cα atom for ath amino acid of peptide for the
ground truth and predicted structures, respectively.

The inter-residue loss is defined as (Figure 4):

LInter =
1

81

9∑
a=1

9∑
b=1

||da,b − d̂a,b||2 (11)

The inter-residue loss adds constraints on the geometry between peptide amino acid residues.

A.4 Dihedral Loss

Let ϕj and ψj denote the jth dihedral angles of rotation over the N−Cα and Cα−C covalent bonds
of the peptide [Ramachandran et al., 1963]. Following Xia and Ku [2021], the dihedral loss is defined
as:

LDihedral =
1

8

8∑
j=1

(sin(ψj)− sin(ψ̂j))2 + (cos(ψj)− cos(ψ̂j))2 (12)

(sin(ϕj)− sin(ϕ̂j))2 + (cos(ϕj)− cos(ϕ̂j))2

9



B Data

The PDB IDs for the training, validation, and test sets are listed in Table 3, Table 4, and Table 5,
respectively. The amino acid frequencies at each peptide position are illustrated in Figure 5 for each
data subset.

Table 3: Train set PDB IDs.
PDB ID

1A1O 1T1X 2PYE 3L3J 3RL1 5EO1 5VWH 6P23 6VMC 7LFZ
1A9B 1T1Y 2X4S 3L3K 3SKM 5EU4 5W69 6P27 6VMX 7LG0
1A9E 1T1Z 2X4U 3LKN 3TO2 5EU5 5W6A 6P2C 6VQO 7LG3
1AKJ 1T21 2XPG 3LKO 3UPR 5EU6 5WLG 6P2F 6VR1 7LGD
1CG9 1T22 3AM8 3LKP 3V5D 5F9J 5WMN 6P2S 6VR5 7M8U
1EEY 1TVB 3BH9 3LKQ 3V5H 5GSR 5WMO 6P64 6VRM 7MJ6
1EEZ 1TVH 3BHB 3LKR 3V5K 5HHO 5WMR 6PA1 6VRN 7MJ9
1EFX 1W0V 3BZF 3LKS 4EUP 5HHP 5WSH 6PTB 6W51 7MJA
1G7P 1W0W 3C9N 3LV3 4HWZ 5HHQ 5XOS 6PTE 6XQA 7MKB
1HHJ 1WBZ 3CCH 3MR9 4I4W 5IEK 5XOT 6R2L 6Y26 7MLE
1HSA 1XR8 3D18 3MRB 4K7F 5IM7 6BJ2 6SS7 6Y27 7N1A
1I1F 1XR9 3FQR 3MRC 4L8D 5INC 6BJ3 6SS8 6Y28 7N1B
1I1Y 1YDP 3FQT 3MRD 4LCY 5MEN 6BJ8 6SS9 6Y29 7N1E
1I7T 1ZT7 3FQW 3MRF 4MNQ 5MEO 6D2T 6SSA 6Y2A 7N1F
1I7U 2A83 3FT4 3MRG 4N8V 5MEP 6EWA 6UJO 6Y2B 7N6D
1JHT 2BCK 3GSQ 3MRH 4NNY 5MEQ 6EWC 6UK4 6Z9V 7N6E
1JUF 2BNR 3GSR 3MRI 4NO5 5MER 6EWO 6ULI 6Z9W 7P3D
1M6O 2BSR 3GSU 3MRJ 4O2C 5N6B 6GL1 6ULN 7CIR 7P3E
1N2R 2BST 3GSV 3MRK 4O2E 5NME 6ID4 6ULR 7DUU 7RM4
1P7Q 2C7U 3GSW 3MRL 4QRP 5NMG 6J1V 6UZM 7EJL 7RRG
1Q94 2CIK 3GSX 3MYJ 4QRQ 5NMK 6J1W 6UZO 7EJM 7RTD

1QEW 2DYP 3I6G 3PWJ 4QRS 5T7G 6J29 6UZP 7EJN 7RTR
1QR1 2F53 3I6L 3PWL 4QRT 5TS1 6JTP 6UZS 7F4W 7S8R
1S8D 2F54 3KPM 3PWN 4QRU 5TXS 6MT5 6VB0 7JYW
1S9W 2GTW 3KPO 3PWP 4U1S 5VGD 6NCA 6VB1 7KGP
1S9X 2GTZ 3KPQ 3QDJ 5BRZ 5VGE 6O4Y 6VB2 7KGQ
1S9Y 2GUO 3KPR 3QEQ 5BS0 5VUD 6O4Z 6VM7 7KGR
1SYS 2H6P 3L3D 3QFD 5E00 5VUF 6O9B 6VM8 7KGS
1SYV 2P5E 3L3G 3QFJ 5ENW 5VVP 6O9C 6VM9 7L1B
1T1W 2P5W 3L3I 3REW 5EO0 5VWF 6OPD 6VMA 7L1C

Table 4: Validation set PDB IDs.
PDB ID

1A1M 1W72 3BH8 4I48 5D2L 5NMF 6MT6 6UK2 7KGO
1HHG 2J8U 3CC5 4L29 5D2N 5SWQ 6PYJ 6VB4 7LG2
1LP9 2VLR 3KYN 4NQX 5EU3 6JOZ 6PYV 7BBG 7LGT
1QRN 2X4O 4E5X 5B39 5HHN 6MT4 6PZ5 7EU2 7M8T

Table 5: Test set PDB IDs.
PDB ID

1E27 1QQD 2FWO 3D25 3KYO 4QRR 5DEG 5TRZ 6G9Q 6VB7
1I7R 1VGK 2GIT 3H7B 3MRE 4U1H 5FA3 5U98 6GH1 7JYV
1JGE 1X7Q 3BVN 3KLA 3SKO 4U1N 5IB2 5VWJ 6J2A
1JPG 2BVP 3BXN 3KPP 4HX1 4Z77 5IND 5WMQ 6Q3S
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(c) Test set

Figure 5: Sequence logo plots representing the amino acid frequencies at each peptide position and
for each data subset.
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C Distance to Binding Pockets

Binding pockets are areas on the MHC chain that play a key role in how the peptide binds to the
MHC [Nguyen et al., 2021]. Each binding pocket corresponds to a group of residues, named anchor
residues that can bind to one or two peptide residues. Nguyen et al. [2021] have identified six distinct
binding pockets (A to F), along with their corresponding anchor residues (on the MHC chain) and
peptide residues. Specifically, for each binding pocket, there are two fixed sets of residues on peptide
and MHC chain. Let Pk and Mk denote the residue index sets for binding pocket k for peptide
and MHC, respectively. The Cα position on these residues are therefore denoted by y(0)i , y

(0)
j for

ground truth structure and ŷ(0)i , ŷ
(0)
j for predicted structure. In this work, we assess how well the

structures reflect the position of the peptide relatively to these binding pockets by measuring the
average Cα−Cα distance between the corresponding peptide and anchor residues as follows:

dBP =
1

|Pk| |Mk|
∑
i∈Pk

∑
j∈Mk

∥y(0)i − y
(0)
j ∥, (13)

d̂BP =
1

|Pk| |Mk|
∑
i∈Pk

∑
j∈Mk

∥ŷ(0)i − ŷ
(0)
j ∥. (14)

Table 6: Binding pocket peptide and MHC anchor residues from Nguyen et al. [2021].
Binding pocket Peptide residue(s) MHC anchor residues

A 1 5, 7, 59, 63, 66, 159, 163, 167, 171
B 2 7, 9, 24, 34, 45, 63, 66, 67, 70, 99
C 3, 5, 6 9, 70, 73, 74, 97
D 3, 5, 6 99, 114, 155, 156, 159, 160
E 3, 5 97, 114, 147, 152, 156
F 9 77, 80, 81, 84, 95, 123, 143, 146, 147

D Experiments Parameters

GNN and training hyper-parameters are defined in Table 7 and Table 8, respectively.

Table 7: Neural network hyper-parameters
Block Number of layers Input size Output size

Node embedding 1 15 128
Edge embedding 1 6 128

GNN block 4 with 4 heads each 128 128
Prediction head 2 128/128 128/3

Table 8: Training hyper-parameters
Parameter Value Parameter Value
Max epochs 70 Output shape (9, 5, 3)
Batch size 10 Intra-residue loss weight λ1 3.0

Input dimension 15 Inter-residue loss weight λ2 0.5
Embedding dimension demb 128 Dihedral loss weight λ3 0.25

AlphaFold 2 original and fine-tuned models were trained using Motmaen et al. [2022] implementation1

with original and fine-tuned weights respectively. Motmaen et al. [2022] use a 200 residue gap trick
to add the peptide sequence. For OmegaFold, we use Wu et al. [2022] implementation2 with a 30
glycine residue gap trick as shown more successful by Tsaban et al. [2022].

1https://github.com/phbradley/alphafold_finetune
2https://github.com/HeliXonProtein/OmegaFold
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Figure 6: Boxplots of distributions of RMSD (top-left), dihedral MAE (top-right), distance to binding
pocket absolute error (bottom-left) and energy score absolute error (bottom-right). To simplify the
visualisation, OmegaFold results are not displayed and only binding pockets A and D are represented.

(a) PDB ID: 2GIT
Peptide: LLFGKPVYV

(b) PDB ID: 3H7B
Peptide: MLWGYLQYV

Figure 7: Examples of incorrectly predicted structures by OmegaFold. Experimental and OmegaFold
peptide are represented in green and orange respectively. The MHC chain is represented in grey.
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Table 9: Metrics on test set per seed. The reported values are average with standard deviation across
the test set.

Metric (Unit) Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Backbone RMSD (Å) 1.26 ± 0.64 1.21 ± 0.71 1.23 ± 0.65 1.23 ± 0.65 1.23 ± 0.62
Full-atom RMSD (Å) 2.51 ± 1.01 2.42 ± 1.12 2.43 ± 1.06 2.43 ± 1.06 2.60 ± 1.00

Dihedral MAE (°) 25.80 ± 12.55 30.04 ± 16.01 28.10 ± 13.86 28.10 ± 13.86 34.37 ± 18.10

Binding Pocket A MAE (Å) 0.11 ± 0.15 0.07 ± 0.14 0.06 ± 0.14 0.07 ± 0.15 0.06 ± 0.14
Binding Pocket B MAE (Å) 0.25 ± 0.16 0.20 ± 0.16 0.17 ± 0.15 0.22 ± 0.16 0.21 ± 0.16
Binding Pocket C MAE (Å) 0.42 ± 0.30 0.43 ± 0.31 0.39 ± 0.28 0.35 ± 0.29 0.41 ± 0.27
Binding Pocket D MAE (Å) 0.36 ± 0.36 0.37 ± 0.39 0.34 ± 0.31 0.37 ± 0.38 0.37 ± 0.34
Binding Pocket E MAE (Å) 0.49 ± 0.37 0.46 ± 0.32 0.50 ± 0.43 0.50 ± 0.35 0.54 ± 0.42
Binding Pocket F MAE (Å) 0.10 ± 0.09 0.09 ± 0.09 0.10 ± 0.09 0.12 ± 0.08 0.10 ± 0.08

Attractive score MAE (kcal/mol) 185.44 ± 83.15 186.44 ± 82.41 185.75 ± 82.92 185.35 ± 83.05 186.15 ± 83.60
Total energy score MAE (kcal/mol) 147.19 ± 53.04 142.43 ± 56.73 143.39 ± 47.87 143.90 ± 52.13 160.13 ± 82.38

F Loss Ablation

We trained the same GNN model with different combinations of loss terms. We compared different
cases where additional loss terms were removed individually, and when only the MSE loss was kept.
The results are reported in Table 10 and examples of predicted structures for both cases are visualised
in Figure 8.

Table 10: Metrics on test set per model. The reported values are average with standard deviation
across the test set.

Metric (Unit) Full loss MSE only λ1 = 0 λ2 = 0 λ3 = 0

Backbone RMSD (Å) 1.26 ± 0.64 1.29 ± 0.68 1.32 ± 0.66 1.24 ± 0.66 1.31 ± 0.71
Full-atom RMSD (Å) 2.51 ± 1.01 2.63 ± 1.13 2.67 ± 1.16 2.55 ± 1.14 2.64 ± 1.11

Dihedral MAE (°) 25.80 ± 12.55 31.01 ± 14.62 29.09 ± 16.83 29.01 ± 16.45 35.51 ± 17.57

Binding Pocket A MAE (Å) 0.11 ± 0.15 0.08 ± 0.15 0.06 ± 0.15 0.06 ± 0.14 0.07 ± 0.15
Binding Pocket B MAE (Å) 0.25 ± 0.16 0.29 ± 0.19 0.19 ± 0.15 0.19 ± 0.17 0.25 ± 0.16
Binding Pocket C MAE (Å) 0.42 ± 0.30 0.42 ± 0.32 0.41 ± 0.29 0.45 ± 0.34 0.34 ± 0.29
Binding Pocket D MAE (Å) 0.36 ± 0.36 0.37 ± 0.39 0.40 ± 0.37 0.35 ± 0.33 0.36 ± 0.35
Binding Pocket E MAE (Å) 0.49 ± 0.37 0.46 ± 0.38 0.55 ± 0.39 0.49 ± 0.40 0.47 ± 0.37
Binding Pocket F MAE (Å) 0.10 ± 0.09 0.11 ± 0.10 0.11 ± 0.09 0.11 ± 0.08 0.10 ± 0.09

Attractive score MAE (kcal/mol) 185.44 ± 83.15 190.20 ± 79.68 192.23 ± 80.19 190.60 ± 80.05 190.89 ± 80.64
Total energy score MAE (kcal/mol) 147.19 ± 53.04 165.00 ± 73.17 149.20 ± 63.33 168.73 ± 76.98 157.32 ± 57.40

(a) 2FWO (b) 6G9Q

Figure 8: Examples of predicted structures. Experimental, GNN with full loss, and GNN with MSE
loss only predicted peptide are represented in green, blue, and orange, respectively. The MHC chain
is represented in grey.
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G Running time

We provide in Table 11 the inference time for each model per structure. We assess the running time
on one A100 40GB GPU and 8 e2-standard 64 GB CPUs. Note that the Packer only runs on CPU and
is not assessed on GPU. We hypothesise that the GNN inference running faster on CPU compared
to GPU is due to the low compute requirements of the forward pass with the memory transfer from
main to GPU memory dominating the cost.

Table 11: Inference running time in seconds per structure per model on CPU and GPU.
Model CPU GPU

GNN 0.064 0.35
Packer 6.73 NA

AlphaFold 2 303.16 4.61
OmegaFold 1917.00 26.48
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