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Abstract

Advances in X-ray techniques at Free Electron Laser and synchrotrons now enable
the collection of diffraction snapshots from millions of micro crystals. These
are often paired with physical or chemical perturbations to obtain movies of the
response of proteins to chemical and physical stimuli [1]. Analysis of these data
requires scalable algorithms. Distributed computing is one way to accomplish
this as national labs may provide the necessary compute resources. However, a
more accessible approach would be to construct algorithms which can operate on
small batches of data on a single computer. The extreme case, an online algorithm,
learns to process data by looking at one example at a time. Here we describe the
successful implementation of one such algorithm for scaling and merging reflection
intensities. The algorithm uses deep learning to scale reflection intensities while
encouraging the merged structure factor estimates to follow a crystallographic prior
distribution. The model is trained by gradient descent on a Bayesian objective
function. We demonstrate that the model can estimate productive global parameter
updates from single images. This approach has modest hardware requirements,
can adapt on the fly as new data are acquired, and has the potential for transfer
learning between data sets. The algorithm can be the heart of a flexible, scalable
infrastructure that powers the next generation of diffraction experiments.

1 A Bayesian Model for Structure Factor Estimation

In crystallography, the X-ray beam reveals the Fourier transform of the sample’s electron density.
Each image is a slice through the transform. Due to the periodic nature of crystal lattices, their X-ray
scattering patterns consist of discrete puncta (“reflections”) interspersed with signal that is largely
due to background scattering. Reflections are windows into to the Fourier transform of the unit
cell—the repeating unit that builds up the crystal lattice. Each reflection corresponds to a specific
spatial frequency vector within the unit cell. The X-ray flux scattered to the reflections is proportional
to the square of the corresponding Fourier amplitude or “structure factor” as it is known in the
scattering literature. The goal of X-ray crystallography is to estimate a complete set of structure factor
amplitudes to the best attainable resolution allowed by the sample. Along with phases, which can be
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Figure 1: Probabilistic graphical model: For an image, i, the observed intensity, Ih,i, corresponding
to a particular spatial frequency vector, h, depends on the structure factor Fh and a local random
variable, Σh,i, representing the systematic error of the observation. As we showed previously [2],
Σh,i can be calculated as a function of per-observation metadata, M . In our previous study, this
function takes the form of a multilayer perceptron with parameters θ.

recovered algorithmically or through specially designed experiments, the amplitudes determine the
electron density of a sample.

Estimating structure factor amplitudes is complicated by copious sources of systematic error which
need to be corrected. Many heuristic approaches exist to achieve these corrections. However, they
ultimately rely on the physical intuition of the engineer to formulate suitable correction functions.
As we showed in ref. [2], these errors can, instead, be corrected by a multilayer perceptron while
simultaneously estimating structure factors using variational inference [3]. The approach does not
require explicit physical modeling of error sources and recovers a set of structure factors satisfying
two criteria: consistency with the observed data, and consistency with a prior distribution expressing
first-principles statistical expectations.

In general, the intensity of reflections can be expressed as a graphical model (Figure 1). For this
model, variational inference is accomplished by using gradient-based optimization to maximize the
Evidence Lower BOund, [2]

ELBO =
∑
h

∑
i

{
Eq

[
log p(Ih,i|qFh , qΣh,i , σIh,i)

]
−DKL(qΣh,i∥pΣ)

}
−

∑
h

DKL(qFh∥pF ) (1)

I and σI refer to observed reflections intensities and their error estimates. qF and qΣ are the
variational distributions for structure factors and multiplicative scale factors with corresponding prior
distributions pF and pΣ. The particular parameterization of this objective is a modeling choice. Our
previous implementation relied on local parameters for each diffraction image in order to learn qΣ
which prevented batch training. Here we introduce a global parameterization of qΣ that lifts this
restriction enabling online inference (Figure 2).

2 Model Parameterization

As in our previous study [2], we parameterize the posterior of structure factors, qF , by a truncated
normal with positive support. For the prior, pF , we use Wilson’s priors, a historical prior from the
crystallography literature [4]. We choose to parameterize the posterior of scales, qΣ, as a lognormal
distribution with a prior, pΣ = LogN ormal(0, 1). The parameters of qΣ are amortized by a model
discussed in the following sections. Using the fact that intensities are proportional to the square of
the structure factor amplitudes, the likelihood

p(Ih,i|qFh
, qΣh,i

) = N (Ih,i|Σh,iF
2
h , σIh,i

),

is taken to be a normally distributed about the product of the scales and the square of the structure
factor amplitudes with the empirically measured standard deviation, σIh,i

.

For a particular observation with intensity Ih,i and empirical uncertainty σIh,i
, we approximate the

ELBO (Equation 1)

ELBOh,i ≈
S∑

s=1

{
logN (kIh,i|Σh,i,sF

2
h,s, kσIh,i

)− wF [log qFh
(Fh,s)− log pF (Fh,s)]

}
− wΣDKL(qΣh,i

∥pΣ)
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In this context, we use Fh,s and Σh,i,s to denote reparameterized samples [5],
Fh,s ∼ qFh

Σh,i,s ∼ qΣh,i

from the variational distributions. The final term, which is the Kullback-Leibler divergence between
the scale, qΣ, and its its prior is computed analytically. The weight terms, wF and wΣ, are hyperpa-
rameters which modulate the strength of the priors. k is a strictly positive learned parameter which
accounts for the arbitrary mean of pΣ and is constrained by the softplus function. We note that there
is a separate, global variational distribution, qF , for each reflection, h. At each training step, the
ELBO is summed over the reflection observations from a single of image, leading to the objective
function,

Li = −
∑
h

ELBOh,i

which is minimized during training.

(a) Model architecture (c) Scale predictor

(b) Image encoder (d) Feed forward block

Figure 2: (a) The model predicts scaled intensities for a batch of reflections from one image. (b)
The image encoder uses the current state of the structure factors, the intensities, and metadata for
each reflection to compute a putative image encoding and corresponding probability. The output is
the expectation of these putative encodings. (c) The reflection scale model concatenates encoded
images to their corresponding reflection metadata. The concatenated vectors are passed through
a neural network which outputs 2 parameters that the model interprets as the location and scale
parameters of a lognormal distribution. (d) The basic nonlinear building block of the model is the
ResNet v2 [6] without normalization layers. dff , dmodel, and the choice of activation function are
hyperparameters. Kernel weights are initialized by Wij ∼ T runcatedN ormal(0, σ,−2σ, 2σ) with
σ =

√
2/[5N(din + dout)]. Biases are initialized to zero.

2.1 Amortized Inference for Reflection Scales

The scale model (Figure 2a) must learn to predict the variational distributions, qΣh,i
from image

metadata. In order to enable stochastic training, this must be accomplished by purely global parame-
ters. To achieve this, we introduce a bipartite model (Figure 2a for image scales which consists of
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a permutation invariant encoder model (Figure 2b) and a multilayer perceptron (Figure 2d). This
architecture leverages the population of reflections within a given image to estimate appropriate scale
parameters.

2.2 Image Encoder Model

The idea behind the encoder model (Figure 2b) is to learn a function which observes the current
structure factor estimates, the context of each reflection (reflection metadata), and the observed
intensities and suggests a vector that describes the image. Hopefully, this vector includes information
needed to scale the reflections on this image. For instance, the vector should encode information about
the orientation of the crystal, its size, shape, and mosaic properties, the brightness and deflection of
the X-ray beam, etc. To generated this representation, the neural network considers each reflection in
isolation and proposes a putative image encoding based on that reflection. Alongside the putative
encoding, the network outputs a score representing the probability that the reflection is informative.
The consensus encoding is taken to be the expected value of candidate encodings weighted by the
probabilities. Pooling the candidate encodings into a single vector of length dmodel prevents the
encoder from passing the reflections’ intensities directly to the scale model. This is essential to
prevent the overall model from overfitting during training.

2.3 Scale Predictor Model

The goal of the scaling model is to produce a distribution of probable scale factors for each reflection
(Figure 2c). As in previous work [2], it uses metadata associated with each reflection in order to infer
scales. Unlike the previously reported model, it has access to the image representation produced by
the upstream encoder model. The input layers of this model simply concatenate the image vector onto
each reflection’s metadata. A neural network uses this enriched representation to predict appropriate
scales. In the parameterization presented here, the neural network predicts a two-vector interpreted
as the location and scale parameters of a log-normal distribution. We use the softplus function to
constrain the scale to be positive.

3 Application to Single Wavelength Anomalous Diffraction Data

As a case study for the suitability of this model for merging serial femtosecond crystallography
data, we applied it to a publicly available dataset consisting of 166,250 diffraction images [7] of
the zinc metalloprotease, thermolysin, which were integrated using DIALS [8] (available from
https://www.cxidb.org/ entry 81 under a public domain, CC0 license). The data were acquired
at a wavelength of 1.27 Å. At this wavelength, several of the atoms in the thermolysin crystal
absorb X-rays leading to a phenomenon known as “anomalous diffraction”. Typically, the two
centrosymmetrically related halves of the diffraction pattern have identical intensities. In the case of
anomalous diffraction, this symmetry is broken. Small differences in intensities carry information
about the phase of the structure factors which can be used to solve the structure of the sample. The
strongest signal in this case is from the catalytic Zn2+ ions in the thermolysin active site. However, a
number of calcium ions also contribute to the signal.

3.1 Training Details

We trained our model on the thermolysin data for 500,000 gradient updates using the Adam optimizer
[9], equating to about 3 passes over the dataset. With the reported hyperparameters in Figure 3a, the
model requires 0.8 GB of GPU memory and executes a gradient step in about 70ms on a consumer
grade GPU (NVIDIA RTX 3060). The total training time was less than 12 hours. We expect a 3 to 10
fold speedup is attainable by optimizing the i/o pipeline.

3.2 Phasing Results

We noted the appearance of anomalous signal early in training as judged by the signal to noise of
anomalous peaks corresponding to elements in the sample (Figure 4a). After 500,000 optimization
steps, we analyzed the output using AutoSol [11], an automated package for estimating experimental
phases from X-ray diffraction data. Our results were encouraging, surpassing the current state of
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(a) Model hyperparameters

Metadata
Scattered wavevector x-coord (Å-1),
Scattered wavevector y-coord (Å-1),
Ewald offset vector (Å-1)

Activation ReLU
N 20
dmodel 32
dff 64
wF 0.001
wΣ 10
MC samples 50
Max refls per
image 2048

Learning rate 0.001 ×50k
0.0001 after

β1 0.9
β2 0.999

(b) Training trajectory

Figure 3: ( a) The hyperparameters used in this thermolysin case study. (b) The trajectory of various
metrics throughout training. This plot shows the -ELBO and its constituent terms, the log likelihood
and Kullback-Leibler divergences. The CCpred is the Spearman correlation between predicted and
observed intensities calculated per image and averaged. The crossvalidation test set is 10% of the
images.

(a) Anomalous signal during training (b) SAD phasing results

Ours Reference [10]
Zn2+ peak (σ) 83.2 67.0

Model-map CC 0.84 0.80±0.001
Sites found 7 6

Residues built 305 297.2±6.5
Rwork 0.204 0.212±0.013
Rfree 0.231 0.237±0.017

Figure 4: (a) The development of anomalous signal throughout the cours of training. Anomalous
peak heights determined using the difference map peak finding command line script from rs-booster (
https://github.com/rs-station/rs-booster ). (b) The table presents SAD Phasing Results from AutoSol
[11] using the same parameters as [10] (bold is better). The zinc peak height in the table is from
phenix.find_peaks_holes using our structure factor estimates and the autobuilt model.

the art 4b by a large margin. Specifically, we improved on the anomalous peak signal-to-noise
by over 15 σ. As in the previous state of the art[8], we were able to automatically build a model
of the thermolysin indicating that our inferred structure factors are precise and scaled such that
they can be used in conventional processing software. Supporting the validity of our strategy, the
experimentally determined electron density is readily interpretable immediately upon phasing and
density modification (Figure 5a).

During our analysis, we discovered anomalous signal in a previously unreported site. The sulfur atom
of methionine-205 appeared as an anomalous site after a single pass through the data (Figure 4a).
Again, this signal was usable as judged by the fact that AutoSol was able to place a seventh anomalous
atom during phasing (Figure 5b). This result is remarkable given that the available anomalous signal
for sulfur at this wavelength is less than a single electron.
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(a) Thermolysin active site (b) Methionine-205

Figure 5: Thermolysin SAD phasing results featuring the autobuilt model from AutoSol [11]. The
blue electron density, contoured at 2σ, is the experimental, density-modified map. The orange map is
the anomalous difference map using the pictured model for phases and the structure factor estimates
from our merging algorithm contoured at 5σ.

4 Conclusion

In this work we have demonstrated an algorithm which can estimate productive global updates for
structure factor amplitudes given access to a single image at a time. We show a proof of concept
result based on publicly available data and demonstrate performance surpassing the state of the art.
As of yet, is it unclear how our choice of priors and hyperparameters will generalize.

Our model requires relatively meager resources to train. The memory requirements scale linearly
with the number of reflections per image. Therefore, we submit it may be possible to apply this
model to raw diffraction images which are typically in the 10 megapixel regime. This would allow us
to sidestep the current, error-prone practice of independently estimating the flux to each reflection
observation. We imagine the only pre-processing which will be required in this case is to assign each
pixel to its nearest structure factor, a task that can be accomplished with existing software.
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