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Abstract

Point clouds are an increasingly common spatial data modality, being produced
by sensors used in robotics and self-driving cars, and as natural intermediate
representations of objects in microscopy and other bioimaging domains (e.g.,
cell locations over time, or filaments, membranes, or organelle boundaries in cryo-
electron micrographs or tomograms). However, semantic and instance segmentation
of this data remains challenging due to the complex nature of objects in point
clouds. Especially in bioimaging domains where objects are often large and can be
intersecting or overlapping. Furthermore, methods for operating on point clouds
should not be sensitive to the specific orientation or translation of the point cloud,
which is often arbitrary. Here, we frame the instance segmentation problem as
a graph learning problem in which we seek to learn a function that accepts the
point cloud as input and outputs a probability distribution over neighbor graphs
in which connected components of the graph correspond to individual instances.
We introduce the Dimensionless Instance Segmentation Transformer (DIST), a
deep neural network for spatially invariant instance segmentation of point clouds to
solve the point cloud-to-graph problem. DIST uses an SO(n) invariant transformer
layer architecture to operate on point clouds of arbitrary dimension and outputs, for
each pair of points, the probability that an edge exists between them in the instance
graph. We then decode the most likely set of instances using a graph cut. We
demonstrate that the DIST has the power to segment biomolecules in cryo-electron
micrographs and tomograms, far surpassing existing methods for membrane and
filament segmentation in our evaluation. We anticipate that DIST will underpin a
new generation of methods for point cloud segmentation and that our general model
and approach will provide useful insights for point cloud segmentation methods in
other domains.

1 Introduction

Point clouds are a common way to represent objects or scenes on a computer, and are widely used
in computer vision, augmented and virtual reality, and imaging. Point clouds of scenes are often
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subsequently processed to semantically classify the points - semantic segmentation - or to segment
individual objects and instances - instance segmentation (Figure 1). Unlike 2D or 3D images, point
clouds are disordered, unstructured, and may have noisy point locations, making it difficult to design
algorithms or machine learning models to process them. Deep learning methods for processing point
clouds have become of increasing interest with the increase in point cloud data being generated
by sensors in robotics and as a representation of objects in physics engines, natural images, and
bioimaging. Many recent methods have been developed to segment point clouds using deep learning
[8, 11, 15, 17, 2, 3, 10, 16], which address the instance, scene, or part segmentation problems using
various architectures or training schemes. However, instance segmentation methods require prior
information about the number of instances that are present or assume some fixed number of instances.
Furthermore, many methods convert point clouds into pixel- or voxel-grids to process them with
convolutional layers, or otherwise incorporate point coordinates directly into the network, causing
their outputs not to be invariant to rotation and translation of the point cloud.
In cryo-electron microscopy, an increasingly common task is to segment individual filaments, mem-
branes, organelles, or other biological structures in 2D micrographs or 3D tomograms. These objects
are often large and can intersect or overlap causing instance segmentation to be complicated even if a
semantic segmentation mask is known. Experienced scientists or technicians often spend weeks to
months painstakingly manually labeling these datasets for downstream analysis, limiting throughput.
Current state-of-the-art methods barely help. For filament instance segmentation, for example, these
methods utilize algorithms custom-tailored to curve tracing [1] but have such high error rates that
scientists still spend days manually correcting annotation errors, if the algorithms work at all [12, 13].
Faster and more accurate instance segmentation methods are urgently needed to facilitate large-scale
analysis of these datasets as imaging technology improves.
To address these problems, we propose the Dimensionless Instance Segmentation Transformer (DIST).
DIST is able to perform SO(n) invariant instance segmentation of point clouds using only geometric
features. We accomplish this by framing instance segmentation as a graph prediction problem. Given
a point cloud as input, DIST outputs a probability distribution over graphs parameterized by the
probability. Instances, therefore, are defined by connected components of the full point cloud graph.
This allows us to perform instance segmentation without any restrictions on the maximum number of
instances. We find that DIST performs incredibly well, improving the state of the art in membrane
instance segmentation in 2D micrographs and 3D microtubule (MT) segmentation in 3D tomograms
by a large margin (from 0.539 mCov for Amira to 0.955 mCov with DIST).

2 Method

Instance segmentation with DIST is divided into three parts (Figure 2): 1) the raw point cloud
is converted into a pairwise representation based on distances between the points, 2) the edge
representations are fed through the DIST model to produce an output matrix containing the probability.
In the way that for each pair of points, output predicts an edge between them in the instance graph. 3)
the maximum likelihood graph is found using a graph cut algorithm to predict instance segmentation.
The DIST model is trained to predict the ground truth edges in labeled instance graphs using standard
neural network training techniques, back-propagation and stochastic gradient descent.

Pairwise-feature input embedding. The DIST model operates on pairwise features. That is, for
each pair of points in the point cloud, DIST learns a vector representation. We refer to these as
pairwise embeddings or edge embeddings. In order to ensure that our representations are invariant to
the translation and rotation of the point cloud, we initialize the edge features using the corresponding
distance between each pair of nodes. Because we think that nearby points are more important than
distant points within the point cloud, we define these features using a scaled exponential of the
negative squared distance. More formally, given a point cloud represented as a set of points pi where
i = 1, . . . , n, we initialize a graph G with a featureless node for each pi, and edges ei,j connecting all

nodes, with weights ei,j = exp(
−d2

i,j

s2∗2 ), where di,j is the euclidean distance between pi and pj , and
s is sigma denoted as fixed scaling factor for the normalized point cloud. This weighting approach
allows us to embed geometrical information about all points directly from the Euclidean distance.
Weights are then multiplied with a learned d-dimensional embedding vector to define the initial edge
representations.

Geometric transformer layer. Starting from the initial edge representations, we apply several steps
of axial multi-head attention (MHA) and triangular multiplicative updates (Appendix Figure A-B).
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Figure 1: Examples of semantic and instance segmentation in 2D on a cryo-EM micrograph. Semantic
segmentation classifies points into semantic classes. Instance segmentation classifies points into
individual instances, which may be of the same semantic class.

Each overall step is referred to as a "DIST layer" (Appendix Figure A-C), and the edge update
that occurs within each DIST layer (composed of simultaneous MHA and triangular multiplicative
updates) is referred to as the "Edge update" module (Appendix Figure A-D). In the appendix
description Appendix B, we describe actions on rows/columns of the graph representation of G,
which corresponds to the set of incoming or outgoing edges of G.

At each DIST layer, the output from both the MHA and triangular multiplicative updates are added
to the incoming edge features, and the resulting updated edge features are fed through an activation
function before being used as the input to the next DIST layer. Finally, after the last DIST layer, the
resulting edges in the graph are fed through a single linear layer to obtain a probability for that edge.

Graph cut instance segmentation. The final DIST graph representation contains the predicted
probability for each edge in the instance graph of the point cloud, which can be used to obtain an
instance segmentation. A simple segmentation can be achieved by thresholding the probabilities
and examining the resulting graph. We explain the detail of the graph instance segmentation in the
Appendix D.

3 Experiments

Datasets. Because our primary motivation is to perform instance segmentation on biological structures
in electron microscopy (EM) data, we compare the performance of DIST to the current state-of-the-art
algorithms for instance segmentation of filament-like structures on real-world EM data. We evaluate
DIST on a membrane segmentation task in 2D cryo-EM micrographs and a microtubule segmentation
task in 3D plastic section tomograms. For both datasets, an experienced microscopist derives ground
truth labels from manual annotation. The datasets contained of 76 micrographs of membranes (2D
scenes; with 500-2’500 points each) and 48 MT tomograms (3D scenes; with 10’000-50’000 points
each). We split these into a train, a validation, and a test sets with an 80/10/10 split ratio. The detail
explaining point cloud pre-processing are presented in the Appendix C as well as how we generated
ground truth from graph representation in the Appendix E.
In all experiments, we use a DIST model with 6 layers, 8 attention heads, and a hidden dimension of
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128. We lightly tuned the value of sigma, finding that both biological datasets a value of 2 gave the
best results on the training set. All DIST models were trained with binary cross entropy loss using
the ADAM optimizer with learning rate 10−5 and no weight decay on a single NVIDIA A100 GPU.
DIST model training was stopped when the validation loss did not improve after 50 epochs.

Figure 2: Instance segmentation with DIST. The input pairwise feature representations are defined
from the Euclidean distance between points in the input point cloud. The DIST model learns to refine
these representations and then outputs edge probabilities. These edge probabilities are used to find
the connected components which define individual instances.

Graph representation evaluation. We performed experiments on point clouds manually segmented
by experienced users. The evaluation metric used for the graph prediction is intersection over
union (mIoU) averaged over all cropped graphs. Due to the lack of a comparable real or synthetic
benchmark dataset to which we could compare our DIST graph prediction, we defined here our
baseline independently. The baseline was defined as a point cloud graph representation generated
from point distances. This was achieved by computing the distance between each pair of nodes in a
point cloud.

Instance segmentation evaluation. To benchmark instance segmentation performance we measured
mean class coverage (mCov; [5]).This metric measures IoU between the ground truth label and its
matching predictions. Additionally, for these datasets we also generate our baseline using state-of-the-
art segmentation software ZiB Amira [13] and multi-curve fitting (MCF; [1]). Both of this software
are nowadays wildly used for MT segmentation tasks. For both of the methods, we used the ’standard’
setting. In the case of ZiB Amira, the setting was heavily tuned for the MT dataset and is suggested
to use by the authors. In the case of MCF, the author optimized the ’standard’ setting for filament-like
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structures. MT and Mem datasets are filament-like structures, and therefore using a setting tuned by
the author and adjusting only the pixel size value in our opinion should yield the best results.

Benchmark results. The metrics of the point clouds was shown in Table 1. For the inference of the
graph representation, the output of the DIST was thresholds before calculating mIoU. The threshold
was selected by manually picking the best value based on a sub-sample of 10 datasets that were not
used for the evaluation. The proposed DIST achieved a great leap in performance comparing mIoU
of 30% and 113% compared to our baseline Appendix Figure F.

mIoU AUPR
Model Mem MTs Mem MTs

DIST (our) 0.934 0.916 0.967 0.994
Baseline (DC - point distances) 0.718 0.430 0.861 0.923

Table 1: Graph prediction comparison biological and synthetic datasets.

The evaluation of the graph instance inference model is shown in Table 2. Due to the uniqueness
of the EM data, we also compared our DIST framework with the current state-of-the-art method
used for membrane and MT automatic segmentation. On the 2D dataset, we compared DIST to two
methods: MCF [1] and distance clustering (DC). MCF was recently demonstrated as a workflow for
instance segmentation based on iterative fitting of points to spline based on multiple hyperparameters
that must be tuned for each dataset. The DC method on the other hand relies on building instances by
clustering points based on kNN distances. We compared our 3D MT dataset to MCF and currently
used Amira software which produces state-of-the-art performance on MT segmentation tasks [13].
DIST achieved the best results for both membrane and MT segmentation. Appendix Figure I
shows further segmentation examples provided by DIST, DC, MCF and Amira. Moreover, MT data
in comparison to current state-of-the-art software, Amira, shows outstanding results (Table 2 and
Appendix Figure I).

Method mCov
Mem MTs

DIST (our) 0.913 0.955
DC 0.253 0.214
MCF [1] 0.135 0.000
Amira [13] - 0.539

Table 2: Instance segmentation comparison for the membrane and MT dataset.

4 Conclusion

We propose DIST, a neural network architecture for instance segmentation of point clouds. By using
geometric features to learn SO(n) invariant graph representations, we are able to achieve state-of-
the-art instance segmentation of biological structures in electron micrographs and tomograms. By
framing the instance segmentation problem as a graph prediction problem where the instances are
defined by connected sub-graphs, we are able to identify any number of instances without any built-in
constraints in our network. Furthermore, we show that using geometrically inspired updates, the
triangular update module, was critical for model performance and that this was enhanced by the
inclusion of axial attention modules.

We expect that this approach to instance segmentation will transform our ability to understand biolog-
ical structures in the increasing amounts of structural data being generated by electron microscopy,
where biomedical researchers are in need of fast and accurate instance segmentation methods. In the
future, we expect that DIST will underpin filament, membrane, and organelle segmentation software.
Furthermore, DIST can be applied to other point cloud instance segmentation problems and extends
easily to arbitrary dimension point clouds. This would enable it to be applied to object tracking over
time in 3D imaging, for example, which can be represented as a 4D space. DIST can also be extended
to include node features, allowing additional semantic information for each point to be passed to the
network, further increasing performance.
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A Detail DIST design

Appendix Figure 1: Example of instance segmentation using DIST.
(A) Illustration of 2D cryo-EM micrograph with segmented membranes. Instance segmentation was
compared with MCF and DC methods. (B) Electron tomography reconstruction of mammalian cells
with segmented MTs in 3D. Instance segmentation was compared with MCF and Amira methods.
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B Detail implementation of DIST layer

MHA module was adapted from the original paper (Vaswani et al. [2017]). It performs axial attention
updates over rows or columns of the graph. In axial updates, we switch between interpreting the
rows or columns as the long axis of the tensor and applying typical multi-head attention. This
corresponds to attending over edges outgoing from a node (row attention) or incoming to a node
(column attention). This is followed by a fully connected layer with residual connections from the
row and column axial attention operations to generate the output edge features.

Triangular multiplicative update was adapted from (Jumper et al. [2021]), with a detailed design
depicted in Appendix figure A-E and pseudo-code shown in Appendix G. The triangular update
takes an input edge feature embedding and performs Einstein summation over row or column features,
followed by a linear layer with gating to obtain an update for the edge feature embedding.
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C Datasets Implementation Details

Point Cloud Pre-Processing. There are two major challenges in point cloud instance segmentation:
1) uneven point spacing within and between datasets, which makes learning generalizable local
features difficult, and 2) the size of the point cloud, which is often too large to process due to memory
constraints, because the RAM usage of DIST scales cubically (axial attention requires quadratic
attention for each point) with the number of points, making large point clouds require far more RAM
than is available on current GPUs.

Point cloud re-scaling. We tackle the uneven sampling resolution problem by re-scaling the point
cloud. We scale the point clouds for biological data - where point clouds are derived from image data
- by using the physical pixel size and normalizing the data such that distances between points are
scaled in Angstroms.

Cropping and stitching. Next, we tackle the memory cost of computing. In the case of the DIST
model, the size of the point cloud poses a challenge due to cubic complexity. This makes it impossible
to process very large scenes due to GPU memory constraints. Although many methods for improving
memory efficiency were demonstrated (Kyzirakos et al. [2016], Hui et al. [2021], Liu et al. [2019]), all
of them achieve it at the cost of computation speed, down-sampling, or losing semantic or geometrical
information. We define the instance segmentation problem as the segmentation of geometrically
similar objects. Therefore, we expect most of the information to be present within local regions. With
this in mind, we reduced the size of the point clouds by cropping. During training, we select crops at
random. For inference, we split the point cloud into tiled regions and then use overlap between the
regions to stitch the graph across region boundaries. For each dataset, we selected the maximum crop
size that would fit into GPU RAM.
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D Graph cut

For some problems, we may have additional information about the graph structure. For example,
for filament and membrane segmentation, we know the graph is defined as a linear chain in which a
node can have at most 2 neighbors. In this case, we adopt a greedy algorithm for graph inference
(Appendix H). First, we build a hash map for each node in the point cloud containing node ID Pi,
edge probability pi,j . Next, for each new instance, we searched the hash map for the initial node.
This allows us in the final step to iteratively find up to two edges with the highest probability for
all connected nodes. This process is continued until no new edges can be recognized for a given
instance. We use this approach when segmenting membranes and microtubules which follow this
chain structure.
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E Ground truth generation

In order to train and evaluate the DIST model we need to build an instance graph representation of the
point cloud. The graph representation is a 2D matrix with nodes (Pi, j; matrix diagonal) representing
each individual coordinate point, and the edge represent spatial connectivity between two nodes i
and j, where i is the matrix row, and j is matrix column. The graph representation for filament-like
structures (membranes and microtubules) is constructed from ground truth annotations in which each
individual instance is an ordered list of nodes. Knowing the order, the edge matrix is defined as 1 for
each Pi,j if i is in the same instance as j and j is a neighbor of i in the ordered list. This approach
imposes restrictions where each i can have only up to two edges.
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F Graph prediction example

Appendix figure 2: Example of graph prediction.
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G Triangular multiplicative edge feature update

Algorithm 1 Triangulation algorithm
Require: edgefeatures
edgefeatures← layerNorm(edgefeatures) ▷ Initial normalization of edge features

Ensure:
a = torch.sigmoid(Linear(edgefeatures)) ∗ Linear(edgefeatures)
b = torch.sigmoid(Linear(edgefeatures)) ∗ Linear(edgefeatures)

if axis == 2 then
k = einsum(biko, bjko− > bijo, a, b)

else
k = einsum(bkio, bkjo− > bijo, a, b)

end if

o = torch.sigmoid(Linear(edgefeatures)) ∗ Linear(LayerNorm(k))
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H Greedy algorithm

Algorithm 2 Greedy algorithm for graph inference
Require: Ck

patch k ← P local
3

Require: Gi,j
patch i← P local

i j ← P local
j

Require: IDXk
patch k ← P global

ID

for coord, graph, index← Ck
patch, G

i,j
patch, IDXk

patch do ▷ Adjacency matrix
for i, j ← graph do

adjacency ← indexk
i

adjacency ← coordi
adjacency ← index

graphj>=threshold
j

adjacency ← graph
graphj>=threshold
j

end for
end for

segment = [] ▷ Zero-out greedy algorithm
stop = False
segmentid = 0

while not stop do ▷ Greedy instance segmenter
ids← len(adjacencyindexj

) >= 0 ▷ Pick initial point from Adjacency
NewSegment← ids

growing = False
while not growing do ▷ Find all nodes associated with initial node

size = len(NewSegment)

for id← ids do
Pick all points associated with the initial point
Check 1: Check if id is not already on the NewSegment
Check 2: Check if id is reversible connected i← j and j ← i
Check 3: Check if id is not associated to already segmented instance

Add new nodes to NewSegment
end for

if len(NewSegment) == size then growing = True
end if

end while

Sort(NewSegment) ▷ Optional: Sort point in filament
Smooth(NewSegment) ▷ Optional: Smooth point in filament

segment.append(segmentid +NewSegment)
prune(NewSegment) ▷ Remove segmented nodes from adjacency

if sum(adjacency) == 0 then stop = True ▷ Stop segmenter when there no more points
else

segmentid += 1
end if

end while
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I Comparison of DIST instance segmentation performance

Appendix Figure 3: Example of instance segmentation using DIST.
(A) Illustration of 2D cryo-EM micrograph with segmented membranes. Instance segmentation was
compared with MCF and DC methods. (B) Electron tomography reconstruction of mammalian cells
with segmented MTs in 3D. Instance segmentation was compared with MCF and Amira methods.
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