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Abstract

Data-based and physics-based methods have long been considered as distinct
approaches for protein property prediction. However, they share complementary
strengths, such that integrating physics-based features with machine learning
may improve model generalizability and accuracy. Here, we demonstrate
that incorporating pre-computed energetic features in machine learning models
improves performance in out-of-distribution and low training data regimes with two
distinct protein engineering tasks. By training with sequence, structure, and pre-
computed Rosetta energy features on graph neural nets, we achieve performance
comparable to masked inverse folding pretraining with the same architecture.

1 Introduction

Proteins carry out a diverse range of complex functions essential to life and may possess valuable
properties that can be optimized for industrial applications. Any small change to a protein’s sequence
can profoundly alter its conformation and function, which can be associated with disease [Li and Babu,
2018, Zheng et al., 2021, Cheng et al., 2021], or result in a new desirable variant in an engineering
context [Romero and Arnold, 2009]. However, the effect of mutations on protein properties is
non-additive, such that efforts to study mechanism or optimize function often require extensive
experimental characterization, which is costly, time-consuming, and tedious. The ability to accurately
predict the molecular properties of proteins in silico would therefore accelerate the rate of scientific
discovery.

Machine learning is a promising approach for computationally predicting protein function [Fox
et al., 2003, Yang et al., 2019, Wu et al., 2019, Hsu et al., 2022a]. While such approaches can
effectively predict properties of unseen sequences and facilitate discovery of variants with desired
characteristics, they require bespoke training datasets to effectively learn mappings between sequence
and function. Collecting training data typically involves measuring libraries of protein variants using
an experimental assay designed to capture some aspect of function. While some individual proteins
have been systematically assayed for some functions via high-throughput experiments [Podgornaia
and Laub, 2015, Wu et al., 2016, Sarkisyan et al., 2016], screening for many important other
functional properties still requires painstaking characterization and assay development. Depending on
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the efficiency of the data collection process, curating a training dataset for machine learning models
may be more resource intensive than current pipelines that rely exclusively on experimental assays.
Some strategies for predicting protein properties from scarce functional data include transfer learning
from models pretrained on large datasets of protein sequences or structures [Bepler and Berger, 2021,
Yang et al., 2022a, Wang et al., 2022]. However, recent work suggests that the relationship between
fitness landscapes and evolutionary data is fundamentally limited [Weinstein et al., 2022].

On the other hand, because all molecular systems are bound by the laws of physics, every protein
property stems from first principles. The physical characteristics of each amino acid in a protein
determine energetically favorable atomic-level interactions, which fundamentally govern its dynamic
processes and structure. Therefore, physics-based methods, which represent classical approaches
in computational protein function prediction, should in theory be capable of directly predicting
molecular properties from scarce data. In practice, atomistic modeling of protein systems with
quantum-mechanical accuracy is computationally intractable, which has led to the development of
force fields and sampling methods that approximate the underlying physics [Schymkowitz et al.,
2005, Lopes et al., 2015, Alford et al., 2017]. These approaches have shown some success in
protein property prediction but are computationally intensive and require domain expertise to develop
[Glazer et al., 2009, Kirchner et al., 2011]. They also presently underperform relative to data-based
methods [Li et al., 2020, Baek et al., 2021], possibly due to force field approximations, as energetic
contributions of a few kBT can significantly influence function [Lazaridis et al., 1995].

While data-based and physics-based methods historically represent distinct approaches for predicting
protein function, their strengths and weaknesses complement each other. Machine learning models
excel at adapting predictions to available data and identifying non-linear correlations but are limited
by data scarcity. Physics-based models describe the functional properties of an individual physical
system but are not data-aware and require mathematical approximations for computing non-linear
relationships. Therefore, integrating biophysical knowledge with machine learning may help data-
based methods achieve better generalization. Recent work has shown that incorporating physics-
based ∆∆Gs as features improves some protein fitness predictions [Hsu et al., 2022a]. Additionally,
Harmalkar et al. [2022] also demonstrated that Rosetta-computed features were useful for predicting
antibody thermostability using machine learning, given that force fields directly model stability from
protein structure.

Because thermodynamic principles underlie all functional characteristics of proteins, we reasoned
that incorporating physics-derived interaction energies with machine learning should broadly improve
protein property prediction beyond stability predictions. To test this hypothesis, we assessed whether
energetic features improve the out-of-distribution and small training set performance of graph neural
networks for two protein engineering datasets. We find that physics-based features enable equal
or better performance compared to pretrained models using the same architecture. Ultimately, our
results represent a proof of concept that learning biophysical principles can be broadly useful for
protein property prediction.

2 Methods

We compare model performance across two protein engineering datasets, Rma NOD and GB1 (See
Section A.1 for detailed descriptions). Protein fitness is defined as a metric for both stability and
binding partner affinity.

Our baseline model takes in graph representations of sequence and structure from physics-based
in silico mutagenesis for each variant. We concatenate graph representations of pre-computed
energetic features and compare performance on protein property prediction (Figure 1). To compare
our approach against a purely data-driven method, we also finetune a pretrained masked inverse
folding language model.

2.1 Predicting protein properties with Geometric Vector Perceptrons

Previous work demonstrated that graph representations effectively capture spatial relationships in
protein structures. Geometric vector perceptrons (GVP) have been used to predict protein sequences
from structure, assess model quality within a pool of candidate structures, and make zero-shot
predictions of mutation fitness effects [Jing et al., 2020, Hsu et al., 2022b].
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Figure 1: Leveraging energetic features to improve protein property prediction. (a) Structural features
are represented as a graph, and pre-computed energetics from Rosetta are concatenated as additional
features. Replicate runs of each variant from in silico mutagenesis are treated as distinct examples.
(b) Example of a Rosetta-derived energetic parameter. Node features describe the sum of energetic
contributions between atoms within a residue, whereas edge features similarly describe interaction
energies between two residues. See Section A.3 for an overview of other Rosetta energy terms.

Nodes and edges describe the one-hot encoded amino acid representation and spatial features of
the protein backbone (see Section A.2). We use three graph propagation steps in which messages
from 30 neighboring nodes and edges update each node embedding, and a node-wise attention layer
with a subsequent dense feed-forward network then reduces node embeddings to a scalar property
(Figure 1). Table A1 provides additional details on model hyperparameters and training.

2.2 Incorporating energetic features from PyRosetta

To perform in silico mutagenesis and compute energetic features for each mutant in the dataset, we
used a semi-empirical physics-based macromolecular modeling package called PyRosetta [Chaudhury
et al., 2010]. PDB IDs 6WK3 and 2GI9 were used as reference structures for Rma NOD and GB1,
respectively [Wittmann et al., 2020, Franks et al., 2006]. For every mutation, side chains of amino
acids within 10Å of the mutated residue were repacked, and a FastRelax simulation was performed
with the Rosetta Energy Function 2015 (REF15) to find a protein conformation corresponding to a
local energetic minimum.

REF15 describes the decomposable all-atom energetic parameters of a protein structure. For
computational efficiency, the atomic energetic contributions were summed across each residue.
Thus, the energetic features of a protein structure are defined by intra-residue energies and inter-
residue energies for each residue pair, as described in Table A3. Because prior work suggests that the
empirical weights of the energetic terms likely contribute to the inaccuracy of REF15, we used the
unweighted energies [Rubenstein et al., 2018].

Proteins are highly dynamic, and their conformational distribution contributes towards protein
function. However, the PDB structure is a static snapshot and therefore inadequately represents the
physics, which describe the forces and motions within a molecular environment. Therefore, we
consider several possible conformations a protein variant may adopt by performing five pyRosetta
relaxation simulations. We augment the training data by considering each of the five pyRosetta runs
(‘samples’) for a protein variant as a distinct example. Likewise, we perform test-time augmentation
by averaging predictions from the five samples.

Given that residue-level energy features map directly to a protein structure, we concatenated intra-
residue energetics to node features and inter-residue energetics to edge features in all models that
include energetic features (Figure 1B). To normalize and rescale inputs, we took the difference
between energetic features for each variant with those computed from the reference PDB structure
corresponding to the wild-type sequence.

3 Results

We assess the ability of energetic features to improve performance on out-of-distribution splits and
low training sample size in-distribution splits. Mean square error (MSE) was used as the primary
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Table 1: MSE for out-of-domain prediction of Rma NOD enantioselectivity. Uncertainties are
standard deviations over 3 random seeds.

No energetics With energetics

Baseline Pretrain 5 samples 1 sample

3-vs-many 0.08 ± 0.01 0.10 ± 0.01 0.07 ± 0.00 0.07 ± 0.00
4-vs-many 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.01 0.07 ± 0.01

Table 2: MSE for out-of-domain prediction of GB1 fitness from FLIP. Uncertainties are standard
deviations over 3 random seeds.

No energetics With energetics

Baseline Pretrain 5 samples 1 sample

2-vs-many 1.41 ± 0.14 1.16 ± 0.06 1.16 ± 0.05 1.32 ± 0.13

metric to assess model performance, as rank correlation metrics do not properly account for the
fitness score magnitudes.

3.1 Models with energetic features match pretrained performance on out-of-distribution
predictions

The ability to accurately predict the functional effect of several mutations from variants with fewer
mutations can reduce tedious and costly experimental characterization. Given that physics-based
methods generalize well, we hypothesized that incorporating energetic features may improve these
out-of-distribution predictions. Table 1 shows model performance on predicting the enantioselectivity
of Rma NOD variants with up to seven mutations after training only on 74 variants with mutations at
three positions (‘3-vs-many’), or 208 variants with mutations at four positions (‘4-vs-many’) (Table
A2). Validation and test were randomly split. We find that pretraining does not improve predictions,
consistent with previous work with a different masked inverse folding pretrained model [Yang et al.,
2022a]. On the other hand, training with energetic features produces modest improvements in
out-of-domain prediction.

Additionally, Table 2 compares performance for the GB1 2-vs-many split from FLIP [Dallago et al.,
2021], in which models predict fitness on variants with three or four mutations after being trained
on variants with one or two mutations (Table A2). Performance on the 2-vs-many split between
other pretrained models and baselines varied significantly, whereas performance between models
on other GB1 splits showed little separation [Dallago et al., 2021, Yang et al., 2022b]. We find that
the performance of models trained with augmented energetic features is comparable to that of the
pretrained model, where pretraining and energetics both confer substantial gains in performance
relative to the baseline.

3.2 Energetic features improve performance in low data regimes

Models trained on small training datasets may achieve better performance with energetic features,
which can help accelerate scientific discovery. Thus, we compared model performance across several
different training sample sizes (Ntrain) from randomly sampled splits, with results shown in Figure 2.

For the Rma NOD dataset, we tested on a held out set of 171 variants and randomly shuffled the
remaining 385 examples for 3 different seeds for train and validation splits. Subsampled variants were
partitioned in a 90% train and 10% validation split (Table A2). Training with augmented energetic
features improves model accuracy relative to baseline, except for Ntrain = 50, as shown in Figure 2a.

Additionally, we used the GB1 sampled split from FLIP [Dallago et al., 2021] to test on a held out
set of 1745 variants. We subsample within the train and validation splits after randomly shuffling for
3 different seeds such that validation sample sizes were 10% that of Ntrain (Table A2). Here, we find
that training with augmented energetic features improves model accuracy relative to baseline across
all analyzed training sample sizes, as shown in Figure 2b.
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Figure 2: Comparison of MSE for small training set sizes.

Interestingly, these preliminary results suggest that energetic features may improve in-distribution
predictive performance relative to pretrained models for intermediate values of Ntrain but not for
low Ntrain. The difference in performance between pretrained models and baseline narrows with
increasing training sample sizes. Pretrained and baseline models both achieve a mean MSE of roughly
0.055 and 1.13 for Rma NOD (Ntrain = 350) and GB1 (Ntrain = 200), respectively. Models trained
with augmented energetic features achieve considerably lower mean MSE with 0.045± 0.004 and
0.98 ± 0.04 for Rma NOD and GB1, respectively. However, pretrained models outperform those
trained with energetic features at low Ntrain and benefit from having smaller variance across seeds
due to the consistent weight initialization.

3.3 Sampling energetic features from multiple conformations generally improves model
performance

The outputs from a single Rosetta run represent a static representation of a protein, which does not
adequately represent the conformational dynamics that may influence function. To determine whether
a broader sample of conformational space would improve performance, we compare performance
after performing several runs Rosetta runs on each variant. Including energetic features from just one
pyRosetta run results in worse performance compared to a pretrained model for out-of-distribution
GB1, and compared to the baseline for in-distribution Rma NOD across all Ntrain. However, using
five pyRosetta runs almost always improves performance (Figure 2, Table 1, Table 2), matching
or exceeding performance compared to the pretrained condition. Ultimately, we find that data
augmentation via several rounds of pyRosetta runs is required to improve model performance relative
to the baseline and pretrained conditions. These observations support current biophysical principles
describing protein mechanism, that the molecular details of a protein’s dynamic conformation and
chemical environment significantly influence its behavior.

4 Discussion

In this work, we demonstrate that energetic features computed from a physics-based method improve
the performance of graph neural networks on two protein engineering tasks. Strikingly, models trained
with just sequence, structure, and energetic features can achieve competitive performance, relative
to pretrained models with a similar number of parameters, on out-of-distribution predictions and in
low-data regimes. However, more experiments on a wider range of tasks, such as thermostability,
mechanostability, fluorescence, and catalytic efficiency, are required to truly assess the extent to which
biophysical principles improve the generalizability and robustness of neural network predictions.

Ultimately, integrating data-based models with physics may enable development of methods that are
data-aware, principled, and more accurate. Given the complementarity of data-based and physics-
based methods, such strategies may unlock a new paradigm in protein modeling and design that could
lead to new scientific understanding, disease treatments, and enhanced protein variants.
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A Appendix

A.1 Description of datasets

We chose protein engineering datasets that have an existing PDB structure and that have previously
been evaluated on state-of-the-art pretrained models [Yang et al., 2022a]. Because these libraries
differ in the breadth and depth in mutation sequence coverage, we are able to assess the effects of
energetic features more holistically.

1. Rma NOD: Wu et al. [2019] constructed a small library of 556 Rhodothermus marinus (Rma)
nitric oxide dioxygenase (NOD) variants with mutations at seven positions that affect the
relative selective yield of carbon-silicon bond enantiomers (‘enantioselectivity’). Targeted
amino acid positions for mutation were rationally selected based on putative mechanistic
hypotheses. This suggests that incorporating biophysical principles should be helpful,
although the connection between protein energetics and enantioselectivity is less direct.

2. GB1:Wu et al. [2016] characterized the fitness of 149,361 variants out of 160,000
possible combinations of mutations at four positions of GB1, the binding domain of an
immunoglobulin binding protein G from Streptococcal bacteria. Due to the depth of
combinatorial sequences tested, the GB1 dataset is considered a gold standard for studying
interactions between mutations. Protein fitness incorporates both stability and binding
affinity metrics. We use the downsampled splits from FLIP [Dallago et al., 2021]. Although
stability is directly associated with protein energetics, the amino acids targeted for mutation
were optimized for a rugged fitness landscape such that their properties are difficult to
rationally predict. Additionally, while binding affinity is also directly associated with the
underlying energetics between the interacting substrates, here we consider GB1 only in its
isolated state, and not bound to protein G, when computing energetic features.

A.2 GVP training details

As in Jing et al. [2020], our baseline models consider the one-hot sequence encoding and strutural
features. Scalar node features include the one-hot representation of each amino acid identity and sine
and cosine transformations of the dihedral angles. Vector node features include forward and reverse
unit vectors from Cαi−1 – Cαi and Cαi+1 – Cαi, and a unit vector from Cβi – Cαi. Edges for each
node are defined with respect to its 30 closest neighbors, where scalar features describe the distance
between nodes and a sine transformation of the distance along the backbone, and vector features
include the unit vector along Cαj – Cαi.

Previous work [Yang et al., 2022a] trained a masked inverse folding protein language model
parameterized as a structured graph neural network. Here, we apply similar methods to 3-layer
GVP model trained on several thousands of structures CATH 4.2 using training, validation and testing
splits from Ingraham et al. [2019] to serve as basis of comparison for a purely data-driven model.
Briefly, the pretraining task reconstructs a corrupted protein sequence inspired by BERT, conditioned
on its backbone structure. We then use the pretrained weights with the best validation loss as a starting
point for training on a downstream task. All baseline and pretrained GVP models considered in this
study had 608,587 parameters, whereas models with energetic features had 610,151 parameters after
concatenating 13 node features and 7 edge features pre-computed from Pyrosetta (Section A.3).

Hyperparameters for each task were consistent across all models and determined based on screening
for optimal pretrained performance out-of-distribution performance (Table A1). All models had a
hidden scalar node dimension of 100, vector node dimension of 16, scalar edge dimension of 32,
and hidden vector edge dimension of 1 and were trained with an Adam optimizer. All test MSEs are
reported for the epoch corresponding to the best validation loss.

Values for the number of unique sequences in each training, validation, and test split are reported in
Table A2.
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Table A2: Number of unique sequences in each split across tasks.
Train Validation Test

Rma NOD
3-vs-many 74 241 241
4-vs-many 208 174 174
random sample Ntrain 0.1 ×Ntrain 171

GB1
2-vs-many 381 43 8309
random sample Ntrain 0.1 ×Ntrain 1745

Table A1: Model hyperparameters.
Pretraining Protein engineering tasks

CATH Rma NOD GB1

Epochs 200 500 500
Warm-up updates 1000 0 0
Learning rate 0.001 (max) 0.0001 0.0005
Batch size (Maximum number of nodes) 6000 1000 1000
Dropout rate 0.5 0 0

A.3 Description of Rosetta energy terms

We consider the residue-level and pairwise residue energetics from the PyRosetta REF15 force field
as node and edge features in the graph neural net, respectively. A description for the decomposed
energy terms is provided in Table A3, as described in Alford et al. [2017].

Figure 1 extended description: The Gaussian exclusion implicit solvation model describes the
energy required to remove contacting water when an atom i is approached by neighboring atom j is
parameterized by ∆Gfree, λ, σ, V for vapor-water transfer free energy, correlation length, atomic
radius, and desolvating atomic volume, respectively.
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Table A3: Descriptions of decomposed Rosetta energy terms.
Per-residue energy terms (node features)
fa_intra_sol_xover4 Gaussian exclusion implicit solvation energy

between protein atoms in the same residue
omega backbone-dependent penalty for cis ω dihedrals

that deviate from 0◦ and trans ω dihedrals that
deviate from 180◦

yhh_planarity sinusoidal penalty for nonplanar tyrosine χ3

dihedral angle
per_residue_hbond_sr_bb energy of short-range hydrogen bonds
per_residue_hbond_lr_bb energy of long-range hydrogen bonds
per_residue_hbond_bb_sc energy of backbone–side-chain hydrogen bonds
per_residue_hbond_sc energy of side-chain–side-chain hydrogen bonds
pro_close penalty for an open proline ring and proline ω

bonding energy
ref reference energies for amino acid types
dslf_fa13 energy of disulfide bridges

Empirical energetic terms -
fa_dun probability that a chosen rotamer is native-like

given backbone ϕ, ψ angles
rama_prepro probability of backbone ϕ, ψ angles given the

amino acid type
p_aa_pp probability of amino acid identity given

backboneϕ, ψ angles

Pairwise energy terms (edge features)
fa_sol Gaussian exclusion implicit solvation energy

between protein atoms in different residues
fa_atr attractive energy between two atoms on different

residues separated by a distance d
fa_rep repulsive energy between two atoms on different

residues separated by a distance d
fa_elec energy of interaction between two nonbonded

charged atoms separated by a distance d
pairwise_hbond_unweighted summed energy of all hydrogen bond contributions

between atoms on different residues
pairwise_hbond_weights weights for hydrogen bond contributions

dependent on the environment and surface
exposure

lk_ball_wtd orientation-dependent solvation of polar atoms
assuming ideal water geometry
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