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Abstract

Many secreted endogenous peptides rely on signalling pathways to exert their
function in the body. While peptides can be discovered through high throughput
technologies, their cognate receptors typically cannot, hindering the understanding
of their mode of action. We investigate the use of AlphaFold-Multimer for iden-
tifying the cognate receptors of secreted endogenous peptides in human receptor
libraries without any prior knowledge about likely candidates. We find that Al-
phaFold’s predicted confidence metrics have strong performance for prioritizing
true peptide-receptor interactions. By applying transmembrane topology prediction
using DeepTMHMM, we further improve performance by detecting and filtering
biologically implausible predicted interactions. In a library of 1112 human re-
ceptors, the method ranks true receptors in the top percentile on average for 11
benchmark peptide-receptor pairs.

1 Introduction

Endogenous bioactive peptides are ubiquitous in higher organisms and involved in many physiological
processes, ranging from controlling metabolism [1] to neural signaling [2]. Many of these peptides
are secreted and exert their function by binding to membrane-expressed receptor proteins, such as
G-protein coupled receptors (GPCRs) and are thus appealing for drug development [3]]. While an in-
creasing number of potential peptides are discovered through technologies such as mass spectrometry
peptidomics [4]], small open reading frame sequencing [5] and bioinformatics approaches [6], the
number of known peptide-receptor pairs remains stagnant, with currently 488 human peptide-receptor
interactions reported in the GPCRdb [7]]. This is due to the fact that experimental validation of
peptide receptors requires tedious experimental screening of cell lines and binding assays, which
still scale poorly in light of the large search space of potential receptors. Estimates reported at least
1200-1300 surface-expressed receptors in human [ 9] even when excluding many isoforms and
proteins without manual evidence, making exhaustive screening infeasible.

A previous computational approach for peptide-receptor pairing [6] has used prior knowledge,
structural analyses and machine learning to identify potential peptide receptors within the complete
receptome, thereby reducing the number of receptors that need to be screened. Using comprehensive
experiments, 17 endogenous peptides could thereby be paired within a single study. While this result
presents a substantial advancement, it still relies on experiments for pairing at its core.

AlphaFold [10} [11] has shown state-of-the-art performance for predicting protein-peptide interactions
[12} [13]]. However, research has so far focused on peptide docking to mostly globular proteins, and
peptide binding prediction accuracy was evaluated using a moderately imbalanced ratio of positives
and negatives (1:5). In this work, we investigate the application of AlphaFold for the prediction of
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Figure 1: Peptide receptor ranking using AlphaFold-Multimer and DeepTMHMM. AlphaFold predicts
a complex for each receptor with the peptide, DeepTMHMM the transmembrane topology of the
receptor. Structure prediction confidence metrics and peptide-receptor contacts on the extracellular
side are extracted and used to rank the candidate receptors.

binding of peptides to membrane-bound receptors. This problem is characterized by a severe class
imbalance, as only a few receptors out of hundreds of candidates are expected to truly bind a peptide
of interest.

Another aspect specific to receptor interactions is the receptor’s transmembrane topology, which can
be predicted directly from its amino acid sequence [14]. While AlphaFold has strong performance for
folding transmembrane proteins [[15], it has no explicit knowledge about the interaction constraints
imposed by the membrane topology, which are relevant especially for complex prediction where
the localization of the binding partner is known. As predicted AlphaFold binding might violate
these imposed constraints, we explore the use of DeepTMHMM [16] to detect spurious binding and
improve prediction performance.

2 Method

We approach the question of identifying endogenous peptide receptors as a ranking problem: Given
a list of candidate receptors, an ordered list of all receptors should be produced with true recep-
tors ranked at the top. For a library of candidate receptors and a peptide of interest, we apply
AlphaFold-Multimer [[11] to predict a protein-peptide complex for each receptor. Additionally,
we use DeepTMHMM [[16] to predict the transmembrane topology of each receptor (Figure T).
DeepTMHMM is a protein language model [[17] based predictor that only takes the amino acid
sequence as input, thereby providing us with information orthogonal to the structure predicted by
AlphaFold. For each residue, it predicts an {Intracellular, Extracellular, Transmembrane, Signal
peptide} label using a Conditional Random Field.

We extract multiple prediction quality metrics from the predicted complex structure: median predicted
aligned error at the interface (iPAE), median pLDDT of the peptide residues at the interface (ipLDDT)
and the predicted interface TM score (ipTM). We also evaluate pDockQ [18], which was proposed for
ranking protein-protein complexes, as a prediction quality score. For each metric, the receptors are
ranked according to the score of their predicted complex. Using the topology, we extract the number
of receptor residues labeled as extracellular that are in contact with the peptide. If this number is 0,
we downrank the receptor as the peptide is predicted to bind at an intracellular interface or at sections
that are buried in the cell membrane. These binding modes are biologically implausible, as they are
not accessible to a peptide in vivo, but might still be predicted with high confidence by AlphaFold
which has no explicit access to this prior information. For all interface calculations, we consider
residues in contact if their distance is below 0.35 nm.

AlphaFold predicts five structures for each input, sampled from five different model checkpoints.
For true binders, we expect all five predictions to have a similar predicted confidence. To penalize
receptors that have a high variation, we aggregate the five predictions by taking the median and
subtracting the median absolute deviation (MAD) . In the case of iPAE, where lower
means better, we add the MAD. This corresponds to the 25™ percentile of the confidence distribution,
thus favoring receptors with a narrow distribution.
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For each peptide-receptor pair, we report the percentile rank of the known receptor in the complete
receptor library. Note that we do not necessarily expect the receptor to have the top rank - many
peptides are known to have more than one endogenous binding partner [6]. Moreover, the exact
ordering of receptors by AlphaFold confidence is unlikely to correlate to binding strength [19].
However, with respect to a full receptor library, any true receptor can still be expected to rank high.

3 Data

3.1 Benchmark peptide - receptor pairs

For benchmarking endogenous receptor identification performance, we gather structurally confirmed
human peptide-receptor pairs that were released after the training data cutoff date of AlphaFold-
Multimer using GPCRdb [7]], yielding a total of 11 pairs (Table AT). To mimic the actual use case of
only having sequence information available, we ignore any sequence modifications reported in the
PDB and use the canonical UniProt [20] sequence for both the receptors and the peptides.

3.2 Membrane-bound receptors

We establish a human receptor library using UniProt annotations. We extract all proteins that are
annotated with the keyword "Receptor [KW-0675]" and have a membrane subcellular location ("Cell
membrane [SL-0039]", "Cell surface [SL-0310]") or the keyword "Transmembrane [KW-0812]".
From this set, we exclude all proteins that are additionally annotated with an intracellular membrane
location (Mitochondrion, Nucleus, Acidocalcisome, Acrosome, COPI-coated vesicle, Endoplasmic
reticulum-Golgi intermediate compartment membrane, Sarcoplasmic reticulum). We furthermore
exclude single-pass transmembrane receptors, as they typically form multimers in vivo [21] and
are often folded spuriously by AlphaFold if no further processing is applied [22]. Due to limited
computational resources, we limit our study to proteins annotated in Swiss-Prot with a maximum
length of 2000, yielding a total of 1112 receptor proteins.

3.3 Processing

We use the default AlphaFold-Multimer 2.2.0 pipeline with reduced databases to generate multiple
sequence alignments (MSAs) for each peptide and each receptor sequence. Due to the combinatorial
nature of the problem (a complex structure is predicted for each peptide with each receptor), precom-
puting the MSAs and assembling AlphaFold-Multimer inputs by combining the two MSAs before
prediction results in a significant speedup, as MSA generation alone can take multiple hours. We do
not use template information and omit the relaxation step.

4 Results

Out of all investigated confidence metrics, the predicted ipTM score is best suited for receptor
ranking, followed by the iPAE and ipLDDT (Table T). Overall, we reach a mean percentile rank of
0.69%, thereby ranking the known receptors higher than 99.31% of the library. In our library of 1112
receptors, this corresponds to the known receptor being contained within the top 8 candidates on
average. We find that pDockQ, which was developed and validated on protein-protein complexes
only, performs poorly for peptide-receptor binding ranking with a mean percentile rank of 11.51%,
indicating that calibration on protein-protein complexes does not generalize to peptide-receptor
interfaces. Using DeepTMHMM for downranking complexes with biologically implausible binding
results in some improvement on average, with the effect varying greatly between different peptides.
If the known pair is already scoring very high, DeepTMHMM has little to no effect. However, we
observe that for some peptides, as exemplified by the case of Gastrin-17, many high-confidence
implausible complexes are predicted. In such cases, DeepTMHMM application results in a strong
improvement of the rank of the known receptor. In total, DeepTMHMM improved the rank of 7/12
peptide-receptor pairs.



Table 1: Percentile rank of true pairs using different ranking metrics. Lower means better.

With DeepTMHMM [ %] Without DeepTMHMM [%]
Peptide Receptor ipTM iPAE ipLDDT pDockQ ipTM iPAE ipLDDT pDockQ
Cholecystokinin-§ CCKAR  0.09 0.74 2.11 6.03 0.09 0.91 2.40 6.03
Galanin GALR1  0.09 0.10 0.10 12.86 0.09 0.10 0.10 29.77
Galanin GALR2  0.27 048 0.58 17.00 0.36 0.50 0.60 48.74
Gastrin-17 GASR 1.08 2.82 787 9.71 16.73 28.21 49.30 46.40
Ghrelin-27 GHSR 0.72 277 448 15.92 1.53 10.62 12.72 44.78
Neuropeptide Y NPYIR  0.36 049 0.88 2.88 0.36 0.51 1.03 9.89
Oxytocin OXYR 1.62 6.62 11.28 13.40 1.71 8.01 26.94 32.37
Secretin SECR 0.36 1.29  0.50 9.44 0.45 724  0.64 43.79
Somatoliberin QI9HB45 0.63 0.39 0.58 9.53 0.63 0.42 0.84 29.59
Somatostatin-14 SSR2 0.09 0.10  0.69 15.29 0.36 0.32 1.28 40.92
Substance P NKIR 2.25 3.12  8.75 14.57 2.43 4.79 16.23 30.58
Mean 0.69 1.72 344 11.51 2.25 5.60 10.19 32.99

0.8 0

0.6

0.2

! ! ! | !. Binding |ntracel|u|ar
Binding extracellular

¢ @ Known receptor

LZ

ip™
)
»
.
1A A

0.0 o

Cholecystokinin-8 Galanin Gastrin-17 Ghrelin-27 Neuropeptide Y Oxytocin Secretin Somatoliberin Somatostatin-14 Substance P
Peptide

Figure 2: AlphaFold ipTM scores of all predicted peptide-receptor complexes of the test set. Each
dot represents one complex. Intracellular-extracellular binding is computed using DeepTMHMM
predicted topologies. All known receptors are predicted to bind on the extracellular side.

Overall, although all known complexes were predicted correctly as per their DockQ [23] scores
(Figure AT), we find that the distribution of prediction confidence scores varies greatly between
different peptides (Figure 2)). This prevents us from evaluating the presented approach as a classifier,
as this would be done by pooling predictions at a given threshold over all the peptides and reporting a
performance metric, which assumes that the score distributions are comparable. This confirms that
when using just AlphaFold confidences without further downstream modeling, a ranking approach
seems to be best suited for the problem.

5 Discussion

Our results show that AlphaFold-Multimer can be applied successfully for prioritizing endogenous
peptide receptors. Even though the proposed approach still requires a follow-up analysis to investigate
the ranked list until the true receptor is found, it greatly reduces the complexity of such screening
experiments. While conceivable, we refrained from developing a dedicated confidence-derived score
such as pDockQ for peptide-receptor docking due to the very limited size of the dataset. Also,
optimally, given a larger dataset, a classification model to distinguish true receptors could be trained
on top of AlphaFold, as was recently done for peptide-MHC binding [24]].

A key limitation of the presented approach is the computational demand of running AlphaFold on
large libraries. Even though the MSA search becomes negligible when applying the combinatorial
assembly strategy, the amount of required GPU hours is still a bottleneck that precludes using larger
receptor libraries, such as including isoforms or multimeric receptors. The presented approach is
easily adaptable to any other complex structure prediction method that outputs prediction confidences,
so it will benefit from future performance improvements in the field [25] 26].



Acknowledgments and Disclosure of Funding

We would like to thank Kristine Deibler for helpful discussions. We also thank Robin Andersson for
generously providing GPU resources.

FT’s work was funded in part by the Novo Nordisk Foundation through the Center for Basic Machine
Learning Research in Life Science (NNF200C0062606). OW acknowledges support from the Pioneer
Centre for AI, DNRF grant number P1.

Code and Data availability

The receptor library, benchmark peptides and processing code are available at
https://github.com/fteufel/alphafold-peptide-receptors

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

Pawel A. Kotodziejski, Ewa Pruszyriska-Oszmatek, Tatiana Wojciechowicz, Maciej Sassek, Na-
talia Leciejewska, Mariami Jasaszwili, Maria Billert, Emilian Malek, Dawid Szczepankiewicz,
Magdalena Misiewicz-Mielnik, Iwona Hertig, Leszek Nogowski, Krzysztof W. Nowak, Math-
ias Z. Strowski, and Marek Skrzypski. The Role of Peptide Hormones Discovered in the 21st
Century in the Regulation of Adipose Tissue Functions. Genes, 12(5):756, May 2021.

Andrew F. Russo. Overview of neuropeptides: awakening the senses? Headache, 57(Suppl
2):37-46, May 2017.

Markus Muttenthaler, Glenn F. King, David J. Adams, and Paul F. Alewood. Trends in peptide
drug discovery. Nature Reviews Drug Discovery, 20(4):309-325, April 2021. Number: 4
Publisher: Nature Publishing Group.

Anna Secher, Christian D. Kelstrup, Kilian W. Conde-Frieboes, Charles Pyke, Kirsten Raun,
Birgitte S. Wulff, and Jesper V. Olsen. Analytic framework for peptidomics applied to large-
scale neuropeptide identification. Nature Communications, 7(1):11436, May 2016. Number: 1
Publisher: Nature Publishing Group.

Alan Saghatelian and Juan Pablo Couso. Discovery and characterization of smORF-encoded
bioactive polypeptides. Nature Chemical Biology, 11(12):909-916, December 2015. Number:
12 Publisher: Nature Publishing Group.

Simon R. Foster, Alexander S. Hauser, Line Vedel, Ryan T. Strachan, Xi-Ping Huang, Ariana C.
Gavin, Sushrut D. Shah, Ajay P. Nayak, Linda M. Haugaard-Kedstrom, Raymond B. Penn,
Bryan L. Roth, Hans Briduner-Osborne, and David E. Gloriam. Discovery of Human Signaling
Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell, 179(4):895-908.e21, October
2019.

Albert J Kooistra, Stefan Mordalski, Gaspar Pandy-Szekeres, Mauricio Esguerra, Alibek Mamyr-
bekov, Christian Munk, Gyodrgy M Keser(i, and David E Gloriam. GPCRdb in 2021: integrating
GPCR sequence, structure and function. Nucleic Acids Research, 49(D1):D335-D343, January
2021.

Markus Séllman Almén, Karl JV Nordstrom, Robert Fredriksson, and Helgi B. Schitth. Map-
ping the human membrane proteome: a majority of the human membrane proteins can be
classified according to function and evolutionary origin. BMC Biology, 7(1):50, August 2009.

Damaris Bausch-Fluck, Ulrich Goldmann, Sebastian Miiller, Marc van Oostrum, Maik Miiller,
Olga T. Schubert, and Bernd Wollscheid. The in silico human surfaceome. Proceedings of
the National Academy of Sciences, 115(46):E10988-E10997, November 2018. Publisher:
Proceedings of the National Academy of Sciences.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin 7idek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino


https://github.com/fteufel/alphafold-peptide-receptors

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure pre-
diction with AlphaFold. Nature, 596(7873):583-589, August 2021. Number: 7873 Publisher:
Nature Publishing Group.

Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim
Green, Augustin 7idek, Russ Bates, Sam Blackwell, Jason Yim, Olaf Ronneberger, Sebastian
Bodenstein, Michal Zielinski, Alex Bridgland, Anna Potapenko, Andrew Cowie, Kathryn Tun-
yasuvunakool, Rishub Jain, Ellen Clancy, Pushmeet Kohli, John Jumper, and Demis Hassabis.
Protein complex prediction with AlphaFold-Multimer. bioRxiv, page 2021.10.04.463034, March
2022. Publisher: Cold Spring Harbor Laboratory Section: New Results.

Isak Johansson-Akhe and Bjorn Wallner. Improving Peptide-Protein Docking with AlphaFold-
Multimer using Forced Sampling. bioRxiv, page 2021.11.16.468810, May 2022. Publisher:
Cold Spring Harbor Laboratory Section: New Results.

Tomer Tsaban, Julia K. Varga, Orly Avraham, Ziv Ben-Aharon, Alisa Khramushin, and Ora
Schueler-Furman. Harnessing protein folding neural networks for peptide—protein docking.
Nature Communications, 13(1):176, January 2022. Number: 1 Publisher: Nature Publishing
Group.

Henrik Nielsen, Konstantinos D. Tsirigos, Sgren Brunak, and Gunnar von Heijne. A Brief
History of Protein Sorting Prediction. The Protein Journal, 38(3):200-216, June 2019.

Tamds Hegeds, Markus Geisler, Gergely Laszl6 Lukdacs, and Bianka Farkas. Ins and outs of
AlphaFold2 transmembrane protein structure predictions. Cellular and Molecular Life Sciences,
79(1):73, January 2022.

Jeppe Hallgren, Konstantinos D. Tsirigos, Mads Damgaard Pedersen, José Juan Almagro
Armenteros, Paolo Marcatili, Henrik Nielsen, Anders Krogh, and Ole Winther. DeepTMHMM
predicts alpha and beta transmembrane proteins using deep neural networks. Technical report,
bioRxiv, April 2022. Section: New Results Type: article.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function
emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of
the National Academy of Sciences, 118(15):¢2016239118, April 2021. Publisher: Proceedings
of the National Academy of Sciences.

Patrick Bryant, Gabriele Pozzati, and Arne Elofsson. Improved prediction of protein-protein
interactions using AlphaFold2. Nature Communications, 13(1):1265, March 2022. Number: 1
Publisher: Nature Publishing Group.

Patrick Bryant and Arne Elofsson. EvoBind: in silico directed evolution of peptide binders
with AlphaFold. bioRxiv, page 2022.07.23.501214, July 2022. Publisher: Cold Spring Harbor
Laboratory Section: New Results.

The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids
Research, 49(D1):D480-D489, January 2021.

Katrine Bugge, Kresten Lindorff-Larsen, and Birthe B. Kragelund. Understand-
ing single-pass transmembrane receptor signaling from a structural viewpoint—what
are we missing? The FEBS Journal, 283(24):4424-4451, 2016. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/febs.13793.

Andrei L. Lomize, Kevin A. Schnitzer, Spencer C. Todd, Stanislav Cherepanov, Carlos Outeiral,
Charlotte M. Deane, and Irina D. Pogozheva. Membranome 3.0: Database of single-pass
membrane proteins with AlphaFold models. Protein Science, 31(5):e4318, 2022. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.4318.



[23] Sankar Basu and Bjorn Wallner. DockQ: A Quality Measure for Protein-Protein Docking
Models. PLOS ONE, 11(8):e0161879, August 2016. Publisher: Public Library of Science.

[24] Amir Motmaen, Justas Dauparas, Minkyung Baek, Mohamad H. Abedi, David Baker, and Philip
Bradley. Peptide binding specificity prediction using fine-tuned protein structure prediction
networks, July 2022. Pages: 2022.07.12.499365 Section: New Results.

[25] Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
Wu, Qi Xie, Bonnie Berger, Jianzhu Ma, and Jian Peng. High-resolution de novo structure
prediction from primary sequence. bioRxiv, page 2022.07.21.500999, July 2022. Publisher:
Cold Spring Harbor Laboratory Section: New Results.

[26] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos
Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, and Alexander Rives. Language models
of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv,
page 2022.07.20.500902, July 2022. Publisher: Cold Spring Harbor Laboratory Section: New
Results.



A Appendix

Table Al: Peptide-Receptor complexes used in the benchmark experiment. To ensure that our
benchmark complexes are not contained in the AlphaFold-Multimer training data as another PDB
ID, we use BlastP to search the PDB for both the receptor and the peptide sequence and report their
closest hits before the training cutoff date. The combined closest hit structure is determined by
combining the ranks of each PDB ID in the peptide and receptor Blast hit lists. Sequence identities
are computed with the length of the query sequence as denominator. For 7P00 there exist three
earlier structures 2KS9, 2KSA, 2KSB representing the same sequences, but in a conformation that is
different from 7P00 (DockQ scores 0.089, 0.083, 0.0103).

. Peptide . Receptor . Combined Identity Identity
Peptide Receptor PDB ID best hit Identity best hit Identity best hit Peptide  Receptor
Secretin SECR_HUMAN 6WI9 SNIQ_A 63% 6B3J_R 61% 50TV 56% 9%
Galanin GALRI_HUMAN  7WQ3 ISMZ_A  40% 2LNL_A  46% None
Galanin GALR2_HUMAN  7WQ4 ISMZ_A  40% 4MBS_A  43% None
Oxytocin OXYR_HUMAN 7RYC 70FG_A  90% STUD_A  43% None
Cholecystokinin-8 CCKAR_HUMAN  7EZH 1D6G_B 88% SXPR_A  41% 1D6G 88% 11%
Somatostatin-14 SSR2_HUMAN 7T10 2MII_A 100% 6B73_B 47% None
Neuropeptide Y NPYIR_HUMAN  7VGX IRON_A  100% 5ZBQ_A  89% None
Ghrelin-27 GHSR_HUMAN TNA7 None 4XEE_A  46% None
Substance P NK1R_HUMAN 7P00 2KSA_B* 92%%* 2KSA_A*  88%* 2KSA* 92%* 88%*
Somatoliberin Q9HB45_HUMAN 7VOM 5BQM_B  77% 6B3J_R 33% None
Gastrin-17 GASR_HUMAN TF8V SWRI_LL  71% STUD_A  41% None

Table A2: Comparison of using the median and the MAD corrected median for pooling Alphafold
prediction confidence metrics. All values are computed with DeepTMHMM filtering applied.

Median Median £ MAD

Peptide Receptor ipTM iPAE ipLDDT pDockQ ipTM iPAE ipLDDT pDockQ
Cholecystokinin-8 CCKAR 0.09 029 324 6.47 009 074 211 6.03
Galanin GALR1 0.09 0.09 0.18 14.03 009 0.10 0.10 12.86
Galanin GALR2 027 046 0.74 18.17 0.27 048 0.58 17.00
Gastrin-17 GASR 126 402 935 10.88 1.08 282 7.87 9.71
Ghrelin-27 GHSR 1.17 280 541 17.00 072 277 448 15.92
Neuropeptide Y NPYR 045 047 1.12 2.70 036 049 088 2.88
Oxytocin OXYR 279 747 1249 14.21 1.62 662 11.28 13.40
Secretin SECR 036 0.66 0.66 9.44 036 129 0.50 9.44
Somatoliberin Q9HB45 0.63 0.19 1.03 14.3 063 039 0.58 9.53
Somatostatin-14 SSR2 009 0.09 0.95 16.10 009 0.10 0.69 15.29
Substance P NKIR 297 449 10.32 15.38 225 312 875 14.57
Mean 092 191 4.13 12.61 069 171 344 11.51




Table A3: Overview of known peptide receptors that rank higher than the receptor included in the
benchmark set. Receptors were not considered for the benchmark set if no experimental structure is
available or the experimental structure was part of the AlphaFold-Multimer training data.

Complex

Peptide Receptor Rank Rank of benchmark set receptor
Somatoliberin GHRHR_HUMAN 1 7
Neuropeptide Y NPY2R_HUMAN 1 4
Neuropeptide Y NPYSR_HUMAN 2 4
Galanin GALR3_HUMAN 2 1,3
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Figure A1l: DockQ scores of the predicted AlphaFold-Multimer complexes compared to their experi-
mental structures listed in[lable All
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