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Abstract

Group-equivariant neural networks have emerged as a data-efficient approach to
solve classification and regression tasks, while respecting the relevant symmetries
of the data. However, little work has been done to extend this paradigm to the
unsupervised and generative domains. Here, we present Holographic-(V)AE (H-
(V)AE), a fully end-to-end SO(3)-equivariant (variational) autoencoder in Fourier
space, suitable for unsupervised learning and generation of data distributed around
a specified origin. H-(V)AE is trained to reconstruct the spherical Fourier encoding
of data, learning in the process a latent space with a maximally informative invariant
embedding alongside an equivariant frame describing the orientation of the data.
We extensively test the performance of H-(V)AE on diverse datasets and show that
its latent space efficiently encodes the categorical features of spherical images and
structural features of protein atomic environments. Our work can further be seen
as a case study for equivariant modeling of a data distribution by reconstructing its
Fourier encoding.

1 Introduction

In supervised learning, the success of state-of-the-art algorithms is often attributed to respecting
known inductive biases of the function they are trying to approximate. One such bias is the invariance
of the function to certain transformations of the input. For example, image classification is transla-
tionally invariant. To achieve such invariance, conventional techniques use data augmentation to train
an algorithm on many transformed forms of the data. However, this solution is only approximate and
increases training time significantly, up to prohibitive scales for high-dimensional and continuous
transformations, e.g. rotations of an object in 3D. Alternatively, one could use invariant features of
the data (e.g. pairwise distance between different features) as input to train any machine learning
algorithm [Capecchi et al., 2020, Uhrin, 2021]. However, the choice of these invariants is arbitrary
and the resulting network could lack in expressiveness.

Recent advances have developed neural network architectures that are equivariant under actions of
different symmetry groups. These networks can systematically treat and interpret various transfor-
mation in data, and learn models that are agnostic to these transformations. For example, models
equivariant to euclidean transformations have recently advanced the state-of-the-art on tasks over
3D point cloud data [Liao and Smidt, 2022, Musaelian et al., 2022, Brandstetter et al., 2022]. These
models are more flexible and expressive compared to their purely invariant counterparts [Geiger and
Smidt, 2022], and exhibit high data efficiency.

Extending such group invariant and equivariant paradigms to unsupervised learning could map out
compact representations of data that are agnostic to a specified symmetry transformation (e.g. the
global orientation of an object). In recent work Winter et al. [2022] proposed a general mathematical
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framework for autoencoders that can be applied to data with arbitrary symmetry structures by learning
an invariant latent space and an equivariant factor, related to the elements of the underlying symmetry
group.

Here, we focus on unsupervised learning that is equivariant to rotations around a specified origin in 3D,
denoted by the group SO(3). We encode the data in spherical Fourier space and construct holograms
of the data that are conveniently structured for equivariant operations. These data holograms are
inputs to our end-to-end SO(3)-equivariant (variational) autoencoder in spherical Fourier space, with
a fully equivariant encoder-decoder architecture trained to reconstruct the Fourier coefficients of
the input; we term this approach Holographic-(V)AE (H-(V)AE). Similar to Winter et al. [2022],
our network learns an SO(3)-equivariant latent space composed of a maximally informative set of
invariants and an equivariant frame describing the orientation of the data.

We extensively test the perfomance of H-(V)AE and demonstrate high accuracy in unsupervised
classification and clustering tasks for spherical images and atomic point clouds within protein
structures. Specifically, we highlight the use case of H-(V)AE for learning compact and informative
representations of protein atomic environments that are agnostic to 3D rotations.

2 Holographic-(V)AE

2.1 Projecting data to spherical Fourier space

To define SO(3)-equivariant transformations, it is convenient to project data to spherical Fourier
space.

We start by constructing an orthonormal basis in 3D as the product of spherical harmonics - which
are orthonormal at a constant radius - and an orthonormal radial basis. We can then project any data
distributed around a center to such basis, capped at maximum spherical harmonics degree ℓ = L and
maximum radial frequency n = N . In this work, we use the Zernicke Fourier Transform A.6 (ZFT).

Notably, spherical harmonics transform under the action of SO(3) (i.e. 3D rotations) via the irreducible
representations (irreps) of SO(3): the Wigner-D matrices. Thus, the SO(3) group acts on data encoded
in spherical Fourier space via a direct sum of irreps parameterized by the group element (i.e. the
desired 3D rotation). Specifically, the ZFT encodes a data point into a tensor composed of a direct
sum of features, each associated with a degree ℓ indicating the irrep that it transforms with under the
action of SO(3). We refer to these tensors as SO(3)-steerable tensors and to the vector spaces they
occupy as SO(3)-steerable vector spaces, or simply steerable for short since we only deal with the
SO(3) group in this work. We note that a tensor may contain multiple features of the same degree
ℓ, which we generically refer to as distinct channels c. Throughout the paper, we refer to generic
steerable tensors as h and index them by ℓ, m and c. We adopt the “hat" notation for individual
entries to remind ourselves of the analogy with Fourier coefficients. See Figure 1A for a graphical
illustration of a tensor.

Not only do we know how steerable tensors "rotate", we can also conveniently construct operations
that map between steerable vector spaces (i.e. equivariant operations) by leveraging the Clebsch-
Gordan tensor product. The CG tensor product combines two features of degrees ℓ1 and ℓ2 to produce
another feature of degree |ℓ2 − ℓ1| ≤ ℓ3 ≤ |ℓ1 + ℓ2|. Let hℓ ∈ R2ℓ+1 be a generic degree ℓ feature,
with individual components ĥℓm for −ℓ ≤ m ≤ ℓ. Then, the CG tensor product is given by:

ĥℓ3m3 = (hℓ1 ⊗cg hℓ2)ℓ3m3 =

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

C
(ℓ3m3)
(ℓ1m1)(ℓ2m2)

ĥℓ1m1 ĥℓ2m2 (1)

where C
(ℓ3m3)
(ℓ1m1)(ℓ2m2)

are the Clebsch-Gordan coefficients [Tung, 1985].

2.2 SO(3) equivariant layers

We construct equivariant layers by leveraging previously developed operations alongside a novel
normalization layer. These include:

Linearity (Lin). First proposed by [Kondor et al., 2018].
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Figure 1: Schematic of the Network architecture. A: Schematic of a steerable tensor with ℓmax = 1
and 4 channels per feature degree. We choose a pyramidal representation that naturally follows
the expansion in size of features of higher degree. B: Schematic of a Clebsch-Gordan Block (CG
bl.), with batch norm (BN), efficient tensor product (ETP), and signal norm (SN), and Linear (Lin)
operations. C: Schematic of the H-AE architecture. We color-code features of different degrees in
the input and in the latent space for clarity. The H-VAE schematic differs only in the latent space,
where two sets of invariants are learned (means and standard deviations).

Efficient Tensor Product nonlinearity (ETP). Kondor et al. [2018] first proposed using
the CG tensor product to inject nonlinearity in spherical convolutional neural networks (CNNs).
However, as the original formulation was very expensive, Cobb et al. [2021] developed an "efficient"
version, which we use in our model.

Batch Norm (BN). First proposed by [Kondor et al., 2018]. We found this layer to speed
up convergence (Fig A.2).

Signal Norm (SN). As tensor product activations are unstable, we develop a novel normal-
ization scheme consisting in dividing each tensor coefficient by the square-root of the total norm of
the tensor. We found this layer necessary to avoid the explosion of activations.

Details on all the layers can be found in Sec. A.2. We combine layers in Clebsch-Gordan blocks, as
shown in Figure 1B. Each block can take a steerable tensor of arbitrary size composed of multiple
features of arbitrary degrees, and can output a steerable tensor of arbitrary size with multiple features
of arbitrary degrees, by following the sparsity of the CG tensor product (|ℓ2 − ℓ1| ≤ ℓ3 ≤ |ℓ1 + ℓ2|).
Crucially, if the maximum feature degree in the input tensor is ℓmax, then the maximum feature
degree that can be generated is 2ℓmax, achieved by combining two features of degree ℓmax. We employ
additive skip connections, zero-padded when appropriate, to favor better gradient flow.

2.3 Model architecture

H-(V)AE’s architecture is shown in Figure 1C. The encoder takes as input a steerable tensor with
maximum degree ℓmax = L and, via a stack of Clebsch-Gordan blocks, iteratively and equivariantly
transfers information from higher degrees to lower ones, down to the final encoder layer with
ℓmax = 1. The latent space learned by the encoder consists of a maximally informative invariant
(ℓ = 0) component of arbitrary size z, as well as three orthonormal vectors (ℓ = 1) which represent
the global 3D orientations, reflecting the coordinate frame of the input tensor. The frame is
constructed by learning two vectors and using the Gram-Schmidt method to find the corresponding
orthonormal bases [Schmidt, 1907]. The third orthonomal basis vector is then calculated as the cross
product of the first two. The decoder learns to reconstruct the input from the invariants and the frame,
iteratively increasing the maximum degree ℓmax of the intermediate representations by leveraging the
CG tensor product within the Clebsch-Gordan blocks.
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Within the decoder, the maximum degree ℓmax,b that can be outputted by each block b is
constrained by the sparsity of the CG tensor product. Specifically, ℓmax,b ≤ 2b where b ranges from 1
(first block) to B (last block). Since we need to reconstruct features up to degree L in the decoder,
we arrive at a lower bound for the number of blocks in the decoder set by ℓmax,B ≥ L, or B ≥ log2 L.
In our experiments, we set ℓmax,b = min{2b, L} and do not let ℓmax,b exceed the input’s maximum
degree L. For the encoder and the decoder to have similar expressive power, we construct them to be
symmetric with respect to the latent space (Fig. 1C). Optionally, we apply a linearity at the beginning
of the encoder and at the end of the decoder; this is required for input data that does not have the
same number of channels per degree since the ETP operates channel-wise.

For H-VAE, we parameterize the invariant part of the latent space by an isotropic Gaussian, i.e., we
learn two sets of size z invariants, corresponding to means and standard deviations.

2.4 Training objective

We train H-(V)AE to minimize the reconstruction loss Lrec between the original and the reconstructed
tensors, and, for H-VAE only, to minimize the KL-divergence of the posterior invariant latent space
distribution q(z|x) from the selected prior p(z) = N (0, I) [Kingma and Welling, 2013]:

L(x,x′) = αLrec(x,x
′) + βDKL(q(z|x)||p(z)) (2)

We use mean square error (MSE) for Lrec, which as we show in Sec. A.2.6, respects the necessary
property of SO(3) pairwise invariance, ensuring that the model remains rotationally equivariant.
Hyperparameters α and β control the trade-off between reconstruction accuracy and latent space
regularization Higgins et al. [2022].

3 Experiments

We test our method on several diverse datasets. We exclude from the main text experiments made on
spherical images, and show them in the Appendix (Sec. A.5).

3.1 Toy amino acids

1
2

3

3

2

1

Figure 2: H-VAE on amino acids. H-VAE was
trained on 1,000 residues with β = 0.025 and
z = 2. The invariant latent space clusters by amino
acid conformations. The highlighted clusters for
PHE and TYR contain residue pairs with simi-
lar conformations. We compare conformations
by plotting each residue in the standard backbone
frame (right); x and y axes are set by the orthonor-
malized Cα-N and Cα-C vectors, and z axis is
their cross product.

We train H-(V)AE on point clouds of amino
acids extracted from structures in the Protein
Data Bank (PDB) [Berman et al., 2000]. We
collect atomic point clouds of 50k residues
from PDB evenly distributed across residue
types and apply a 40/40/20 train/valid/test split.
Residues of the same type have different con-
formations and naturally have noisy coordinates,
making this problem a natural benchmark for
our method. We consider atom-type-specific
clouds (C, O, N and S; we exclude H) centered at
the residue’s Cα and compute the ZFT (Eq. A.6)
with L = 4 and N = 20 within a radius of 10Å
from the residue’s Cα, and concatenate features
of the same degree, resulting in a tensor with
940 coefficients. We perform extensive abla-
tions by training H-AE and H-VAE models with
subsets of the training data and varying regular-
ization strength β, which we show in the Ap-
pendix (Sec. A.5). We use a small latent space
size z = 2, and consistently find that the learned
invariant latent space clusters by amino acid con-
formation even with very limited training data 2.
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Figure 3: H-AE on protein neighborhoods. A: Example protein neighborhood of backbone atoms. Cα
(yellow), C (gray), N (blue) and O (red). The secondary structure of the central residue is shown
overlaid in yellow. B-D 2D UMAP visualization of the invariant latent space learned by H-AE. Points
are colored by: secondary structure of the central residue (B), number of atoms in the neighborhood
(C), and average SASA (D).

3.2 Protein neighborhoods

We test H-(V)AE on a more challenging point cloud dataset comprised of spherical atomic environ-
ments surrounding a residue within a protein structure, which we term protein neighborhoods. We use
ProteinNet [AlQuraishi, 2019] splits to avoid any redundancy in training and test sets (Sec. A.7.5). We
consider all atomic neighborhoods within a radius of 12.5Å surrounding central residue types CYS,
GLU or HIS (Fig. 3A). We only consider backbone atoms (Cα, C, O and N). For each neighborhood
centered at the central residue’s Cα, we compute the ZFT (Eq. A.6) with L = 4 and N = 26. We
then concatenate features of the same degree resulting in a tensor with 1240 coefficients. The final
dataset contains 303k/75k/4.4k (train/valid/test) tensors. We train an H-AE model with an invariant
latent space size z of 64 (see Sec. A.7.5). The latent space is meaningfully organized according to
relevant neighborhood statistics, such as the secondary structure of the central residue (∼ 87% KNN
classification accuracy - Fig. 3B), number of atoms in the neighborhood (Fig. 3C), and neighborhood’s
average Solvent Accessible Surface Area (SASA), which is a proxy value for how buried the residue
is in the protein (Fig. 3D).

4 Conclusion

In this work, we develop the first end-to-end SO(3)-equivariant (V)AE, suitable for data distributed
around a center. The model learns an invariant embedding describing the data in a “canonical"
orientation alongside an equivariant frame describing the data’s original orientation relative to the
canonical one. Our model is defined fully in spherical Fourier space, and thus, can reach a desired
expressiveness without a need for excessive computational resources.

We demonstrate that our model can be used to efficiently learn SO(3) invariant and equivariant
representations of high-dimensional data, such as atomic environments. Specifically, it can be used to
learn compact and informative representations of atomic environments as building blocks of larger
protein units. While in this paper we limit our analysis to backbone atoms within a small protein
subspace, our method can be extended to all-atom representations of the entire protein universe.
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A Appendix

A.1 Background

A.1.1 Invariance and Equivariance

Let f : X → Y be a function between two vector spaces and G a group, where G acts on X
and via representation DX and on Y via representation DY . Then, f is said to be G-equivariant
iff f(DX(g)x) = DY (g)f(x) ,∀x ∈ X ∧ ∀g ∈ G. We note that invariance is a special case of
equivariance where DY (g) = I ,∀g ∈ G.

A.1.2 Group representations and the irreps of SO(3)

Groups can concretely act on distinct vector spaces via distinct group representations. Formally, a
group representation defines a set of invertible matrices DX(g) parameterized by group elements
g ∈ G, which act on vector space X . As an example, two vector spaces that transform differently
under the 3D rotation group SO(3)- and thus have different group representations - are scalars, which
do not change under the action of SO(3), and 3D vectors, which rotate according to the familiar 3D
rotation matrices.
A special kind of representation for any group are the irreducible representations (irreps) which are
provably the “smallest" nontrivial (i.e., they have no nontrivial group-invariant subspaces) representa-
tions. The irreps of a group are special because it can be proven that any finite-dimensional unitary
group representation can be decomposed into a direct sum of irreps [Tung, 1985]. This applies to
SO(3) as well, whose irreps are the Wigner-D matrices, which are (2ℓ+ 1× 2ℓ+ 1)-dimensional
matrices, each acting on a (2ℓ+ 1)-dimensional vector space:

Dℓ(g) for ℓ = 0, 1, 2, ... (A.1)

Therefore, every element of the SO(3) group acting on any vector space can be represented as a direct
sum of Wigner-D matrices.

A.1.3 Steerable features

A G-steerable vector is a vector x ∈ X that under some transformation group G, transforms
via matrix-vector multiplication DX(g)x; here, DX(g) is the group representation of g ∈ G.
For example, a vector in 3D Euclidean space is SO(3)-steerable since it rotates via matrix-vector
multiplication using a rotation matrix.

However, we can generalize 3D rotations to arbitrary vector spaces by employing the irreps of SO(3).
We start by defining a degree-ℓ feature as a vector that is SO(3)-steerable by the ℓth Wigner-D
matrix Dℓ. Given the properties of irreps, we can represent any SO(3)-steerable vector as the
direct sum of two or more independent degree-ℓ features, e.g. x = xℓ1 ⊕ xℓ2 ⊕ ... ⊕ xℓn . The
resulting vector, which we refer to as a tensor to indicate that it is composed of multiple individually-
steerable vectors, is SO(3)-steerable via the direct sum of Wigner-D matrices of corresponding
degrees. This tensor is a block-diagonal matrix with the Wigner-D matrices along the diagonal:
D(g) = Dℓ1(g)⊕Dℓ2(g)⊕ ...⊕Dℓn(g).

A.1.4 Spherical harmonics and the Spherical Fourier Transform

Spherical harmonics are a class of functions that form a complete and orthonormal basis for functions
f(θ, ϕ) defined on a unit sphere; θ and ϕ are the azimuthal and the polar angles in the spherical
coordinate system. In their complex form, spherical harmonics are defined as,

Yℓm(θ, ϕ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
eimϕPm

ℓ (cos θ) (A.2)

where ℓ is a non-negative integer (0 ≤ ℓ) and m is an integer within the interval −ℓ ≤ m ≤ ℓ.
Pm
ℓ (cos θ) is the Legendre polynomial of degree ℓ and order m, which together with the complex

exponential eimϕ define sinusoidal functions over the angles θ and ϕ in the spherical coordinate
system. Spherical harmonics are used to describe angular momentum in quantum mechanics.
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Notably, spherical harmonics also form a basis for the irreps of SO(3), i.e., the Wigner-D
matrices. Specifically, the SO(3) group acts on the ℓth spherical harmonic via the ℓth Wigner-D
matrix:

Yℓm(θ, ϕ)
g∈SO(3)−−−−−−→

ℓ∑
m′=−ℓ

Dm′m
ℓ (g)Yℓm′(θ, ϕ) (A.3)

Therefore, any data encoded in a spherical harmonics basis is acted upon by the SO(3) group via
a direct sum of the Wigner-D matrices corresponding to the basis functions being used. Using our
nomenclature, any such data encoding constitutes a steerable tensor. We can thus map any function
f(θ, ϕ) defined on a sphere into a steerable tensor using the Spherical Fourier Transform (SFT):

f̂ℓm =

∫ 2π

0

∫ π

0

f(θ, ϕ)Yℓm(θ, ϕ) sin θ dθ dϕ (A.4)

The signal can be reconstructed in the real space using the corresponding inverse Fourier transform.
For computational purposes, we truncate Fourier expansions at a maximum angular frequency L,
which results in an approximate reconstruction of the signal f̃(θ, φ) up to the angular resolution
allowed by L,

f̃(θ, φ) =

L∑
ℓ=0

ℓ∑
m=−ℓ

f̂ℓmYℓm(θ, ϕ) (A.5)

Here, f̂ℓm are the functions’ Spherical Fourier coefficients.

A.1.5 Zernike polynomials and the Zernike Fourier transform

To encode a function ρ(r, θ, ϕ) with both radial and angular components, we use Zernike Fourier
transform,

Ẑn
ℓm =

∫
ρ(r, θ, ϕ)Yℓm(θ, ϕ)Rn

ℓ (r) dV (A.6)

where Rn
ℓ (r) is the radial Zernike polynomial in 3D defined as,

Rn
ℓ (r) = (−1)

n−ℓ
2

√
2n+ 3

(n+ℓ+3
2 − 1
n−ℓ
2

)
|r|ℓ 2F1

(
−n− 1

2
,
n+ ℓ+ 3

2
; ℓ+

3

2
; |r|2

)
(A.7)

Here, 2F1(·) is an ordinary hypergeometric function, and n is a non-negative integer representing a
radial frequency, controlling the radial resolution of the coefficients. Rn

ℓ (r) is non-zero only for even
values of n−ℓ ≥ 0. Zernike polynomials form a complete orthonormal basis in 3D, and therefore, can
be used within a Fourier transform to expand and retrieve any 3D shape, if large enough ℓ and n co-
efficient are used. We refer to the Fourier transform of Eq. A.6 as the Zernike Fourier Trasform (ZFT).

To represent point clouds, a common choice for the function ρ(r) ≡ ρ(r, θ, ϕ) is the sum
of Dirac-δ functions centered at each point:

ρ(r) =
∑

i∈points

δ(ρ(ri)− ρ(r)) (A.8)

This choice is powerful because the forward transform has a closed-form solution that does not
require a discretization of 3D space for numerical computation. Specifically, the ZFT of a point cloud
follows:

Ẑn
ℓm =

∑
i∈points

Rℓ
n(ri)Yℓm(θi, φi) (A.9)

Similar to SFT, we can reconstruct the data using inverse ZFT and define approximations by truncating
the angular and radial frequencies at L and N , respectively,

ρ̃(r, θ, φ) =

L∑
ℓ=0

ℓ∑
m=−ℓ

N∑
n

Ẑn
ℓmRn

ℓ (r)Yℓm(θ, φ) (A.10)

10



A.2 Details of H-(V)AE components

A.2.1 Linearity (Lin)

We construct linear layers acting on steerable tensors by learning degree-specific linear operations.
Specifically, we learn weight matrices specific to each degree ℓ, and use them to map across degree-ℓ
feature spaces by learning linear combinations of degree-ℓ features in the input tensor.

Let us consider a feature hℓ containing C features of the same degree ℓ. hℓ can be repre-
sented as a C × (2ℓ+ 1) matrix where each row constitutes an individual feature. Then, we learn
weight matrix Wℓ ∈ RC×K that linearly maps hℓ to hℓ ∈ RK×(2ℓ+1):

hℓ = W T
ℓ hℓ (A.11)

A.2.2 Efficient Tensor Product nonlinearity (ETP)

We utilize the CG tensor product to inject nonlinearity in the network in an equivariant way, as
was originally prescribed by Kondor et al. [2018] for SO(3)-equivariant convolutional neural net-
works (CNNs). This type of nonlinearity enables information flow between features of different
degrees, which is necessary for constructing expressive models, and injects square nonlinearity. To
significantly reduce the computational and memory costs of the tensor products, we leverage some
of the modifications proposed by Cobb et al. [2021]. Specifically, we compute tensor products
channel-wise, i.e., only between features belonging to the same channel, and we limit the connections
between features of different degrees to what Cobb et al. [2021] calls the MST subset. Notably, the
channel-wise computation constrains the input tensors to have the same number of channels for each
feature. We found these modifications to be necessary to efficiently work with data encoded in large
number of channels C and with large maximum degree L.

Channel-wise tensor product nonlinearity. We effectively compute C tensor products, each
between features belonging to the same channel c, and concatenate all output features of the same
degree. In other words, features belonging to different channels are not mixed in the nonlinearity; the
across-channel mixing is instead done in the linear layer. This procedure reduces the computational
time and the output size of the nonlinear layers with respect to the number of channels C, from
O(C2) for a “fully-connected" tensor product down to O(C). The number of learnable parameters
in a linear layer are proportional to the size of the output space in the preceding nonlinear layer.
Therefore, reducing the size of the nonlinear output substantially reduces the complexity of the model
and the number of model parameters. This procedure also forces the input tensor to have the same
number of channels for all degrees. We refer the reader to Cobb et al. [2021] for further details and
for a nice visualization of this procedure.

Minimum Spanning Tree (MST) subset for degree mixing. To compute features of the
same degree ℓ3 using the CG Tensor Product, pairs of features of varying degrees may be used, up to
the rules of the CG Tensor Product. Specifically, pairs of features with any degree pair (ℓ1, ℓ2) may
be used to produce a feature of degree ℓ3 as long as |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2. Features of the same
degree are then concatenated to produce the final equivariant (steerable) output tensor.
Since each produced feature (often referred to as a “fragment" in the literature Kondor et al. [2018],
Cobb et al. [2021]) is independently equivariant, computing only a subset of them still results in an
equivariant output, albeit with lower representational power. Reducing the number of computed
fragments is desirable since their computation cannot be easily parallelized. In other words, to
reduce complexity we should identify a small subset of fragments that can still offer sufficient
representational power. In this work we adopt the “MST subset" solution proposed by Cobb et al.
[2021], which adopts the following strategy: when computing features of the same degree ℓ3,
exclude the degree pair (ℓ0, ℓ2) if the (ℓ0, ℓ1) and the (ℓ1, ℓ2) pairs have already been computed. The
underlying assumption behind this solution is that the last two pairs already contain some information
about the first pair, thus making its computation redundant.
The resulting subset of pairs can be efficiently computed via the Minimum Spanning Tree of
the graph describing the possible pairs used to generate features of a single degree ℓ3, given the
maximum desired degree ℓmax. As multiple such trees exist, we choose the one minimizing the
computational complexity by weighting each edge (i.e. each pair) in the graph accordingly (edge
(ℓ1, ℓ2) gets weight (2ℓ1 + 1)(2ℓ2 + 1)). The subset is also augmented to contain all the pairs with
same degree to inject more nonlinearity. This procedure reduces the complexity in number of pairs
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with respect to ℓmax from O(ℓ2max) - when all possible pairs are used - down to O(ℓmax). We refer the
reader to Cobb et al. [2021] for more details and for a nice visualization.

A.2.3 Batch Norm (BN)

We normalize intermediate tensor representations degree-wise and channel-wise by the batch-
averaged norms of the features, as initially proposed by Kondor et al. [2018], and do it before the
ETP; see Figure 1B and Section A.2.3 for details. We found the use of this layer to speed up model
convergence (Fig A.2).

Let us consider a batch of steerable tensors h which we index by batch b, degree ℓ, order
m and channel c. During training, we compute a batch-averaged norm for each degree ℓ and each
channel c as,

N c
ℓ =

1

B

B∑
b=1

1

2ℓ+ 1

ℓ∑
m=−ℓ

(ĥcb
ℓm)2 (A.12)

Similar to standard batch normalization, we also keep a running estimate of the training norms
N

c,tr(i)
ℓ using momentum ξ, set to 0.1 in all our experiments:

N
c,tr(i)
ℓ = ξN c

ℓ + (1− ξ)N
c,tr(i−1)
l (A.13)

We then update the features of the steerable tensor using the real batch-averaged norms during training,
and the running batch-averaged norms during testing, together with a learned affine transformation:

ĥcb
ℓm =

ĥcb
ℓm√
N c

ℓ

wc
ℓ training (A.14)

ĥcb
ℓm =

ĥcb
ℓm√

N
c,tr(i)
ℓ

wc
ℓ evaluation (A.15)

Signal Norm (SN). It is necessary to normalize activations computed by the CG tensor product
to avoid their explosion. We found using batch norm alone often caused activations to explode in
the decoder during evaluation. Thus, we introduce Signal Norm, whereby we divide each steerable
tensor by its total norm, and apply a degree-specific affine transformation (wℓ) for added flexibility.
Formally, the total norm for an individual tensor h is computed as:

Ntot =
∑
ℓ

∑
c

∑ℓ
m=−ℓ(ĥ

c
ℓm)

2ℓ+ 1
(A.16)

and the features are updated as ĥc
ℓm = ĥc

ℓmwℓ/
√
Ntot. We note that each pre-affine normalized

tensor has a total norm of 1, thus constraining the values of the individual features.

A.2.4 Data normalization

As per standard machine learning practice [Shanker et al., 1996], we normalize the data. We do this
by dividing each tensor by the average square-root total norm of the training tensors, analogously to
the Signal Norm. This strategy puts the target values on a similar scale as the normalized activations
learned by the network, which we speculate to favor gradient flow.

A.2.5 General training details

We find it practical to scale the reconstruction loss by a dataset-specific scalar α since the MSE loss
varies in average magnitude across datasets. When training H-VAE, we find it beneficial to keep
β = 0 for a few epochs (Erec) so that the model can learn to perform meaningful reconstructions, and
then linearly increasing it to the desired value for Ewarmup epochs to add structure to the latent space,
an approach first used by Bowman et al. [2016].
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A.2.6 Pairwise invariant reconstruction loss

To reconstruct a signal within an equivariant model it is desirable to have a pairwise invariant
reconstruction loss, i.e., a loss Lrec such that Lrec(x,y) = Lrec(D(g)x,D(g)y) where D is the
representation of the group element g acting on the space that x and y inhabit (e.g. a rotation matrix
if x and y are vectors in Euclidean 3D space, or a degree-ℓ wigner-D matrix if x and y are degree-ℓ
vectors). This property is necessary for the model to remain equivariant, i.e., given that the network
is agnostic to the transformation of the input under group operation x → D(g)x by producing a
similarly transformed output y → D(g)y, we want the reconstruction loss to be agnostic to the same
kind of transformation as well

The MSE loss is pairwise invariant for any degree-ℓ feature on which SO(3) acts via the
ℓ’s Wigner-D matrix. Consider two degree-ℓ features xℓ and yℓ acted upon by a Wigner-D matrix
Dℓ(g) parameterized by rotation g (we drop the g and ℓ indexing for clarity):

MSE(Dx,Dy) = (Dx−Dy)T (Dx−Dy)

= (D(x− y))T (D(x− y))

= (x− y)TDTD(x− y)

= (x− y)T (x− y) since Wigner-D matrices are unitary
= MSE(x,y)

(A.17)

Since the MSE loss is pairwise invariant for every pair of degree-ℓ features, it is thus pairwise
invariant for pairs of steerable tensors composed via direct products of steerable features.

A.3 Reconstruction assessment via cosine loss

As MSE values are on different scales across tensors with features of different degrees, it is not
possible to use MSE as a universal measure for “goodness" of the reconstructions. Instead, we
propose the metric Cosine loss, which is a normalized dot product generalized to operate on pairs of
steerable tensors (akin to cosine similarity), and modified to be interpreted as a loss:

Cosine(x,y) = 1− x⊙ y√
(x⊙ x)(y ⊙ y)

, with x⊙ y =
∑
ℓ′

(xℓ′ ⊗cg yℓ′)ℓ=0 (A.18)

The Cosine loss is interpretable across different datasets: it is pairwise invariant, has a minimum of
zero for perfect reconstructions, and has an average value of 1.0 for a pair of random tensors of any
size, with a smaller variance for larger tensors. The interpretability of Cosine loss comes at the price
of ignoring the relative norms of the features that are being compared, making the measure unable
to reconstruct norms and thus not suitable as a training objective. However, as norms are easier to
reconstruct than directions, we still find the Cosine loss useful as a noisy estimate of the model’s
reconstruction ability. Furthermore, Cosine loss tends to correlate well with MSE, especially in the
mid-to-low reconstruction quality regime (SpearmanR = 0.99, Fig. A.4).

Proof that Cosine loss is pairwise invariant. The generalized dot product ⊙ from Eq. A.18 is
pairwise invariant in the same way that the dot product between two 3D vectors depends only on their
relative orientations but not the global orientation of the whole two-vector system. Therefore, the
whole Cosine loss expression is pairwise invariant, since all of its components are pairwise invariant.

A.3.1 On learned frames

An interesting question to ask is: what does the trained decoder’s output look like if the frame is held
constant (e.g. equal to the identity matrix)? We experimentally find that the reconstructed elements
tend to be aligned with each other and hypothesize that the model is implicitly learning to maximize
the overlap between training elements, providing empirical evidence in the Appendix (Fig. A.3). We
call this frame the canonical frame following the analogy with the canonical elements in Winter et al.
[2022]. We note that it is possible to rotate original elements to the canonical frame thanks to the
equivalence between the frame we learn and the rotation matrix within our implementation.
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A.4 Related Work

Group-equivariant neural networks. Group-equivariant neural networks have improved the state-
of-the-art on many supervised tasks, thanks to their data efficiency [Hutchinson et al., 2021, Bekkers
et al., 2018, Romero and Cordonnier, 2021]. Related to our work are 3D Euclidean neural networks,
which are equivariant to (subsets of) the 3D Euclidean group: [Weiler et al., 2018, Brandstetter et al.,
2022, Thomas et al., 2018, Batzner et al., 2022, Musaelian et al., 2022, Satorras et al., 2022, Fuchs
et al., 2020, Liao and Smidt, 2022] and often use spherical harmonics and tensor products to construct
SO(3) equivariant layers. Seminal work on SO(3) equivariance has been conducted for spherical
images [Cohen et al., 2018, Esteves et al., 2020]; we were inspired by the fully Fourier approach
of Kondor et al. [2018], and leveraged operations proposed by Cobb et al. [2021].

Equivariant representations of atomic systems. There is a diverse body of literature on constructing
representations of atomic systems that are invariant/equivariant to euclidean symmetries, leveraging
Fourier transforms and CG tensor products [Drautz, 2019, Musil et al., 2021]. Notably, Uhrin [2021]
constructs SO(3)-invariant representations of point clouds using the ZFT and CG tensor product
iterations. Our work can be seen as a data-driven instance of this framework, where we learn a
compact invariant and equivariant latent space from data.

Invariant autoencoders. Several works attempt to learn representations that are invariant to certain
classes of transformations. Shu et al. [2018] and Koneripalli et al. [2020] learn general “shape"
embeddings by learning a separate “deformation" embedding. However, their networks are not
explicitly equivariant to the transformations of interest. Other work proposes to learn an exactly
invariant embedding alongside an approximate (but not equivariant) group action to align the input
and the reconstructed data. For example, Mehr et al. [2018] learns in quotient space by sampling
the group’s orbit and computing the reconstruction loss by taking the infimum over the group. This
approach is best suited for discrete and finite groups, and it is computationally expensive as it
is akin to data augmentation. Lohit and Trivedi [2020] construct an SO(3)-invariant autoencoder
for spherical signals by learning an invariant latent space and minimizing a loss which first finds
the rotation that best aligns the true and reconstructed signals, introducing an added optimization
step and reconstructing the signals only up to a global rotation.iring an optimization step in the
loss computation. In contrast, our approach is fully equivariant, only requiring simple MSE for
reconstruction, and reconstructing data in its original orientation.

Group-equivariant autoencoders. A small body of work focuses on developing equivariant au-
toencoders. Several methods construct data and group-specific architectures to auto-encode data
equivariantly, learning an equivariant representation in the process [Hinton et al., 2011, Kosiorek et al.,
2019]. Others use supervision to extract class-invariant and class-equivariant representations [Feige,
2022]. A recent theoretical work proposes to train an encoder that encodes elements into an invariant
embedding and an equivariant group action, then using a standard decoder that uses the invariants to
reconstruct the elements in a canonical form, and finally applying the learned group action to recover
the data’s original form [Winter et al., 2022]. Our method in SO(3) is closely related to this work,
with the crucial difference that we use an equivariant decoder and that we learn to reconstruct the
Fourier encoding of data. Furthermore, our model is variational in the invariant latent space.

A.5 Additional experiments

A.5.1 MNIST-on-the-sphere

We extensively test the performance of H-(V)AE on the MNIST-on-the-sphere dataset [Deng, 2012].
Following Cohen et al. [2018] we generate a discrete unit sphere using the Driscoll-Healey (DH)
method with a bandwidth (bw) of 30, and project the MNIST dataset onto the lower hemisphere.
We consider two variants, NR/R and R/R, differing in whether the training/test images have been
randomly rotated (R) or not (NR). For each dataset, we map the images to steerable tensors via the
Zernike Fourier Transform (ZFT) with L = 10, and a constant radial function Rn

ℓ = 1, resulting in
tensors with 121 coefficients.

We train 8 models with combinations of the following features: training mode (NR vs. R),
invariant latent space size z (16 vs. 120), and model type (AE vs. VAE). In all cases the model
architecture follows from Fig. 1C; see Section A.7.2 for details. All 8 models achieve very low
reconstruction loss (Table A.1) with no significant difference between training modes, indicating
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Figure A.1: H-VAE on MNIST-on-the-sphere. Evaluation on rotated digits for an H-VAE trained
on non-rotated digits with z = 16. A: Original and reconstructed images in the canonical frame
after inverse transform from Fourier space. The images are projected onto a plane. Distortions at
the edges and flipping are side-effects of the projection. B: visualization of the latent space via 2D
UMAP [McInnes et al., 2020]. Data points are colored by digit identity. C: Shown are cherry-picked
images generated by feeding the decoder invariant embeddings sampled from the prior distribution
and the canonical frame. D: Example image trajectory by linearly interpolating through the learned
invariant latent space. We interpolate between the learned invariant embeddings of the Start and the
Target images. Then, we feed each embedding to the decoder alongside the canonical frame.

that the models successfully leverage SO(3)-equivariance to generalize to unseen orientations.
Predictably, AE models have lower reconstruction loss than VAE models, and so do models with a
larger latent space. Nonetheless, H-VAE achieves reliable reconstructions, as shown in Fig. A.1A and
Table A.1. All 8 models produce an invariant latent space that naturally clusters by digit identity. We
show this qualitatively for one of the models in Fig. A.1B, and quantitatively by clustering the data
via K-Means with 10 centroids and computing standard clustering metrics of Purity [Aldenderfer and
Blashfield, 1984] and V-measure [Rosenberg and Hirschberg, 2007] in Table A.1.

All 8 models achieve much better clustering metrics than Rot-Inv AE [Lohit and Trivedi,
2020], with VAE models consistently outperforming AE models. We also train a linear classifier (LC)
to predict digit identity from invariant latent space descriptors, achieving comparable accuracy to
Rot-Inv AE with the same latent space size. We do not observe any difference between VAE and AE
models in terms of classification accuracy. Using a KNN classifier instead of LC further improves
performance (Table A.2).
As H-VAE is a generative model, we generate random spherical images by sampling invariant latent
embeddings from the prior distribution, and observing diversity in digit type and style (Fig. A.1C and
Fig. A.5). We further assess the quality of the invariant latent space by generating images via linear
interpolation of the invariant embeddings associated with two test images. The interpolated images
present spatially consistent transitions (Fig. A.1D and Fig. A.6), which is a sign of a semantically
well-structured latent space.
To understand the meaning of the learned frames, we visualize the sum of images in the canonical
frame (i.e. the identity matrix). We hypothesize that H-(V)AE learns to optimally overlap the
training images when in the same frame. Indeed, by visualizing the sum of the training images in the
canonical frame, we can verify that images are well aligned within the same digit type and with
varying degrees across different digit types depending on the content of training data (Fig. A.3).

A.5.2 Shrec17

The Shrec17 dataset consists of 51k 3D models belonging to 55 object classes, with a 70/10/20
train/valid/test split [noa]. We use the variant of the dataset where each datapoint is perturbed by
random rotations. We follow Cohen et al. [2018] and project the data onto a DH spherical grid with a
bandwidth of 90 via ray-casting, generating spherical images with 6 channels. We then apply the
ZFT with L = 14 and a constant radial function Rn

ℓ = 1 to each channel individually, resulting in a
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Table A.1: Performance metrics on MNIST-on-the-sphere and Shrec17. Reconstruction loss,
clustering metrics, classification accuracy in the latent space using a linear classifier, and retrieval
metrics (Shrec17 only) are shown.

Dataset Type Method z bw Cosine Purity V-meas. Class.
Acc. P@N R@N F1@N mAP NDCG

MNIST

Supervised [Cobb et al., 2021] NR/R - 30 - - - 0.993 - - - - -

Unsupervised

[Lohit and Trivedi, 2020] NR/R 120 30 - 0.40 0.35 0.894 - - - - -
H-AE NR/R (Ours) 120 30 0.017 0.62 0.48 0.877 - - - - -
H-AE R/R (Ours) 120 30 0.018 0.51 0.41 0.881 - - - - -
H-AE NR/R (Ours) 16 30 0.025 0.62 0.51 0.820 - - - - -
H-AE R/R (Ours) 16 30 0.024 0.65 0.52 0.833 - - - - -
H-VAE NR/R (Ours) 120 30 0.037 0.70 0.59 0.883 - - - - -
H-VAE R/R (Ours) 120 30 0.037 0.65 0.53 0.884 - - - - -
H-VAE NR/R (Ours) 16 30 0.057 0.67 0.54 0.812 - - - - -
H-VAE R/R (Ours) 16 30 0.055 0.72 0.57 0.830 - - - - -

Shrec17

Supervised [Esteves et al., 2020] - 128 - - - - 0.717 0.737 - 0.685 -
[Cobb et al., 2021] - 128 - - - - 0.719 0.710 0.708 0.679 0.758

Unsupervised
[Lohit and Trivedi, 2020] 120 30 - 0.41 0.34 0.578 0.351 0.361 0.335 0.215 0.345
H-AE (Ours) 40 90 0.130 0.50 0.41 0.654 0.548 0.569 0.545 0.500 0.597
H-VAE (Ours) 40 90 0.151 0.52 0.42 0.631 0.512 0.537 0.512 0.463 0.568

tensor with 1350 coefficients.

We train an AE and a VAE model (Sec. A.7.3) and evaluate them similarly to the MNIST
dataset and compute the Shrec17 retrieval metrics via the latent space linear classifier’s predictions
(Table A.1). H-AE achieves the best classification and retrieval results for autoencoder-based
models [Lohit and Trivedi, 2020], and is competitive with supervised models [Esteves et al., 2020,
Cobb et al., 2021] despite the lower grid bandwidth and the small latent space. Using KNN
classification instead of a linear classifier further improves performance (Table A.3). H-VAE
achieves slightly worse classification results but better clustering metrics compared to H-AE. While
reconstruction loss is low, there is still significant margin of improvement. We partially attribute Lohit
and Trivedi [2020]’s low scores to the low grid bandwidth. However, we note that, unlike Lohit and
Trivedi [2020], the size and runtime of our method does not scale with grid bandwidth, since the size
of the reconstructed tensor learned by our method does not depend on it.

A.5.3 Toy amino acids

We train several H-AE and H-VAE models, all with z = 2; see Sec. A.7.4 for details. We consistently
find that the latent space clusters by amino acid conformations (Fig. 2), with sharper cluster separations
as more training data is added (Fig. A.8 and A.9). We find that test reconstruction loss decreases
with more training data but the reconstruction is accurate even with little training data (from 0.153
Cosine loss with 400 training residues to 0.034 with 20,000); Table A.4. A similar trend is observed
for KNN-based classification accuracy of residues (from 0.842 with 400 training residues to 0.972
with 20,000); (Table A.4). Notably, an untrained model, while achieving random reconstruction
loss, still produces an informative invariant latent space (0.629 residue type accuracy), suggesting
that the forced SO(3)-invariance grants a “warm start" to the encoder. We do not find significant
improvements in latent space classification by training with a variational objective, and present
ablation results in Table A.5.

A.6 Implementation details

Without loss of generality, we use real spherical harmonics for implementation of H-(V)AE. We
leverage e3nn Geiger and Smidt [2022], using their computation of the real spherical harmonics and
their Clebsch-Gordan coefficients.

In our code, we offer the option to use the Full Tensor Product instead of the ETP. Specif-
ically, at each block we allow the users to specify whether to compute the Tensor Product
channel-wise or fully-connected across channels, and whether to compute using efficient or fully
connected degree mixing. However, for all the experiments in this paper, we use the ETP, which
offers computational efficiency and sufficient expressivity.
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A.7 Experimental details

A.7.1 Architecture specification

We describe model architectures as follows. We specify the number of blocks B, which is the same
for the encoder and the decoder. We specify two lists, (i) DegreesList which contains the maximum
degree ℓmax,b of the output of each block b, and (ii) ChannelsList, containing the channel sizes Cb,
of each block b. These lists are in the order as they appear in the encoder, and are reversed for the
decoder. When it applies, we specify the number of output channels of the initial linear projection
Cinit. As noted in the main text, we use a fixed formula to determine ℓmax,b, but we specify it for
clarity.

A.7.2 MNIST on the sphere

Model architectures. For models with invariant latent space size z = 16, we use 6 blocks,
DegreesList = [10, 10, 8, 4, 2, 1] and ChannelsList = [16, 16, 16, 16, 16, 16], with a total of 227k
parameters.
For models with invariant latent space size z = 120, we use 6 blocks, DegreesList =
[10, 10, 8, 4, 2, 1] and ChannelsList = [16, 16, 16, 32, 64, 120], with a total of 453k parameters.

Training details. We keep the learning schedule as similar as possible for all models. We
use α = 50. We train all models for 80 epochs using the Adam optimizer [Kingma and Ba, 2017]
with default parameters, a batch size of 100, and an initial learning rate of 0.001, which we decrease
exponentially by one order of magnitude over 25 epochs. For VAE models, we use β = 0.2,
Erec = 25 and Ewarmup = 35. We utilize the model with the lowest loss on validation data, only after
the end of the warmup epochs for VAE models. Training took ∼ 4.5 hours on a single NVIDIA A40
GPU for each model.

A.7.3 Shrec17

Model architectures. Both AE and VAE models have z = 40, 7 blocks, DegreesList =
[14, 14, 14, 8, 4, 2, 1], ChannelsList = [12, 12, 12, 20, 24, 32, 40], Cinit = 12, with a total of 518k
parameters.

Training details. We keep the learning schedule as similar as possible for all models. We
use α = 1000. We train all models for 120 epochs using the Adam optimizer with default parameters,
a batch size of 100, and an initial learning rate of 0.0025, which we decrease exponentially by two
orders of magnitude over the entire 120 epochs. For VAE models, we use β = 0.2, Erec = 25 and
Ewarmup = 10. We utilize the model with the lowest loss on validation data, only after the end of the
warmup epochs for VAE models. Training took ∼ 11 hours on a single NVIDIA A40 GPU for each
model.

A.7.4 Toy amino acids

Pre-processing of protein structures. We sample residues from the set of training structures
pre-processed as described in Sec. sec:proteinneighborhoodsdetails.

Fourier projection. We set the maximum radial frequency to N = 20 as it corresponds to a radial
resolution matching the minimum inter-atomic distances after rescaling the atomic neighborhoods of
radius 10.0 to fit within a sphere of radius 1.0, necessary for Zernike transform.
The channel composition of the data tensors can be described in a notation - analogous to that used
by e3nn but without parity specifications - which specifies the number of channels C for each feature
of degree ℓ in single units Cxℓ: 44x0 + 40x1 + 40x2 + 36x3 + 36x4.

Model architectures. All models have z = 2, 6 blocks, DegreesList = [4, 4, 4, 4, 2, 1],
ChannelsList = [60, 40, 24, 16, 16, 8], Cinit = 48, with a total of 495k parameters. We note that the
initial projection is necessary since the number of channels differs across feature degrees in the data
tensors.

Training details. We keep the learning schedule as similar as possible for all models. We
use α = 400. We train all models for 80 epochs using the Adam optimizer with default parameters
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and an initial learning rate of 0.005, which we decrease exponentially by by one order of magnitude
over 25 epochs. For VAE models, we use Erec = 25 and Ewarmup = 10. We utilize the model with
the lowest loss on validation data, only after the end of the warmup epochs for VAE models.
We vary the batch size according to the size of the training and the validation datasets. We use the
following (dataset_size-batch_size) pairs: (400-4), (1,000-10), (2,000-20), (5,000-50), (20,000-20).
Training took ∼ 45 minutes on a single NVIDIA A40 GPU for each model.

Evaluation. We perform our data ablations by considering training and validation datasets
of the following sizes: 400, 1,000, 2,000, 5,000 and 20,000. We keep relative proportions of residue
types even in all datasets. We perform the data ablation with H-AE as well as H-VAE models with
β = 0.025 and 0.1.
We further perform a β ablation using the full (20,000) dataset, over the following choices of β:
[0(AE), 0.025, 0.05, 0.1, 0.25, 0.5].

For robust results, we train 3 versions of each model and compute averages of quantitative
metrics of reconstruction loss and classification accuracy.

For a fair comparison across models with varying amounts of training and validation data,
we perform a 5-fold cross-validation-like procedure over the 10k test residues, where the classifier is
trained over 4 folds of the test data and evaluated on the fifth one. If validation data is needed for
model selection (e.g. for LC), we use 10% of the training data.

A.7.5 Protein Neighborhoods

Pre-processing of protein structures. We model protein neighborhoods extracted from tertiary
protein structures from the Protein Data Bank (PDB) [Berman et al., 2000]. We use ProteinNet’s
splittings for training and validation sets to avoid redundancy, e.g. due to similarities in homologous
protein domains [AlQuraishi, 2019]. Since PDB ids were only provided for the training and validation
sets, we used ProteinNet’s training set as both our training and validation set and ProteinNet’s
validation set as our testing set. Specifically, we make a [80%, 20%] split in the ProteinNet’s training
data to define our training and validation sets. This splitting resulted in 10,957 training structures,
2,730 validation structures, and 212 testing structures. We use pyRosetta [Chaudhury et al., 2010] to
assign Solvent Accessible Surface Area (SASA) to every atom.

Projection details. We set the maximum radial frequency to N = 26 as it corresponds to
a radial resolution matching the minimum inter-atomic distances after rescaling the atomic
neighborhoods of radius 12.5 to fit within a sphere of radius 1.0, necessary for Zernike transform.

Model architectures. All models have z = 64, 6 blocks, DegreesList = [4, 4, 4, 4, 2, 1],
ChannelsList = [128, 128, 96, 96, 64, 64], Cinit = 64, with a total of 3.5M parameters. We note that
the initial projection is necessary since the number of channels differs across feature degrees in the
data tensors.

Training details. We keep the learning schedule as similar as possible for all models. We
use α = 400. We train all models for 120 epochs using the Adam optimizer with default parameters,
a batch size of 256, and an initial learning rate of 0.002, which we decrease exponentially by one
order of magnitude over 40 epochs. For VAE models, we use Erec = 40 and Ewarmup = 40. We
utilize the model with the lowest loss on validation data, only after the end of the warmup epochs for
VAE models. Training took ∼ 10 hours on a single NVIDIA A40 GPU for each model.

A.7.6 Latent space classification

Linear classifier. We implement the linear classifier as a one-layer fully connected neural network
with input size equal to the invariant embedding of size z, and output size equal to the number of
desired classes. We use cross entropy loss with logits as training objective, which we minimize for
250 epochs using the Adam optimizer with batch size 100, and initial learning rate of 0.01. We reduce
the learning rate by one order of magnitude every time the loss on validation data stops improving for
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10 epochs (if validation data is not provided, the training data is used). At evaluation time, we select
the class with the highest probability value. We use PyTorch for our implementation.

KNN Classifier We use the sklearn [Pedregosa et al., 2011] implementation with default parameters.
At evaluation time, we select the class with the highest probability value.

A.7.7 Clustering metrics

Purity [Aldenderfer and Blashfield, 1984]. We first assign a class to each cluster based on the most
prevalent class in it. Purity is computed as the sum of correctly classified items divided by the total
number of items. Purity measures classification accuracy, and ranges between 0 (worst) and 1 (best).

V-measure [Rosenberg and Hirschberg, 2007]. This common clustering metric strikes a
balance between favoring homogeneous (high homogeneity score) and complete (high completeness
score) clusters. Clusters are defined as homogeneous when all elements in the same cluster belong to
the same class (akin to a precision). Clusters are defined as complete when all elements belonging
to the same class are put in the same cluster (akin to a recall). The V-measure is computed as the
harmonic mean of homogeneity and completeness in a given clustering.
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Table A.2: Evaluation of network performances for MNIST-on-the-sphere using a KNN classifier
instead of linear classifier in the latent space. Results are significantly better than when using a linear
classifier for models with smaller (z = 16) latent space, comparable for the other models.

Type Method z bw LC Acc. KNN Acc.

Unsupervised

H-AE NR/R 120 30 0.877 0.875
H-AE R/R 120 30 0.881 0.886
H-AE NR/R 16 30 0.820 0.862
H-AE R/R 16 30 0.833 0.876
H-VAE NR/R 120 30 0.883 0.879
H-VAE R/R 120 30 0.884 0.895
H-VAE NR/R 16 30 0.812 0.848
H-VAE R/R 16 30 0.830 0.874

Table A.3: QEvaluation of network performances for Shrec17 using a KNN classifier instead of linear
classifier in the latent space. Results are better than when using a linear classifier.

Type Method z bw Class.
Acc. P@N R@N F1@N mAP NDCG

Unsupervised + LC H-AE 40 90 0.654 0.548 0.569 0.545 0.500 0.597
H-VAE 40 90 0.631 0.512 0.537 0.512 0.463 0.568

Unsupervised + KNN H-AE 40 90 0.672 0.560 0.572 0.555 0.501 0.599
H-VAE 40 90 0.658 0.541 0.558 0.539 0.487 0.591

Table A.4: Quantitative data ablation results on the Toy amino acids dataset. A random-guessing
classifier has an expected accuracy of 0.050.

H-AE H-VAE (β = 0.025) H-VAE (β = 0.1)
# train Cosine loss LC Acc. KNN Acc. Cosine loss LC Acc. KNN Acc. Cosine loss LC Acc. KNN Acc.
0 1.015 0.409 0.629 0.981 0.424 0.656 0.981 0.424 0.656
400 0.153 0.586 0.842 0.160 0.616 0.848 0.163 0.558 0.780
1,000 0.099 0.583 0.856 0.101 0.569 0.854 0.113 0.564 0.844
2,000 0.073 0.560 0.900 0.081 0.554 0.905 0.092 0.593 0.890
5,000 0.053 0.629 0.940 0.053 0.638 0.961 0.072 0.588 0.921
20,000 0.034 0.578 0.972 0.037 0.667 0.971 0.047 0.662 0.966
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Table A.5: Quantitative data ablation results on the Toy amino acids dataset. Models were trained on
the full dataset (# train = 20,000).

β Cosine LC Acc. KNN Acc.
0 (AE) 0.034 0.580 0.972
0.025 0.037 0.666 0.971
0.05 0.039 0.669 0.968
0.1 0.047 0.661 0.966
0.25 0.132 0.597 0.854
0.5 0.203 0.467 0.722
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Figure A.2: Training loss trace of H-AE, with and without Batch Norm, on MNIST-on-the-
sphere. Models were trained with the (NR/R; z = 16; AE) specification. The loss on validation data
follows the same trend, but it is not shown for simplicity.

21



AE - NR/R AE - R/R VAE - NR/R VAE - R/R
[c]Trained with

all digits

[c]Trained with

1s and 7s only

Figure A.3: Empirical tests to show H-(V)AE learns a canonical frame in the MNIST-on-the-
sphere. For each of the 4 models with z = 16, we train a version using only images containing 1s
and 7s. For each of the resulting 8 models, we visualize the sum of training images of digits 1 and 7,
when rotated to the canonical frame. To achieve the canonical frame we rotate each image such that
the frame learned by the encoder is the same for all images, and specifically, we make it correspond
to the 3× 3 identity matrix. We compute the sums of images with the same digit, and overlay them
with different colors for ease of visualization. We test the hypothesis as whether H-(V)AE learns
frames that align the training images such that they maximally overlap; we do so in two ways.
First, if the hypothesis were true, all canonical images of the same digit should maximally or near-
maximally overlap - since they have very similar shape - and thus, their overlays would look like a
“smooth" version of that digit. Indeed, we find this statement to be true for all models irrespective of
their training strategy.
Second, we consider the alignment of images of different digits. We take 1s and 7s as examples
given their similarity in shape. If the hypothesis were true, models trained with only 1s and 7s should
align canonical 1s along the long side of canonical 7s; indeed we find this to be consistently the case.
The same alignment between 1s and 7s, however, does not necessarily hold for models trained with
all digits. This is because maximizing overlap across a set of diverse shapes does not necessarily
maximize the overlap within any independent pair of such shapes. Indeed, we find that canonical 1s
and canonical 7s do not overlap optimally with each other for models trained with all digits.
We note that these tests do not provide proof, but rather empirical evidence of the characteristics of
frames learned by H-(V)AE on the MNIST-on-the-sphere task.
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Figure A.4: Correlation between Cosine loss and MSE values between pairs of random tensors.
For each dataset, we sample a batch of N = 1000 tensors with dataset-specific feature degrees
and channel sizes, where each coefficient is sampled from a normal distribution. We mimic the
normalization step performed in the real experiment and normalize each tensor by the average total
norm of the batch. We then generate a “noisy" version of each tensor by adding (normalized) Gaussian
noise to each coefficient with standard deviation sampled from a uniform distribution between 0 and
some maximum noise level (10 in these plots). This procedure results in N pairs of tensors with
varying degrees of similarity between them. We compute the MSE and Cosine loss for all N pairs of
tensors and visualize them. The two loss values are well correlated in rank as measured by Spearman
Correlation. The correlation is significantly stronger in the regime of reconstruction loss below a
Cosine loss of 0.5 (SpearmanR ∼ 0.99), a value well above the maximum Cosine loss achieved by
H-(V)AE in all our experiments. All the p-values for the Spearman Correlations shown in the plot are
significant (< 0.05).

23



Figure A.5: Random samples generated by the (NR/R; z = 16; VAE) MNIST-on-the-sphere
model. We sample invariant latent embeddings from the prior distribution (isotropic normal) and
feed them to the decoder alongside the canonical frame to generate tensors. We then compute the
inverse SFT to map the generated tensor to images in real space. The samples show a wide range of
diversity in digit and style.
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Figure A.6: Trajectories across the latent space for the (NR/R; z = 16; VAE) MNIST-on-the-
sphere model. We compute pairs of invariant latent embeddings using the model’s encoder, and
linearly interpolate between them through the latent space. We then feed the interpolated embeddings
into the decoder, together with the canonical frame, and compute the inverse SFT to get the image
in real space. The left and right columns show the original images (after forward and inverse SFT)
rotated to be placed in the learned canonical frame, whereas the center rows show the interpolated
images. We can see that all trajectories are smooth, respecting spatial consistency, sign of a well
structured latent space.

Figure A.7: 2D visualization via UMAP of the invariant latent embeddings of Shrec17 test data
learned by H-(V)AE. Left: H-AE, Right: H-VAE. Points are colored by class (55 classes).
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Figure A.8: Amino acid latent space learned by H-AE. Visualization of the test data’s invariant
latent space learned by H-AE trained with varying amounts of the training data. As more training
data is added, the separation of clusters containing residues with most similar conformations becomes
more distinct. Notably, even with no training data, conformation clusters can be identified.

Figure A.9: Amino acid latent space learned by H-VAE. Visualization of the test data’s invariant
latent space learned by H-VAE (β = 0.025) trained with varying amounts of training data.
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Figure A.10: Protein neighborhood latent space learned by H-AE annotated by the constituent
atoms. 2D UMAP visualization of the 64-dimensional invariant latent space learned by H-AE,
colored by number of the atoms in the neighborhood is shown. A clear gradient can be seen from the
bottom of the plot to the top.

Figure A.11: Protein neighborhood latent space learned by H-AE annotated by SASA 2D UMAP
visualization of the 64-dimensional invariant latent space learned by H-AE, colored by the average
Solvent Accessible Surface Area (SASA) computed for all atoms in each neighborhood is shown.
A larger average SASA indicates that a larger proportion of the neighborhood is at the protein’s
surface. The surface neighborhoods are concentrated in the lower-left side of the map, and the
buried neighborhoods are concentrated at the top. Predictably, there is an inverse correlation between
the number of atoms (Fig. A.10) and closeness to the surface, as we do not represent a protein’s
surrounding environment.
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Figure A.12: Reconstruction loss as a function of feature degree ℓ. Test reconstruction loss (MSE)
of H-VAE split by feature degree ℓ, for the MNIST-on-the-sphere (left) and Toy amino acids dataset
(right). In both cases, features of larger degrees are harder to reconstruct accurately. The increase in
loss is more steep for smaller degrees.
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