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Abstract

Accurate prediction of antibody structures is critical in analyzing the function
of antibodies, thus enabling the rational design of antibodies. However, existing
antibody structure prediction methods often only formulate backbone atoms and
rely on additional tools for side-chain conformation prediction. In this work, we
propose a fully end-to-end architecture for simultaneous prediction of backbone
and side-chain conformations, namely tFold-Ab. Pre-trained language models are
adopted for fast structure prediction by avoiding the time-consuming search for
sequence homologs. The model firstly predicts monomer structures of each chain,
and then refines them into heavy-light chain complex structure prediction, which
enables multi-level supervision for model training. Evaluation results verify the
effectiveness of tFold-Ab for both antibody and nanobody structure prediction.
In addition, we provide a public web service for antibody structure prediction at
https://drug.ai.tencent.com/en.

1 Introduction

Antibodies are Y-shaped proteins produced by B cells during the immune response and play a critical
role in the prevention, diagnosis, and treatment of diseases. With the development of gene sequencing
technology, the cost of obtaining antibody sequences is reducing, but experimentally determining
their structures is still time-consuming and expensive. Nevertheless, accurate structures are vital in
analyzing the function of antibodies. Antibodies perform their functions by binding to antigens, which
is mainly determined by the structure of a set of 6 loops, known as complementarity determining
regions (CDRs). Accurate modeling of antibodies, especially for these CDR loops, helps researchers
to better understand the antibody-antigen binding mechanism and enables the rational design of
antibodies. Thus, it is urgent to develop accurate and efficient antibody structure prediction methods.

Traditional grafting-based approaches, e.g., ABodyBuilder [19], firstly select the template framework
and then conduct CDR loop modeling and side-chain prediction. Recent methods adopt deep neural
networks for antibody structure prediction. ABlooper [1] utilizes an ensemble of five E(n)-EGNNs
[35] to predict the position of backbone atoms in CDR loops. DeepH3 [33] and its improved version,
DeepAb [34], predict inter-residue geometric restraints with residual networks and then perform
constrained energy minimization with Rosetta. NanoNet [8] firstly aligns all the training structures
and then builds a 1D convolutional network to predict 3D coordinates of backbone and Cβ atoms.
However, above methods only use neural networks to predict intermediate structures or restraints,
and still rely on additional tools for full-atom structures, which limits the prediction accuracy.
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In 2020, AlphaFold2 [15] achieves atomic accuracy for general protein structure prediction with a
Transformer-based architecture and fully end-to-end optimization from multiple sequence alignments
(MSAs) to structures. AlphaFold-Multimer [10] further extends this to structure prediction for multi-
chain protein complexes. However, both methods heavily rely on sequence homology inputs, which
can be time-consuming for large-scale sequence databases. Other methods [11, 40] turn to pre-trained
language models (PLMs) to circumvent the costly MSA search, but their precision has yet to improve
due to the lack of explicit sequence homologs. Yet, the performance of such end-to-end prediction
methods is not extensively verified for antibody structures, especially for CDR loops and multimer
sequence inputs. IgFold [31] adopts AntiBERTy [32] (pre-trained on antibody sequences) for initial
features and predicts the backbone conformation in an end-to-end manner. However, side-chain
structures are not explicitly considered, which can be critical for accurate prediction of CDR loops.

In this work, we propose a novel antibody structure prediction method with accurate CDR loop
modeling and high inference speed. Specifically, we adopt a pre-trained language model for MSA-free
prediction, and introduce a fully end-to-end architecture that firstly predicts monomer structures
for heavy and light chains respectively, and then further refines them for structure prediction of
heavy-light chain complexes. This allows multi-level supervision for model training with either
heavy-light chain complex or single chain only. Empirical evaluation indicates that the proposed
method achieves state-of-the-art performance in both antibody and nanobody structure prediction.

2 Methods

As illustrated in Figure 1, the proposed antibody structure prediction pipeline mainly consists of
four stages: 1) monomer structure prediction for each chain; 2) heavy-light chain feature fusion; 3)
multimer structure prediction for the heavy-light chain complex; and 4) additional refinement with
recycling iterations.

Figure 1: The overall workflow of antibody structure prediction pipeline.

2.1 Monomer Structure Prediction

It has been widely shown that pre-trained language models for protein sequences [27, 28, 30, 9]
effectively capture the dependency among residues and thus provide meaningful feature embeddings.
Such models are usually trained with a masked language modeling (MLM) loss, by feeding randomly
masked amino-acid sequences into the network and forcing it to recover original ones via self-
attention. Therefore, attention weights reflect how different residues interact with each other, which
can be naturally used as initial pair features between residues.

Formally, for each heavy and light chain, we extract its final sequence embeddings and all-layer
pairwise attention weights from the pre-trained ProtXLNet model [9]. Additionally, to explicitly
distinguish heavy and light chains, we adopt two independent positional encoders with learnable
embeddings, one per chain type. The monomer structure prediction for heavy and light chains consists
of two stages: iterative updates of single and pair features, followed by 3D structure prediction. As
illustrated in Figure 2, we mainly follow the architecture design in AlphaFold [15], with one minor
difference in that the standard Evoformer stack (for updating MSA and pair features) is now replaced
by a simplified Evoformer-Single stack for single sequence inputs (please refer to Appendix C for
details). For efficiency, both heavy and light chains share the same set of model parameters for
Evoformer-Single and structure modules, as we empirically find that this works well since: 1) heavy
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and light chains are similar in the overall conformation; and 2) independent learnable positional
encodings provide chain-type specific information for monomer structure prediction.

Figure 2: The network architecture for monomer and multimer structure prediction.

2.2 Heavy-Light Chain Feature Fusion

For multimer structure prediction of antibody heavy-light chain complex, we concatenate their amino-
acid sequences without any delimiter. Correspondingly, each chain’s single features are concatenated
along the sequence dimension as initial single features for multimer structure prediction. We re-use
learnable positional encodings of heavy and light chains, so that the model is aware of each residue’s
chain type and position.

As depicted in Figure 3, we divide pair features for multimer structure prediction into four parts,
where diagonal blocks (zH and zL) are initialized by heavy and light chains’ pair features. For
off-diagonal ones, we construct an extended antibody sequence where heavy and light chains are
connected by 21 glycines as the linker. This sequence is then fed into the same ProtXLNet model,
from which attention weights corresponding to inter-chain residue pairs are extracted to initialize pair
features for multimer structure prediction.

Figure 3: The fusion of heavy and light chain features for multimer structure prediction.

2.3 Multimer Structure Prediction

After heavy-light chain feature fusion, we feed initial single and pair features into another sub-
network consists of 16 Evoformer-Single blocks and 8 structure modules (with shared parameters)
for multimer structure prediction. Despite the same network architecture, this sub-network do not
share model parameters with that for monomer structure prediction, so that it concentrates on refining
feature embeddings in the context of global conformation of heavy-light chain complex.

2.4 Recycling Iterations

So far, monomer structure prediction for heavy and light chains only consider its own amino-acid
sequence, which ignores possible interaction between heavy and light chains. This may limit the
iterative update of single and pair features, especially for residues within the interaction site, leading
to sub-optimal initial features for multimer structure prediction. We resolve this issue by taking the
predicted multimer structure for additional recycling iterations, as described in Algorithm 1. The
detailed design of recycling embedding module can be found in Appendix D.
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Algorithm 1 Model inference with recycling iterations
1: get initial single and pair features (sH0 , zH0 , sL0 , z

L
0 )

2: for t = 0 to T − 1 do
3: ▷ monomer feature updates and structure prediction
4: for c ∈ {H,L} do
5: initialize monomer features (sct , z

c
t )← (sc0, z

c
0)

6: if t > 0 then
7: (sct , z

c
t ) += RecycleEmbed(sct−1, z

c
t−1, x

c
t−1)

8: end if
9: update (sct , z

c
t ) with the Evoformer-Single stack

10: predict the monomer structure xc
t with structure modules

11: end for
12: ▷ multimer feature updates and structure prediction
13: initialize multimer features (st, zt) via heavy-light chain feature fusion
14: if t > 0 then
15: (st, zt) += RecycleEmbed(st−1, zt−1, xt−1)
16: end if
17: update (st, zt) with the Evoformer-Single stack
18: predict the multimer structure xt with structure modules
19: split the predicted multimer structure into monomers (xH

t , xL
t )← Split(xt)

20: end for

2.5 Model Optimization

As mentioned earlier, the proposed model can be trained with both single-chain and double-chain
antibody structures. This is achieved by adopting a mixture of monomer and multimer structure
prediction loss functions, given by:

Ltotal = wmono ·
(
LH + LL

)
+ wmulti · LC (1)

where LH , LL, and LC are loss functions for heavy chain, light chain, and heavy-light chain complex,
respectively. We introduce wmono and wmulti to balance these loss functions: if both chains exist,
then wmono = 0.25 and wmulti = 0.5; otherwise, we have wmono = 1 and wmulti = 0. This ensures
that both heavy and light chains contribute equally in the loss computation. Please refer to Appendix
E for additional details on above loss functions.

3 Results

Datasets. We construct train/valid/test subsets from the SAbDab database [36] in a temporally
separated manner, similar to IgFold [31]. Specifically, we gather all the experimentally determined
structures released before 2021/03/31 as training samples, which include 7591 heavy-light chain
complexes, 1440 heavy-chain only, and 507 light-chain only samples. We conduct hyper-parameter
tuning and model selection on the validation subset, consisting of structures released between
2021/04/01 and 2021/06/30. This guarantees a fair comparison on the IgFold-Ab benchmark (67
antibodies) since there is no temporal overlap. In addition, we build two larger non-redundant
benchmarks (sequence identity lower than 95%) containing 235 antibodies and 69 nanobodies
released during the first 6 months in 2022, namely SAbDab-22H1-Ab/Nano. We do not remove
redundant structures with identical sequences from the training subset, since it is beneficial to expose
the model with alternative conformations during training [1].

Training. We adopt the Adam optimizer with a fixed learning rate of 3e−4 and set the batch size to
32. We firstly train the model without recycling iterations for 50 epochs, and then fine-tune it for
another 100 epochs with the number of recycling iterations (T ) set to 2. We maintain the exponential
moving average of model parameters with α = 0.999 and use this model for evaluation. The optimal
model is selected based on full-atom RMSD scores on the validation subset.

Evaluation. Baseline methods include antibody-specific structure prediction (ABodyBuilder [19],
DeepAb [34], ABlooper [1], NanoNet [8] and IgFold [31]) and general protein structure prediction,
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either MSA-based (AlphaFold [15] and AlphaFold-Multimer [10]) or MSA-free (HelixFold-Single
[11], ESMFold [20], and OmegaFold [40]).

For antibody structure prediction, we report backbone RMSD in different framework and CDR
regions on IgFold-Ab (Table 1) and SAbDab-22H1-Ab (Table 2) benchmarks. The proposed method
achieves the lowest RMSD in almost all regions, with the only exception of CDR-L2. Notably, the
RMSD of most flexible CDR-H3 is reduced from 2.99Å to 2.74Å on IgFold-Ab, and from 3.18Å to
3.03Å on SAbDab-22H1-Ab, indicating that our method accurately predict the overall conformation
of this region. Besides, we compare OCD (orientational coordinate distance) [22] to verify how well
the relative position between heavy and light chains is estimated. Again, our method consistently
outperforms all the baselines on both benchmarks.

Table 1: Antibody structure prediction accuracy on the IgFold-Ab benchmark.

Method OCD H-Fr H13 H2 H3 L-Fr L1 L2 L3
ABodyBuilder [19] 4.90 0.54 1.10 0.94 3.75 0.43 1.07 0.58 1.37
ABlooper [1] 4.53 0.51 0.95 0.82 3.20 0.45 0.99 0.59 1.15
DeepAb [34] 3.60 0.43 0.80 0.74 3.28 0.38 0.86 0.45 1.11
IgFold [31] 3.77 0.45 0.80 0.75 2.99 0.45 0.83 0.51 1.07
AlphaFold-Multimer [10] 3.69 0.43 0.75 0.69 3.02 0.39 0.82 0.41 1.13
HelixFold-Single [11] - 0.56 0.85 0.95 5.01 0.51 1.10 0.57 1.60
ESMFold [20] - 0.51 0.84 0.91 4.10 0.43 1.16 0.52 1.44
OmegaFold [40] - 0.47 0.75 0.74 3.70 0.41 0.93 0.43 1.35
tFold-Ab 3.21 0.41 0.69 0.63 2.74 0.37 0.75 0.43 0.92

Table 2: Antibody structure prediction accuracy on the SAbDab-22H1-Ab benchmark.

Method OCD H-Fr H1 H2 H3 L-Fr L1 L2 L3
DeepAb [34] 5.93 0.58 1.07 0.90 3.79 0.61 0.93 0.73 1.41
IgFold [31] 5.66 0.61 1.06 0.93 3.46 0.60 0.90 0.71 1.31
AlphaFold-Multimer [10] 5.32 0.57 1.02 0.85 3.18 0.57 0.84 0.69 1.23
HelixFold-Single [11] - 0.69 1.16 1.12 5.70 0.66 1.09 0.80 1.79
ESMFold [20] - 0.62 1.11 1.04 4.82 0.60 1.12 0.73 1.71
OmegaFold [40] - 0.61 1.04 0.87 4.35 0.57 0.91 0.68 1.43
tFold-Ab 5.10 0.55 0.97 0.86 3.03 0.54 0.81 0.71 1.19

Furthermore, we report DockQ [4] to measure the docking pose of heavy and light chains in Table 3.
Although our method achieves better backbone prediction quality (LRMS and iRMS), its Fnat score
(involves both backbone and side-chain atoms) is inferior to AlphaFold-Multimer, leading to the
lower DockQ score. This indicates that the prediction of side-chain conformation has yet to improve.

Table 3: DockQ evaluation results on the SAbDab-22H1-Ab benchmark.

Method DockQ ↑ Fnat ↑ LRMS ↓ iRMS ↓
DeepAb [34] 0.72 0.70 2.28 1.59
IgFold [31] 0.71 0.68 2.11 1.56
AlphaFold-Multimer [10] 0.78 0.79 1.89 1.37
tFold-Ab 0.77 0.74 1.80 1.32

For nanobody structure prediction, we omit the IgFold-Nano benchmark due to limited number of
test samples (21 nanobodies), and only report performance on SAbDab-22H1-Nano. Our method
achieves the lowest RMSD in both CDR-1 and CDR-2 regions, but does not work well in framework
and CDR-3 regions. This may be caused by the relatively low fraction of nanobodies (< 20%) in the
training subset, and should be further investigated in future works.

3We use “H1” as the abbreviation for “CDR-H1” to save space.
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Table 4: Nanobody structure prediction accuracy on the SAbDab-22H1-Nano benchmark.

Method Fr CDR-1 CDR-2 CDR-3
DeepAb [34] 0.91 2.36 1.33 8.64
IgFold [31] 0.77 1.85 1.19 4.02
NanoNet [8] 0.82 2.05 1.15 4.64
AlphaFold [15] 0.72 2.03 1.14 3.98
HelixFold-Single [11] 0.85 1.98 1.17 4.23
ESMFold [20] 0.79 2.04 1.10 4.21
OmegaFold [40] 0.71 2.02 1.12 3.73
tFold-Ab 0.75 1.68 1.10 4.03

4 Discussion and Limitations

In this paper, we propose a fully end-to-end architecture for antibody and nanobody structure
prediction, which achieves state-of-the-art performance in various benchmarks. Despite its promising
preliminary results, there are still much to improve in the current model. The choice of pre-trained
language models is not well studied; recent large-scale pre-trained language models, e.g., ESM-2 [20],
may further improve the antibody structure prediction accuracy, and should be investigated in future
works. Furthermore, the OAS database [26] contains large-scale antibody sequences without available
experimentally determined structures, and may be exploited through self-distillation training, but the
performance improvement remains uncertain. Finally, the interaction between antibody and antigen
is not explicitly formulated by the current model; however, such interaction is vital in determining the
stable conformation of CDR loops. It would be interesting to develop a unified model for modelling
such antibody-antigen binding mechanism, thus enabling the rational design of antibodies.
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A Data Availability

All the FASTA sequences, native structures, and tFold-Ab predicted structures for three benchmarks
(IgFold-Ab and SAbDab-22H1-Ab/Nano) used in this paper can be downloaded from https://
drive.google.com/file/d/15C5hbd0mGgOcdXXb0x5Af2COVy7nXzpt/view?usp=sharing.

B Related Work

Protein Language Model Inspired by the development of new natural language processing ap-
proach, a few protein language models (PLMs) have been developed to model individual protein
sequences. PLMs learn to predict masked amino acids given their context. These models mainly
use a attention-based deep neural network to capture long-range inter-residue relationship and co-
evolutionary information encoded in the sequence. Previous work[9, 28, 23, 20] has shown that
with small-scale supervised training for downstream tasks, PLMs can capture some functional and
structure properties of proteins, including secondary structure, binding residues[21], tertiary contact
and protein structure[20, 40, 11]. Some work[29] also extends the PLMs to model a set of aligned
sequences in a MSA using axial attention. AlphaFold2[15] also integrates the BERT-style objective
to predict the masked elements of MSA sequence to improve MSA-based protein structure prediction.

MSA-based Protein Structure Prediction In the past few years, some methods[42, 41, 37] use
coevolutionary features to predict protein structure using ResNet. Compared to directly using MSA
as input, extracting coevolutionary features will lead to information loss. Recently MSA has been
proposed as input directly using an encoder[24, 14] and decode the distance using 2D ResNet. Most
methods use a ResNet-based model to infer inter-residue geometric constraints and build structure
under those constraints. AlphaFold2[15] is the first successful end-to-end model supervised with
structures. AlphaFold2 win the CASP14 and revolutionize protein structure prediction with so many
new ideas, ranging from recycling its own prediction, over end-to-end training from MSA to structure,
to clear ways of using triangular attention and a large database[38] with reliable accuracy estimates.

Sequence-based Protein Structure Prediction Since AlphaFold2 achieve remarkable performance
at CASP14, some group are looking to speed up AlphaFold2 pipeline to reduce the computational
expense, including model inference stage [2, 7] and homologs search stage[25, 13]. In nature a
protein folds without knowledge of its sequence homologs, predicting protein structure based upon
some non-natural conditions such as MSA or template does not reflect very well how a protein
actually folds. In addition, not all proteins have enough sequence homologs, the MSA-based method
does not perform well on those small-size protein families. Some groups[3, 39] devoted to study how
to predict protein structure unaware of any sequence homologs. EvoGen[43] uses U-shaped neural
network architecture to learn generalizable features across MSA and generate virtual MSA based on
target sequence. OmegaFold[40] achieve fast structure prediction by combining the language model
with structure module of AlphaFold2. ESMFold[20] presents ESM2 with 15 billion parameters as
well as a better positional encoding to encode the inter-residue relationship and decode the coordinate
using structure module similar to AlphaFold2.

Protein complex prediction In addition to accelerating AlphaFold2, many researchers have at-
tempted to generalize AlphaFold2 to complex prediction. Some groups find that adding a gap or linker
segment[25, 17, 5] between chains of complex can successfully model complex with pre-trained Al-
phaFold2, which outperforms some traditional template-based modeling and free docking[12, 6, 18].
DeepMind also presents AlphaFold-Multimer[10], a derived version of AlphaFold2 for multimer, has
superior accuracy on complex structure prediction. However, compared to the powerful performance
of AlphaFold2 on monomer, the accuracy of AlphaFold2 multimer on predicting the protein complex
is far from satisfactory, especially for some antibodies.

Antibody Structure Prediction The modeling of CDR loops, especially the third CDR loop of the
heavy chain (CDR H3) is a challenging topic. Inspired by the deep learning development in protein
structure prediction, Some antibody-specific deep learning methods have been developed to improve
CDR loop modeling accuracy. DeepAb[34] predicts a set of inter-residue geometric constraints
and feeds the contraints to Rosetta to construct a complete antibody structure. ABlooper[1] is an
end-to-end equivariant CDR loop prediction tool, the loop quality can be estimated under prediction.
IgFold[31] extract sequence feature from AntiBERTy[32], update the sequence embedding and
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pairwise representation using triangle attention, and predict the backbone coordinates using IPA.
IgFold achieves a fast and accurate antibody structure prediction.

C Evoformer-Single Stack

As mentioned earlier, our method only takes the amino-acid sequence itself as inputs, without
any sequence homologs. Therefore, for iterative updates of single and pair features, we simplify
AlphaFold’s Evoformer stack [15] (originally designed for updating MSA and pair features) to handle
single sequence inputs, as illustrated in Algorithm 2.

Algorithm 2 Evoformer-Single Stack
Input: single features {si}; pair features {zij} ▷ si ∈ Rcs , zij ∈ Rcz

1: for n = 1 to N do
2: {si} += SeqAttentionWithPairBias ({si} , {zij})
3: {si} += SeqTransition ({si})
4: {zij} += OuterProduct ({si})
5: {zij} += TriangleMultiplicationOutgoing ({zij})
6: {zij} += TriangleMultiplicationIngoing ({zij})
7: {zij} += TriangleAttentionStartingNode ({zij})
8: {zij} += TriangleAttentionEndingNode ({zij})
9: {zij} += PairTransition ({zij})

10: end for

Specifically, “MSAColumnAttention” in the original Evoformer block is removed since calculating
attention weights among sequence homologs is no longer applicable for single sequence inputs. Other
MSA-related modules are simplified correspondingly, while modules only involving pair features
remain unchanged.

In Algorithm 3, single features are updated via the gated self-attention mechanism along the sequence
dimension to formulate the inter-residue interaction. Additionally, pair features are linearly projected
into bias terms, which are then imposed into attention weights. This allows updating single features
under the guidance of inter-residue pair features.

Algorithm 3 SeqAttentionWithPairBias
Input: single features {si}; pair features {zij} ▷ si ∈ Rcs , zij ∈ Rcz

Input: number of dimensions in query/key/value embeddings c
Input: number of attention heads H ▷ h ∈ {1, . . . ,H}

1: si = LayerNorm (si)
2: zij = LayerNorm (zij)
3: qh

i ,k
h
i ,v

h
i = LinearNoBias (si) ▷ qh

i ,k
h
i ,v

h
i ∈ Rc

4: gh
i = sigmoid (Linear (si)) ▷ gh

i ∈ Rc

5: bhij = LinearNoBias (zij) ▷ bhij ∈ R
6: ahij = softmaxj

(
1√
c
⟨qh

i ,k
h
j ⟩+ bhij

)
▷ ahij ∈ R

7: oh
i = gh

i ⊙
∑

j a
h
ijv

h
j ▷ oh

i ∈ Rc

8: s̃i = Linear
(
concath

(
oh
i

))
▷ s̃i ∈ Rcs

Output: residual updates for single features {s̃i}

In Algorithm 4, single features are updated via a two-layer feed-forward network. We set the number
of dimensions in hidden embeddings as c = 4cs, same as AlphaFold. Afterwards, pair features are
updated based on the outer-product of single features, as described in Algorithm 5.

D Recycling Embedding Module

In order to utilize feature embeddings and structure predictions from the previous iteration (as in
Algorithm 1), we slightly modify the original “RecyclingEmbedder” module in AlphaFold [15] for
single sequence inputs. The modified recycling embeddings module is as described in Algorithm 6:
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Algorithm 4 SeqTransition
Input: single features {si} ▷ si ∈ Rcs

Input: number of dimensions in hidden embeddings c
1: si = LayerNorm (si)
2: ŝi = Linear (si) ▷ ŝi ∈ Rc

3: s̃i = Linear (relu (̂si)) ▷ s̃i ∈ Rcs

Output: residual updates for single features {s̃i}

Algorithm 5 OuterProduct
Input: single features {si} ▷ si ∈ Rcs

Input: number of dimensions in hidden embeddings c
1: si = LayerNorm (si)
2: ai,bi = Linear (si) ▷ ai,bi ∈ Rc

3: z̃ij = Linear (flatten (ai ⊗ bj)) ▷ z̃ij ∈ Rcz

Output: residual updates for pair features {z̃ij}

Algorithm 6 RecycleEmbed
Input: single features {si}; pair features {zij} ▷ si ∈ Rcs , zij ∈ Rcz

Input: atomic coordinates {xi} ▷ xi ∈ Rni×3, ni: number of atoms in the i-th residue
Input: inter-residue Cβ-Cβ distance bins v ∈ Rcv

1: xCB
i = GetCbAtom (xi) ▷ Cα atoms for glycines

2: dij =
∥∥xCB

i − xCB
j

∥∥
2

▷ dij ∈ R
3: dij = one-hot (discretize (dij ,v)) ▷ dij ∈ Rcv

4: s̃i = LayerNorm (si) ▷ s̃i ∈ Rcs

5: z̃ij = LayerNorm (zij) + Linear (dij) ▷ z̃ij ∈ Rcz

Output: residual updates for single features {s̃i} and pair features {z̃ij}

Specifically, single and pair features from the previous iteration are normalized to produce residue
update terms for the current iteration. Atomic coordinates of Cβ (Cα for glycines) atoms are extracted
from the predicted structure, from which pairwise Euclidean distance is computed. Such distance is
then discretized into histogram bins to generate one-hot encodings for the final linear projection.

E Loss Function

As described in Section 2.5, the overall loss function consists of a mixture of monomer and multimer
losses, denoted as LH (heavy chain), LL (light chain), and LC (heavy-light chain complex). Each
loss term is defined on the predicted monomer/multimer structure and auxiliary predictions (e.g.,
inter-residue distance), sharing the same form:

LH = L
(
sH , zH ,xH

)
,LL = L

(
sL, zL,xL

)
,LC = L (s, z,x) (2)

Therefore, we take the multimer loss function LC as an example, and describe its detailed loss terms.
Concretely, this loss function constitutes of following terms:

LC = Lgeo + Lfape + Lifape + Lrmsd + 0.1Lconf + 0.01Lviol (3)

Inter-residue geometric loss Lgeo: To provide more direct supervision in the Evoformer-Single
stack, we add four auxiliary heads (implemented as feed-forward layers) on the top of final pair
features for predicting inter-residue distance and angles, as defined in trRosetta [42]. This includes:

• dij : Cβ-C ′
β distance

• ωij : Cα-Cβ-C ′
β-C ′

α dihedral angle

• θij : N -Cα-Cβ-C ′
β dihedral angle

• φij : Cα-Cβ-C ′
β planar angle
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Each prediction head outputs probabilistic estimations of above distance and angles, denoted as pd
ij ,

pω
ij , pθ

ij , and pφ
ij . We then calculate the cross-entropy loss for each term and sum them up to as the

final inter-residue geometric loss:

Lgeo =
∑

ij
CE

(
pd
ij ; dij

)
+ CE

(
pω
ij ;ωij

)
+ CE

(
pθ
ij ; θij

)
+ CE

(
pφ
ij ;φij

)
(4)

Frame aligned point error Lfape: This is identical to the FAPE loss used in AlphaFold [15].
After reconstructing full-atom 3D coordinates from per-residue backbone frame and torsion angle
predictions, each atom is projected into all the local frames (both backbone and side-chain) in the
ground-truth and predicted structures for comparison.

Interface frame aligned point error Lifape: This is identical to the second part of FAPE loss used
in AlphaFold-Multimer [10], which is applied to inter-chain residue pairs and clamped at 30Å. Please
note that this loss is only computed over multimer structure predictions.

Coordinate RMSD loss Lrmsd: In order to better estimate the overall conformation, we calculate
the coordinate RMSD (root-of-mean-squared-deviation) loss between ground-truth and predicted
structures after alignment. The optimal alignment is determined by the Kabsch algorithm [16] for
finding the optimal rotation and translation between two sets of point clouds. For the i-th residue’s
j-th atom, we denote its 3D coordinate in the ground-truth structure as xtrue

ij , and 3D coordinate in
the aligned predicted structures as xpred

ij . The coordinate RMSD loss is defined as:

Lrmsd =
∑

ij

∥∥∥xtrue
ij − xpred

ij

∥∥∥
2

(5)

Confidence loss Lconf : This includes loss functions for pLDDT and pTM predictions, same as
AlphaFold [15]. We detach single and pair features before estimating pLDDT and pTM scores,
similar to IgFold [31], to prevent the model from generating problematic structures whose lDDT and
TM-score can be accurately predicted.

Structure violation loss Lviol: Similar to AlphaFold [15], we introduce penalty terms for incorrect
peptide bond length and angles, as well as steric clashes between non-bonded atoms. For multimer
structure prediction, we do not penalize the bond length and angle between the last residue in the
heavy chain and first residue in the light chain, since there is no peptide bond between them. Besides,
we normalize the steric clash loss by the number of non-bonded atom pairs in clash to stablize the
model optimization, as suggested in AlphaFold-Multimer [10].

Lviol = Lbond−length + Lbond−angle + Lclash (6)

F Implementation Details

We set the number of dimensions in single and pair features as cs = 384 and cz = 256. The
network consists of two Evoformer-Single & structure module blocks for monomer and multimer
structure prediction, respectively. Each block contains 16 Evorformer-Single blocks (without shared
parameters) and 8 structure modules (with shared parameters). To ease the optimization difficulty, we
start with 2 structure modules and gradually increase the depth until maximum during the training
process (one more structure module every two epochs). The model is trained with 32 A100 GPUs
for a total of 150 epochs, which takes roughly 80 hours to finish. The first 50 epochs are trained
without the structure violation loss; it is only enabled in the second stage of model training. At the
end of each epoch, we evaluate the model on the validation set and record its full-atom RMSD. Once
finished, the checkpoint with lowest validation full-atom RMSD is selected as the final one. The
validation full-atom RMSD also serves as the criterion for hyper-parameter tuning, e.g., learning rate
and batch size.

G Inference Speed

One major advantage of our proposed method is that the time-consuming MSA search procedure
is no longer needed, due to the utilization of pre-trained language models. In addition, our model
formulates both backbone and side-chain conformations with a unified neural network, while previous

12



antibody structure prediction methods, e.g., DeepAb [34] and IgFold [31], rely on Rosetta-based
energy minimization to predict side-chain structures. AlphaFold-Multimer [10] predicts full-atom
structures with a single forward pass, but the computational complexity of its Evoformer stack is
much larger than ours.

In Figure 4, we report the time consumption of various antibody structure prediction methods on the
SAbDab-22H1-Ab benchmark. All the run time is measured on a single A100 GPU with 21 CPU
cores. For AlphaFold-Multimer, all the sequence and template databases are stored on a distributed
file system (Ceph), thus the time consumption may be further reduced if local SSD disks are used
instead. Therefore, we also report its execution time with MSA and template search procedures
excluded, denoted as “AF-Multimer (NN-only)”. Our proposed method is able to predict full-atom
antibody structures within 3 seconds, only slower than “IgFold (w/o PyRosetta)” which only produces
backbone structure predictions.

Figure 4: Comparison on the antibody structure prediction time of various methods on the SAbDab-
22H1-Ab benchmark. By default, IgFold uses PyRosetta to generate side-chain conformations from
backbone structure predictions. AlphaFold-Multimer runs all the five candidate models and then
selects the optimal one based on the combination of pTM and ipTM scores. We report the execution
time excluding MSA and template search of AlphaFold-Multimer as “AF-Multimer (NN-only)”.
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